
Behavioral Resource-Aware Model Inference

Tony Ohmann Michael Herzberg Sebastian Fiss Armand Halbert
Marc Palyart Ivan Beschastnikh Yuriy Brun
University of Massachusetts University of British Columbia

Amherst, MA, USA Vancouver, BC, Canada
{ohmann, mherzberg, sfiss, ahalbert, brun}@cs.umass.edu, {mpalyart, bestchai}@cs.ubc.ca

Abstract
Software bugs often arise because of differences between what de-
velopers think their system does and what the system actually does.
These differences frustrate debugging and comprehension efforts.
We describe Perfume, an automated approach for inferring behav-
ioral, resource-aware models of software systems from logs of their
executions. These finite state machine models ease understanding
of system behavior and resource use.

Perfume improves on the state of the art in model inference by
differentiating behaviorally similar executions that differ in resource
consumption. For example, Perfume separates otherwise identical
requests that hit a cache from those that miss it, which can aid un-
derstanding how the cache affects system behavior and removing
cache-related bugs. A small user study demonstrates that using Per-
fume is more effective than using logs and another model inference
tool for system comprehension. A case study on the TCP protocol
demonstrates that Perfume models can help understand non-trivial
protocol behavior. Perfume models capture key system properties
and improve system comprehension, while being reasonably robust
to noise likely to occur in real-world executions.

1. Introduction
Software developers spend half of their time looking for and

fixing bugs [13,48] with the global annual cost of debugging topping
$300 billion [13]. Mature software projects often ship with known
defects [31], and even security-critical bugs remain unaddressed for
long periods of time [25].

One significant cause of bugs is the inconsistency between what
developers think their system does, and what the system actually
does [15, 36]. To increase their understanding of a system, develop-
ers instrument key locations in the code and use logging to peek into
an implementation’s behavior at runtime. Logging system behavior
is one of the most ubiquitous, simple, and effective debugging tools.
Logging is so important that production systems at companies like
Google are instrumented to generate billions of log events each day.
These events are stored for weeks to help diagnose bugs [50].

The resulting logs are often incredibly rich with information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’14 September 15–19 2014, Västerås, Sweden
Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3013-8/14/09$15.00
http://dx.doi.org/10.1145/2642937.2642988

such as legal behavior, conditions that result in errors, and resource
use. Further, it is trivial to enhance systems to produce even richer
logs by including more runtime information [52]. Unfortunately, the
richness that makes logs useful simultaneously makes them complex,
verbose, and difficult to understand. Additionally, logs contain linear
series of events that represent individual system executions (e.g.,
the processing of a single client request), which makes it difficult
to understand system behavior in aggregate. This paper focuses on
helping developers understand how a system behaves and how it
utilizes resources.

Dynamic behavioral specification mining, e.g., [10, 11, 19, 22,
28, 29, 35, 43] tackles the problem of inferring a behavioral model
that summarizes a set of observed executions in a concise form.
Such models have been used to improve developers’ understand-
ing of systems from logs [10], to generate test-cases [16] and test
oracles [37], and to help make sense of complex distributed sys-
tems [9, 30]. While state-of-the-art model inference algorithms rely
on event names, method names, message types, and sometimes data
values stored in the logs, they ignore other rich information that
makes logs so useful. One log feature that is not utilized by exist-
ing model inference tools is the prevalence of resource utilization
information in logs. For example, a log may record how long each
logged event took to execute (by including a timestamp with each
event), how much memory each method used (by tracking memory
allocation), or how much data was sent or received over the net-
work. Our work is motivated by the observation that the precision
of model inference algorithms and the utility of the inferred models
can both be improved by using resource utilization information that
is typically recorded in system logs. We describe Perfume, a novel
model inference algorithm that extends Synoptic [10] in a principled
manner to account for resource usage information in system logs,
such as timing, CPU and memory utilization, and other resource
measures.

Perfume infers a model directly from a text log and requires its
user to specify a set of regular expressions to parse the log. Perfume
works on existing runtime logs (with arbitrary log formats, as long
as they can be parsed by regular expressions) and requires neither
access to source code nor binaries of the modeled system.

Much of the prior model inference work has focused either on
improving inference precision [33, 34], or on inferring richer kinds
of models, such as extended finite state machines (FSMs) [35], mes-
sage sequence graph [30], and communicating FSMs [9]. These
more expressive models can describe more complex software (e.g.,
distributed systems) and also provide more information about the
underlying behavior to the user or an automated analysis tool. How-
ever, this prior work often abstracts away the context in which the
software executes. In this work, we augment the abstract execution
of a system with data on its utilization of resources, such as time,

ohmann@cs.umass.edu, mherzberg@cs.umass.edu, sfiss@cs.umass.edu, ahalbert@cs.umass.edu, mpalyart@cs.ubc.ca, bestchai@cs.ubc.ca, brun@cs.umass.edu

(d) Perfume

test bandwidth 0.0

broadband 0.7 narrowband 2.0

query 1.3 query 3.7

problem 0.5 OK 0.5

OK 0.8

query 3.2query 6.2 query 1.4

(c) Synoptic

test bandwidth

broadband narrowband

query query

query

OK

problem

OK

query

test bandwidth

broadband narrowband

query query

query query

(b) kTails

problem OK

 19.38.218.11 [31/May/2014:31200.0] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.1] "GET HTTP/1.1 /test bandwidth"
 38.151.1.182 [31/May/2014:31200.2] "GET HTTP/1.1 /test bandwidth"
 95.39.21.28 [31/May/2014:31200.3] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.8] "GET HTTP/1.1 /broadband"
 38.151.1.182 [31/May/2014:31200.9] "GET HTTP/1.1 /broadband"
 19.38.218.11 [31/May/2014:31202.0] "GET HTTP/1.1 /narrowband"
210.82.199.247 [31/May/2014:31202.1] "GET HTTP/1.1 /query"
 38.151.1.182 [31/May/2014:31202.2] "GET HTTP/1.1 /query"
 95.39.21.28 [31/May/2014:31202.3] "GET HTTP/1.1 /narrowband"
 38.151.1.182 [31/May/2014:31203.6] "GET HTTP/1.1 /query"
 38.151.1.182 [31/May/2014:31204.1] "GET HTTP/1.1 /OK"
 19.38.218.11 [31/May/2014:31205.7] "GET HTTP/1.1 /query"
 95.39.21.28 [31/May/2014:31206.0] "GET HTTP/1.1 /query"
 95.39.21.28 [31/May/2014:31206.8] "GET HTTP/1.1 /OK"
210.82.199.247 [31/May/2014:31208.3] "GET HTTP/1.1 /query"
210.82.199.247 [31/May/2014:31208.8] "GET HTTP/1.1 /problem"
 19.38.218.11 [31/May/2014:31208.9] "GET HTTP/1.1 /query"
 19.38.218.11 [31/May/2014:31209.7] "GET HTTP/1.1 /OK"

(a) Input log
Figure 1: (a) A sample network diagnosis tool’s log of four execution traces (one trace per IP address), and models inferred by the (b) kTails
algorithm with k = 2, (c) Synoptic, and (d) Perfume on that log. In the Perfume model, each event is annotated with the time it took to
complete.

power, and bandwidth. Our tool, Perfume, infers models that cap-
ture the context in which the execution took place. To ease human
comprehension of models, Perfume limits each model’s context to
a single resource, described numerically. Still, for many analyses,
a small amount of such contextual information provides valuable
insight that is not present in the abstract sequences of events, likely
data invariants, and other behavior descriptions. Perfume models
are predictive: they generalize observed executions and predict un-
observed combinations of behavior that likely represent possible
system executions. This helps to keep the models concise, and to
reason about the system behavior as a whole, as opposed to only
about the observed executions.

Perfume infers models by (1) mining temporal properties with
resource constraints from the log, (2) building an optimistically
concise FSM model of log executions by overgeneralizing those
executions, and (3) iteratively refining the model via counterexam-
ple guided abstraction refinement (CEGAR) [14] until the model
satisfies all the mined, resource-constrained properties. Perfume
builds on Synoptic [10] by extending its property mining, model
checking, and refinement algorithms to account for and enforce the
resource-constrained temporal properties, while also extending the
underlying formalism to encode the executions’ resource context.
This enables Perfume models, unlike those of related work, to ac-
count for optimizations such as caching, lazy evaluation, and loop
perforation [44], all of which impact system performance and can
cause bugs.

Perfume models can be used to improve developers’ comprehen-
sion of a system. Our small-scale user study showed that when given
Perfume models, academic developers answer 12% more system
comprehension questions correctly and in 12% less time than when
shown only execution logs, and 4.4% more correctly in 4.2% less
time than when shown Synoptic-inferred models.

This paper makes the following contributions:
• We introduce Perfume, a new approach to infer behavioral re-

source models of systems. The approach and the correspond-
ing open-source tool are general-purpose: Perfume works on
any resource that can be represented numerically, and any
system log that contains a set of sequentially executed events.
• We implement and publicly deploy Perfume in the cloud:
http://bestchai.bitbucket.org/perfume and release
the source code: http://synoptic.googlecode.com.
• We demonstrate that Perfume models improve comprehension

via a user study with 13 academic developers, showing that
Perfume models make developers 12% more effective at an-
swering system comprehension questions than execution logs,
and 4.3% more effective than models inferred by Synoptic.

• We demonstrate that Perfume models can capture complex
behavior via two case studies, one applying Perfume to the
TCP protocol and another to a web log from a real estate
website used in the BEAR framework [22] evaluation.

The rest of this paper is structured as follows. Section 2 illustrates
how resource information can improve model inference. Sections 3,
4, and 5 detail the log parsing, property mining, and model con-
struction stages of Perfume, respectively. Section 6 describes our
prototype Perfume implementation, and Section 7 evaluates Perfume
in a user study and two case studies. Section 8 places our work in
the context of related research. Section 9 discusses our findings and
future work. Finally, Section 10 summarizes our contributions.

2. Perfume Overview
Consider an example system of a network diagnosis tool that a

server can use to identify problematic client network paths. The tool
first determines if the client is using narrowband or broadband and
then executes a series of queries. Based on the speed and character-
istics of the client’s responses to the queries, the tool classifies the
network path as OK or problematic.

The tool’s developer wants to know what factors cause the tool to
report client paths as problematic. Runtime logs of the tool, shown
in Figure 1(a), can help answer this question, but the information is
hard to infer manually. Instead, model-inference tools can summa-
rize the log. Figures 1(b) and 1(c) depict models inferred using two
well-known algorithms, kTails [11] and Synoptic [10], respectively.
The kTails model differentiates execution paths of broadband and
narrowband clients, but it contains no indication of the types of
executions that suggest network problems because all paths pass
through the common bottom node. Unlike the kTails model, the
Synoptic model correctly conveys that no network problems are
reported for narrowband clients. However, it does not help the de-
veloper further differentiate between those broadband clients who
experienced a network problem and those who did not.

What the developer really wants to see is a model that reveals
what types of executions imply a network problem. Our proposed ap-
proach, Perfume, infers the model shown in Figure 1(d) that exposes
this information1. This model still differentiates execution paths
of broadband and narrowband users, but it also separates the sub-
path broadband→ query→ query→ problem from the sub-path
broadband→ query→ query→ OK based on the performance of

1The Perfume implementation outputs event-based models, but for
exposition, we convert them to the more standard, state-based FSMs
with anonymous states.

http://bestchai.bitbucket.org/perfume
http://synoptic.googlecode.com

the second query. The former sub-path reveals that the tool reports
a network problem when a broadband client responds slowly to the
second data query. Note that simply adding resource information to
the edges on the kTails and Synoptic models would not help identify
what leads the tool to report a problem. The Synoptic model would
predict that both slow and fast responses on broadband can lead to a
problem. Meanwhile the kTails model predicts that all combinations
of response speeds and bandwidths can lead to a problem. By con-
trast, the Perfume model not only displays the resource information,
but is also more precise in its predictions, which leads to a more
accurate differentiation between executions.

2.1 Goals and Challenges
Perfume’s high-level objective is to produce a representative

model of a system from an execution log containing examples of
that system’s behavior. More specifically,

Goal 1. Generate models that are precise and predictive.

Predictive models generalize from the observed executions to also
describe unobserved but likely possible executions.

Goal 2. Generate models that are concise.

Concise models are human-readable and are more likely to be
understood by a developer than the logged executions. Concise
models also contribute to generalization, preventing or reducing
overfitting to the observed executions.

Achieving these goals requires solving three research challenges:

Challenge 1. Identify resource-based properties to pre-
cisely describe observed behavior without overfitting.

We use property mining to generalize observed behavior. These
properties must be tractable to mine and to model check, and they
must be descriptive. Section 4 addresses this challenge.

Challenge 2. Make Perfume general and applicable to a
wide range of systems, logs, and resource measures.

To apply to a broad range of systems Perfume must neither require
access to the system source code nor binaries, and should handle
a large variety of logs. Section 3 addresses this aspect of this
challenge. Further, Perfume must make few assumptions about
the resource measures. For example, while timestamps increase
monotonically in many log formats (and this monotonicity eases
property mining and model checking), many resources, including
memory usage, power availability, and network congestion, are not
typically monotonic, and Perfume should mine and model check
such properties. Section 4.2 addresses this aspect of this challenge.

Challenge 3. Efficient model checking of resource-based
temporal properties.

Model checking efficiency is necessary for model refinement:
inferring the minimal model is NP-complete [4, 23] and Perfume
approximates an optimal solution. Sections 5.2 and 5.4 address this
challenge.

2.2 The Perfume Approach
Figure 2 summarizes the Perfume approach. Perfume infers FSM

models in which each event is annotated with a distribution of
resource metric values. Visually, we represent this distribution as

parserexecution
log

parsing
expressions

resource-constrained
property miner

initial model
construction

CEGAR
refinement

kTails
coarsening

final
model

Input: Output:

Figure 2: The Perfume model-inference process.

a range, e.g., [1,10], and represent singleton ranges with a single
number.

Perfume infers models of unmodified systems, as its input is
a runtime log of system executions. Perfume does not require
a specific format, as long as the log can be parsed with regular
expressions, as described in Section 3.

Perfume produces precise and concise models by generalizing
observed executions. Perfume ensures precision by enforcing a rich
set of temporal, resource-constrained properties that hold in the
observed executions. For example, if Perfume finds that the log of
observed executions captures timeout behavior, then the model it
infers will disallow predicted, unobserved executions from reaching
a timeout sooner than the fastest observed timeout. Section 4 will
formalize the property templates using timed propositional temporal
logic (TPTL) [3]. Perfume mines instances of these properties
from the observed executions and refines the model to ensure that
predicted but unobserved executions behave accordingly.

Perfume ensures conciseness in three ways: (1) Perfume starts
the inference process with the smallest possible (but imprecise)
initial model that separates only different event types and limits the
edges to only those observed during execution, (2) Perfume refines
the initial model to eliminate counter-example generalizations that
violate the mined properties, and (3) Perfume coarsens the final
model using the kTails algorithm [11] to clean up after suboptimal
refinement. Section 5 further details this three-step process.

3. Log Parsing
Perfume operates on system execution logs and requires access

to neither system source code nor binaries, making Perfume general
and broadly applicable to a wide range of systems, satisfying part
of Challenge 2 from Section 2.1. Perfume has two inputs: the
system’s runtime log and a set of regular expressions for parsing
the log. The regular expressions must extract from the log the
individual execution traces of the system. Each trace consists of a
sequence of event instances, and each event instance is associated
with a resource measurement. For example, in the log in Figure 1(a),
a trace is a session for one IP address, and event instances are
specific server actions that appear on each log line, such as the
strings test bandwidth and query. The resource measurements
are the timestamps associated with each log line. To parse the log in
Figure 1(a), the developer would need to specify the following two
regular expressions:

• (?〈ip〉).+:(?〈DTIME〉.+)\] "GET HTTP/1.1 /(?〈TYPE〉.+)"
• \k〈ip〉

The first expression matches the log lines and extracts the IP
address, time, and event type from each line. The second expression
maps log lines with the same IP address value to the same execution.

There are two common points at which systems log events, either
before starting the event, or after completing it. Perfume works
for both cases, but models inferred from two such logs should be
interpreted differently. For example, consider two adjacent event
instances a and b, and time as the logged resource metric. If logging
occurs before starting an event, the difference between the metrics

Description Timed Propositional Temporal Logic formula Notation in this paper
a always followed by b upper-bound t: whenever a is
present in a trace, b is also present later in the same trace
with metric difference at most t.

�x.(a→ (3y.(b ∧ y - x ≤ t))) a
≤t−−→ b

a always followed by b lower-bound t: whenever a is
present in a trace, b is also present later in the same trace
with metric difference at least t.

�x.(a→ (3y.(b ∧ y - x ≥ t))) a
≥t−−→ b

a always precedes b upper-bound t: whenever b is
present in a trace, a is also present earlier in the same
trace with metric difference at most t.

�x.(a ∪ (3y.(b ∧ y - x ≤ t))) a
≤t←−− b

a always precedes b lower-bound t: whenever b is
present in a trace, a is also present earlier in the same
trace with metric difference at least t.

�x.(a ∪ (3y.(b ∧ y - x ≥ t))) a
≥t←−− b

a interrupted by b upper-bound t: between any two
consecutive a events there must be a b event, and the
metric difference between the two a events must be at
most t.

�x.(a→ 3(b ∧ 3y.(a ∧ y - x ≤ t))) a
b,≤t−−−→ a

a interrupted by b lower-bound t: between any two con-
secutive a events there must be a b event, and the metric
difference between the two a events must be at least t.

�x.(a→ 3(b ∧ 3y.(a ∧ y - x ≥ t))) a
b,≥t−−−→ a

a never followed by b: whenever a is present in a trace, b
is never present later in the same trace.

LTL formula: �(a→ �¬ b) a 6→ b

Figure 3: Perfume property types, including a description, the corresponding TPTL formula, and the short-hand notation used in this paper.

of a and b is the time to complete a. (It follows that the time to
complete the last event in each trace is undefined.) However, if
logging occurs after completing an event, the metric difference
between a and b is the time to complete b. (It follows that the time
to complete the first event in each trace is undefined.)

4. Property Mining
Perfume models predict possible, unobserved executions that

likely could be produced by the underlying software system. To
ensure this prediction is accurate and satisfies Goal 1 from Sec-
tion 2.1, Perfume (1) approximates the unknown properties of the
underlying system using properties mined from the observed traces,
and (2) enforces those properties on all paths in its inferred model.
A path that violates one or more of these properties represents an
execution that exhibits behavior dissimilar to all observed behav-
ior, and therefore, Perfume assumes that the system is unlikely to
produce such an execution. Section 4.1 will describe the types of
properties Perfume uses, and Section 4.2 will discuss Perfume’s
solution to the challenge of mining such properties from logs with
monotonic and non-monotonic resources.

4.1 Property Types
Perfume parses the log of observed executions and mines seven

types of temporal, resource-constrained properties that hold for ev-
ery trace in the log. The seven property types (Figure 3) Perfume
mines and enforces are based on the most common and represen-
tative specification patterns presented by Dwyer et al. [17]. We
formalize these properties using timed propositional temporal logic
(TPTL) [3]. These properties help Perfume address Challenge 1
from Section 2.1 by ensuring that Perfume’s predictive models are
precise. For example, if every observed execution that had a send
event also had a receive event, and the most time that ever passed
between these events were 9.9 seconds, Perfume would mine the
property “send always followed by receive upper-bound 9.9”,

represented as send
≤9.9−−−→ receive. When inferring the model,

Perfume would ensure that no predicted execution (1) had a send

event without a later receive event, and (2) had a receive event
generated more than 9.9 seconds after a send event.

Three of these property types, “always followed by,” “always
precedes,” and “never followed by,” were presented in Synoptic [10],
and we extend the former two with resource constraints. While
these ostensibly simple property types were shown in [10] to capture
complex behavior, Perfume can be easily extended to support more
complicated property types. We introduced resource-constrained
“interrupted by” properties, which are binary properties with some
characteristics of ternary properties, after empirically finding that
they can express additional system behavior.

Note that while there are only seven property types, there can be
many more instances of these types mined from a log; the number of
instances typically depends on the number of different event types
the system can produce. The seven property types are templates
for constraints on the possible behavior of the system, with the first
six property types also encoding the system’s performance char-
acteristics. For the upper-bound constraints on properties “always
followed by” and “always precedes,” t is the maximum resource
metric difference, for all traces, between the first event a and the last
event b in each trace. For the lower-bound constraints on the same
properties, t is the minimum resource metric difference between any
event a and any event b in each trace. Bounds on the “interrupted
by” property behave identically, except relevant metric differences
are between the first and last event of the same type a. Recall that
these resource metric differences include the metric measurement
during the completion of a but not b if events are logged before they
start. The reverse is true if events are logged after completion.

Perfume’s properties extend Synoptic’s properties [10] with per-
formance data, and capture key behavioral properties of the system
more precisely. For example, from the log in Figure 1(a), one

of the properties Perfume mines is broadband
≥8.7s.←−−−− problem.

This property is crucial to understanding the system’s behavior, be-
cause it differentiates the query events after broadband that lead
to problem from those that lead to OK. This reveals that network
problems are reported after a fast query followed by a slow query,

(a) (b)

compile
-110

change
120

pull
60

compile
-50

compile
-110

change
120

pull
10

push

compile
-120

change
[120,130]

compile
-60

pull,
compile,
change,
compile,
push,
compile,
change,
compile,
pull,
push,
pull,
compile,
change,
compile,
change,
compile,
push,

 60, Dijkstra
120, Dijkstra
 10, Dijkstra
130, Dijkstra
 70, Dijkstra
120, Lamport
 10, Lamport
110, Lamport
 60, Lamport
 70, Lamport
 60, Perlis
120, Perlis
 10, Perlis
130, Perlis
 10, Perlis
140, Perlis
 80, Perlis

Figure 4: Memory is a non-monotonic resource. The log (a) of
three executions of a version control system is annotated with the
user’s local machine memory use. Perfume handles non-monotonic
resources and infers the model (b) of that log.

whereas no problems are reported after two fast queries. Section 5.2
will explain how Perfume uses these temporal properties to refine the
model, separating paths that exhibit distinct behavior, and enforcing
that all predicted paths satisfy the mined properties.

4.2 Handling Varied Resource Types
The log in Figure 4 represents the typical workflow of three

developers changing and compiling code, and interacting with a
distributed version control system via pulls and pushes. The log
keeps track of the memory consumption of each developer’s sys-
tem at the time each event executes. Unlike time, system memory
consumption is non-monotonic.

Mining properties constrained by resources that either increase
or decrease monotonically (e.g., time) can be done by comparing
relatively few pairs of event type instances. For example, to mine
instances of the property a

≥t−−→ b, one has to consider all adjacent a
and b instances in every trace, and identify the pair with the least t
difference in the resource. Similarly, for a ≤t−−→ b, one only has to
consider the first instance of a in every trace, and the last instance
of b. However, for logs with non-monotonic resources, as in Fig-
ure 4(a), such algorithms cannot work because the two instances of a
and b with the least and most resource differences may neither be ad-
jacent nor most distant in the trace. For example, in Figure 4(a), the

first-last pair algorithm would report compile ≤−50−−−→ push, which
is a false property because the difference between Lamport’s second
compile event instance and only push instance is -40.

Figure 5 lists the unoptimized resource-constrained temporal
property mining algorithm that handles both monotonic and non-
monotonic resources. This algorithm inspects all aType and bType
event instance pairs to compute the lower and upper bounds for each
mined property. Perfume uses Synoptic’s miner for unconstrained
property types (described in Section 3.2 in [10]). Perfume’s imple-
mentation of the algorithm in Figure 5 also minimizing the number
passes over the log. This algorithm addresses part of Challenge 2
from Section 2.1, ensuring that Perfume is applicable to a broad
range of resource measures and log types.

1 function ComputeBounds(aType,bType, log):
2 let lBound← POSITIVE_INFINITY
3 let uBound← NEGATIVE_INFINITY
4 foreach trace in log:
5 foreach e1 in trace where e1.eType = aType:
6 foreach e2 in trace after e1 where e2.eType = bType:
7 // computeDelta returns the difference in resource
8 // utilization between two event instances.
9 lBound← min(lBound, computeDelta(e1,e2))

10 uBound← max(uBound, computeDelta(e1,e2))
11 return (lBound,uBound)

Figure 5: Perfume’s algorithm for computing the lower-bound and
upper-found resource constraints for two event types aType and
bType on a given log input. This algorithm is run on each pair of
event types that appear in a mined unconstrained property. The
constraints for the “interrupted by” property type are computed
differently: we omit this algorithm for brevity.

5. Model Construction
To construct a concise model, satisfying Goal 2 from Section 2.1,

Perfume first builds the most concise model it can, as Section 5.1
describes. While concise, this initial model is imprecise because
it predicts many executions that do not satisfy the mined temporal,
resource-constrained properties. Thus, to satisfy Goal 1 from Sec-
tion 2.1, Perfume iteratively refines the initial model to satisfy these
properties. Section 5.2 explains the refinement process. Perfume’s
task is NP-complete [4, 23], so it approximates a solution and may
at times make suboptimal refinements. To partially correct these
suboptimalities, once Perfume’s refinement reaches a model that
satisfies all mined properties, it coarsens the model where possi-
ble without introducing property violations. Section 5.3 explains
the coarsening process. Both refinement and coarsening require
model checking — detecting property violations in the model —
and Section 5.4 describes this process.

5.1 Initial Model Construction
Initially, Perfume constructs the most concise possible FSM

model. In this model, all events of the same type lead to the same
state. For example, the initial model for the log in Figure 1(a) would
have all query events lead to a single state, and no other events lead
to that state.

The initial model is very concise but only somewhat precise. All
the edges in this model represent an observed state transition. How-
ever, because all events of a given type lead to the same state, this
model is overgeneralized — it predicts many unobserved executions
without regard for their satisfying the temporal, resource-constrained
properties mined from the observed executions (Section 4), making
the model somewhat imprecise.

Next, Perfume refines this initial model to eliminate mined prop-
erty violations, and increase the model’s precision.

5.2 Refinement
The goal of this phase of the algorithm is to refine a model that

violates some of the mined properties into a concise version that sat-
isfies all of those properties. Creating such a model that is optimally
concise is NP-complete [4, 23]. Like prior work [10, 11, 35, 43],
Perfume finds an approximate solution. To satisfy Challenge 3 from
Section 2.1, this refinement must be efficient.

Perfume iteratively performs counterexample guided abstraction
refinement (CEGAR) [14] until the model satisfies all the mined
properties. In each iteration, Perfume uses model checking to iden-

broadband 0.7

query 1.3

problem 0.5 OK 0.5

query 6.2 query 1.4

broadband 0.7

query 1.3

query
[1.4, 6.2]

OK 0.5problem 0.5

(a) (b)
Figure 6: An example of a Perfume refinement step, part of the
construction process of the model from Figure 1(d). The par-
tial model in (a) does not satisfy the mined temporal property

broadband
≥8.7←−−− problem. Perfume refines this model by split-

ting the shaded state into the two shaded states in (b). The resulting
model satisfies the mined property.

tify a predicted path in the model that violates a mined property2.
Model checking (Section 5.4) recognizes violations by finding paths
that falsify a mined property’s TPTL definition. Using the first
identified counterexample path, Perfume localizes the violation and
splits states in the model to eliminate the path from the model. Lo-
calization helps approximate the optimal states to split in order to
keep the model as concise as possible. Then, Perfume iterates to
find another violation of this or another property and further refines
the model until all properties are satisfied.

Figure 6 shows one example refinement iteration. The partial
model in Figure 6(a) does not satisfy the mined temporal property

broadband
≥8.7←−−− problem. Perfume finds the counter-example

path that contains the sub-path “broadband 0.7 → query 1.3 →
problem 0.5” and refines the model to eliminate this path by split-
ting the shaded state into the two shaded states in Figure 6(b). The
resulting model satisfies the mined property.

Perfume’s refinement is guaranteed to produce a model that sat-
isfies all the mined properties because in the degenerate case, it
will refine the model until it describes exactly the observed execu-
tions and makes no other predictions. In our experience, however,
Perfume finds a more concise, predictive model.

5.3 Coarsening
Since model inference is NP-complete, the refinement procedure

efficiently approximates the most concise model by sometimes mak-
ing suboptimal refinements. Once refinement produces a model that
satisfies all the mined properties, a modified version of kTails [11]
with k = 1 can make the model more concise through coarsening.
This process checks each pair of events of the same type to see
if their source and destination states can be merged without intro-
ducing a property violation. This guarantees that Perfume’s model
is locally minimal, although it cannot guarantee global optimality.
This coarsening helps keep the inferred model concise, satisfying
Goal 2 from Section 2.1.

5.4 Model Checking
Perfume uses model checking to identify property-violating coun-

terexamples to guide refinement (Section 5.2) and, during coarsen-
2While model checking does not differentiate between observed and
predicted paths, observed paths cannot violate the properties mined
from the observed paths themselves.

Figure 7: A screenshot of the Perfume front-end. The three-tab
interface allows viewing the Perfume inputs, mined invariants, and
the model. Shown here is one of the models used in the user study
(Section 7.1). Another view of this model is shown in Figure 8.

ing, to identify a locally concise model that preserves the mined
properties (Section 5.3). This model checking procedure must be
efficient to address Challenge 3 from Section 2.1.

During model checking, for each mined property instance, Per-
fume tests if there exists a path through the model that falsifies the
property instance’s TPTL definition. To do this, Perfume encodes
each property as a property FSM that accepts only the executions
that satisfy the property. Model checking simulates all paths in the
model in this property FSM. If model checking discovers a path the
FSM rejects, that path serves as the counterexample. When used for
refinement, this counterexample is simulated in the model to locate
the violation. When used for coarsening, the violation signifies that
the proposed merge of two states should be rejected.

6. Implementation
Perfume is implemented in Java and is released as open source:

http://synoptic.googlecode.com. The implementation builds
on the Synoptic code-base — we added a total of 2,200 new lines of
code to Synoptic (about 10% of the codebase) to implement Perfume.
The Java prototype outputs models in the GraphViz dot format3,
which can then be converted into standard image formats. As well,
we deployed a web-based front-end to Perfume: http://bestchai.
bitbucket.org/perfume/. Figure 7 shows a screenshot of the
front-end. Using this front-end, users can upload a log, enter the
regular expressions to parse that log, and then explore the Perfume-
generated model. The front-end model visualization highlights the
paths that consumed the most and least resources, and supports
several other queries to allow users to better understand the modeled
system behavior.

By default, Perfume generates models in event-based form, as
shown in Figure 7. These can be trivially converted to state-based
models akin to other figures in this paper. The event name within
each node is simply moved to all its outgoing edges if events are
logged before they start (as is the case in Figure 7), or all its incom-
ing edges if events are logged after they complete (recall Section 3).

7. Evaluation
We evaluated Perfume in three ways. First, we carried out a user

study to see if users can interpret Perfume models and use them to
answer questions about system behavior (Section 7.1). We found
3http://www.graphviz.org/

http://synoptic.googlecode.com
http://bestchai.bitbucket.org/perfume/
http://bestchai.bitbucket.org/perfume/
http://www.graphviz.org/

that, on average, subjects answered questions more quickly and
more correctly with Perfume than with only logs and Synoptic [10].
Second, we applied Perfume to a log of TCP packets captured from
a browsing session (Section 7.2). We used the inferred TCP model
to identify three standard timing-based protocol behavior. Finally,
we applied Perfume to a subset of a web access log for a real estate
website that was the subject of evaluation in [22] (Section 7.3). Us-
ing the inferred model we replicated some of the findings from [22]
and also identified a new analysis specific to the Perfume model.

7.1 User Study
To understand if Perfume-derived models support developer sys-

tem understanding, we designed and conducted a user study. All of
the user study materials are available online [39]. Our goal was to
compare Perfume behavioral resource models against the standard
behavioral models derived with Synoptic [10] as well as to com-
pare them against the raw log information that a developer typically
inspects.

The study was structured as a take-home assignment in a graduate
software engineering course. A total of 10 students completed the
survey, and 3 additional participants completed it voluntarily. The
respondents had 6.1 years of programming experience on average,
and 11 of the 13 reported that they use logging to debug their code
“frequently” or “very frequently.” To our knowledge, none of the
participants had previous experience with Perfume.

Participants were asked to read a short description of a system
and then answer questions about the system’s behavior using one
of three treatments, (1) a runtime log, (2) the log and an inferred
Synoptic model, or (3) the log and an inferred Perfume model. Each
respondent answered questions about three systems, exactly one
with each treatment. The order of the systems and treatments were
random. Every question had one correct answer, and the responses
were timed. Participants using the Perfume treatment answered
81.4% of the questions correctly, meanwhile, the Synoptic treatment
resulted in 78.0% correct responses (4.4% fewer correct responses),
and the log treatment 72.4% (12.4% fewer correct responses).4

The mean time taken to answer questions in the Perfume, Synop-
tic, and log treatments (averaged by system) was 682 seconds, 712
seconds, and 778 seconds, respectively. Using Perfume models re-
duced question response times by 712−682

712 = 4.2% versus Synoptic
models and 778−682

778 = 12.3% versus logs.
For the study, we selected three systems: the RADIUS authenti-

cation protocol [40], a web browser, and a hypothetical Connection
Tester tool modeled in Figure 1:

1. The RADIUS protocol authenticates clients on a network.
Clients send a request message with a username and password, and
the server can grant access, reject access, or ask the client to send
another request message containing additional credentials. Logs
included these messages with their sizes in bytes.

Participants using the Perfume model correctly answered the most
questions (81.7%) about the RADIUS protocol. They also spent the
least amount of time (543 seconds).

2. Caching Web Browser. Web browsers often cache previously-
viewed pages and resources to disk to speed up subsequent requests.
We manually wrote a log that simulated a web server cache, record-
ing when an object was cached and retrieved, along with the total
number of kilobytes read from and written to disk. Figure 8 shows
the perfume-inferred Perfume model for this log.

For this system, participants performed best using a Synoptic
model. They spent an average of 527 seconds to correctly answer
4Because the number of questions for each system varied, we first
computed the average of the correct answers for each system, and
then averaged these across the three systems for each treatment.

cache-page
[9,17]

retrieve-page
[109,119]

retrieve-page
[9,17]

cache-image
[22,68]

cache-image
[21,70]

retrieve-image
[121,170]

retrieve-image
[22,68]

quit

Figure 8: Perfume model of web-browser caching events used in
the user study (Section 7.1).

80.6% of the questions. Using a Perfume model, they averaged 632
seconds were correct 60.0% of the time.

3. Connection Tester is a fictional tool that diagnoses network
issues. It tests a client’s bandwidth, executes a series of queries, and
then classifies the network path as “normal” or “problematic” based
on the results. Our manually written logs included server events
with timestamps.

Participants using Perfume models averaged 995 seconds to an-
swer questions about Connection Tester, the most time of the three
tools. However, Perfume model users correctly answered almost
every question, averaging 97.2% correct. Users answered correctly
less than 83.4% of the time using the other two tools.

After completing the survey, respondents were asked to describe
their experiences with the three tools. Of the 13 respondents, 9 found
Perfume models to be the most useful for some types of questions.
Further, 8 said they would use Perfume models if available, 3 said
they might, 1 said he would not, and 1 did not respond. Multiple
participants found Perfume models to be “easier to understand,” and
one envisioned applying them to regression testing. One respondent
commented that comparing these models “with [his] mental model
of a system would be very useful in making sure the contracts [he]
expect[s] to be enforced are actually holding.” A respondent also
suggested that Perfume models “would make abnormal behaviour
[. . .] much more clear” and “would be very useful for debugging.”

No one tool dominated the others across all three systems, but
participants using Perfume did best on two of the three systems.
And, on average, participants using Perfume models spent the least
time answering and answered the most questions correctly. While
this study was small, these preliminary results suggest that Perfume
models can help developers understand unfamiliar systems quickly.

7.2 Modeling TCP
TCP is a network transport protocol for in-order and reliable

exchange of packets (sequences of bytes) between a source and a
destination host. A TCP connection starts with a three-way hand-
shake between a client (active end-point) and a server (passive
end-point). In this exchange, the client first sends a syn packet, to
which the server replies with a syn,ack, which the client in turn

syn

syn,ack syn,ack syn,ack

syn
[2s, 16.1s]

Figure 9: A part of the Perfume model derived for TCP. The server-
generated events are shaded. The model illustrates that Perfume
correctly inferred the syn re-transmission timeout.

answers with an ack. Once established, a TCP connection transfers
data bidirectionally between the two end-points, using ack packets
to acknowledge data reception. When the transfer is completed,
the server typically closes the connection with a fin, and the client
responds to this with a fin,ack.

TCP packets include flags to encode packet types, such as syn,
ack, and fin, and special events, such as rst and psh. An end-point
sends a packet containing the rst flag if it decides to terminate the
connection unilaterally (e.g., due to a technical issue), which relieves
it from executing the closing handshake involving fin. Since TCP
implementations typically buffer data in the host operating system,
interactive applications need a way to flush these internal buffers.
The psh flag causes data in the buffers to be transmitted immediately.

7.2.1 Methodology
We used Perfume to infer a model of TCP with the flag types

serving as model events. We then examined this model manually.
We used Wireshark5 to capture all incoming and outgoing TCP
packets on server port 80 into a log. We then opened a Wikipedia
page6 in the Google Chrome (version 34) web browser and opened
the article for each of the five UMass campuses in a separate window,
always letting one page fully load before opening the next. These
pages included text and images. We exported all captured TCP
packets into a file.

We treated the flags of a single captured packet as an event and
all packets sent/received via a specific client port (the server port
was always 80) as a trace. We filtered out traces longer than 16
events, as these traces contained long psh,ack and ack sequences
that occur when transferring large amounts of data, such as images.
Since we were specifically inspecting behavior while establishing
and closing connections, these traces would have complicated the
model without adding useful information. Note that such filtering is
a likely part of a process developers may follow in using Perfume to
investigate a system’s behavior.

We collected and processed 63 traces containing a total of 602
events. The largest trace had 15 events and the shortest trace had 6
(the minimum for the handshake information exchange). Perfume

mined 125 properties such as syn
≥36ms←−−−− psh,ack meaning that

it takes at least 36 milliseconds from the connection initialization
(the client sending a packet with the syn flag set) to the first packet
containing application data (the server sending packet with the
psh,ack flags set).

7.2.2 Results and Observations
The model Perfume inferred has a total of 168 nodes and 240

edges and is available online [39]. It displays the initial three-way
handshake that utilizes syn. Additionally, the model shows an
alternating pattern of ack packets between the client and the server
as well as graceful termination via fin packets. The Perfume model
also captured several TCP corner-case behaviors:

5http://www.wireshark.org/
6http://en.wikipedia.org/wiki/UMass

rst,ackack
9.5s

fin,ackack
9.6s
ack
6.6s

rst

Figure 10: A part of the Perfume model derived for TCP. Server-
generated events are shaded. The model illustrates that Perfume
correctly inferred that if the server transmits a rst packet when the
client does not communicate for a long time.

• If the syn packet during the initial handshake is not acknowl-
edged by the server within a short timespan, the client assumes
it was lost and resends the syn packet. This is indicated by
the syn-loop in the model and explains how TCP reacts to
lost syn packets. Figure 9 illustrates this behavior, with the
empirically derived timeout range of 2–16 seconds.
• A connection may not terminate gracefully with fin, and may

be aborted by the server with a rst. The model inferred by
Perfume indicates that this behavior occurs after a long break
(6–9 seconds) since the client’s last ack without any further
packets. This corner-case demonstrates how the server termi-
nates the TCP connection when the connection has remained
quiescent for too long. Figure 10 illustrates this behavior.
• The inferred model also captures the behavior in which no

data is sent after the initial handshake, leading to a slow
transition between the client’s ack and a fin,ack. In the
other cases, data is sent with a psh flag, and Perfume shows a
faster transition in these cases. This illustrates how the client
terminates the connection if it requires no new data after the
initial handshake. The slow transition is most likely caused
by a timeout, as the client waits for new data.

We used Perfume to infer a model of flags within TCP packets
in connections between a web browser and a web server. One of
the authors, who had minimal prior knowledge of TCP, identified
three corner-case behaviors. This case study demonstrates that
Perfume-generated models can capture performance and resource-
based behavior and may be useful for improving comprehension of
a protocol or for confirming specific protocol behavior.

7.3 Modeling User Behavior
Several existing tools use web logs to infer models of how users

interact with websites [22, 43]. In this section, we compare Perfume
with one of these tools — BEAR [22] — which mines behavioral
models using probabilistic Markov models.

7.3.1 Methodology
The BEAR authors [22] shared with us an anonymized subset

of the log they used in their experiments. This log contains web
request data from a real estate website on which users browse or
search for houses and apartments to rent or buy. Each logged web
request is associated with a timestamp, which we use to compute
the time between a user’s web requests.

The input log consisted of about 150,000 lines. We reused
BEAR’s pre-processing and taxonomy of events. The pre-processing
cleans the log (e.g., by removing events generated by web crawlers)
and provides each event with semantics by categorizing the events
using manual rules (see Section 4.1 in [22]). Reusing these BEAR
components allows us to directly compare the BEAR’s and Per-
fume’s model inference processes.

http://www.wireshark.org/
http://en.wikipedia.org/wiki/UMass

s2

s4

s3s1
sales_anncs

p = 0.85
m = 13s

sales_anncs
p = 0.085

m = 2s
sales_anncs

p = 0.085
m = 11s

search
p = 0.11
m = 39s

Figure 11: A part of the Perfume-generated real-estate website user-
behavior model from the log used in the BEAR evaluation [22].
This part describes the behavior relevant to the search page (state
s2), indicating that users leave this page quickly, presumably toward
their intended target pages.

The pre-processed log contained about 12,000 lines, categorized
into 13 categories. Perfume executions took, on average, 3 hours to
infer a model. This runtime is an average of 7 executions on an Intel
Core i7-3630QM laptop with 16 GB RAM, running 64bit Java 1.7.0.
Compared to BEAR, which completes in a few minutes, Perfume is
slow. We believe this is due to the complexity of the constrained-
invariants (by comparison, Synoptic [10] also takes a few minutes
to complete). We believe there is ample room for optimization in
our implementation.

7.3.2 Results and Observations
Perfume extracted 1,093 traces with a total of 7,706 events from

the log. It mined 67 property instances and inferred a model with
153 states and 467 transitions. The complete model is available
online [39].

To study the model, we used Gephi [7], a graph exploration
tool. Additionally, we developed a script to highlight certain con-
figurations in the model. Our analysis identified states with high
probability of a short stay to focus on webpages on which users
spent a short time. Such an analysis is relevant to web developers
and maintainers who strive to keep the users’ attention. We used a
prior study [32] to define a short stay threshold value of 20 seconds
— we use this as a cut-off for the median of the range of times on an
edge in the Perfume model. To find pages with high probability of a
short stay, we rely on the trace-based transition probabilities present
(but not shown by default) in the Perfume models. The probability
of a transition between two states on some event is the number of
traces from the log that transition along the event divided by the
total number of traces that pass through the source state. Given a
state, we add the probability of all the state’s outgoing transitions
(except self transitions) that represent a short stay. We identified
several states with a high probability of a short stay; these states
correspond to the search, sales, and renting pages of the real estate
website. Here, we discuss the search page.

Figure 11 presents a part of the model relevant to the search page
(state s2). This page has a high probability of a short stay, since
transitions out of s2 have a median time below 20s with probability
1. Other states in the model representing the search page had similar
high probabilities of a short stay. This result suggests that the search
page is well designed, since users are routed off the search page
quickly.

The BEAR framework can detect navigational anomalies, such
as the difference between actual and expected user navigation flow,
by comparing the BEAR model to the site map [22]. The BEAR
study [22] used such anomalies to identify problems with the terms

of use page: This page, which is only accessible from the contact
page, was missing a back button. This resulted in unexpected tran-
sitions from the state corresponding to the terms of use page. The
Perfume model can also support this task by showing reachability
in the inferred model from the terms of use page state. However,
Perfume cannot easily support some other analyses supported by
BEAR. For example, BEAR can report the probability of a user
browsing the sales page and not the renting ads page.

Overall, the Perfume model improved our understanding of the
real estate website. While Perfume allowed us to answer certain
questions that BEAR cannot answered (e.g., finding pages with high
probability of a short stay), and Perfume allowed us to replicate
some of the analysis that BEAR supports, other BEAR-supported
analyses could not be easily performed on Perfume models. Thus
Perfume is complementary to BEAR, assisting some of the same,
and some different comprehension tasks.

8. Related Work
We have previously proposed Perfume at a high-level in [38],

focusing on log event timestamps. In this paper, we generalize Per-
fume to other resources, present a complete and detailed description
of the involved algorithms, evaluate Perfume, and present, deploy,
and release the source code of a Perfume prototype.

Perfume builds on Synoptic [10, 42], which infers behavioral
models that obey temporal properties without resource constraints.
As Figure 1 illustrates, Synoptic models are likely more concise but
less precise than Perfume models. Walkinshaw et al. [47] also infer
models constrained by temporal properties, but these properties are
provided manually by the user. Other approaches infer different
kinds of models, such as live sequence charts [34], or enrich models
with other information, such as data invariants [35]. By contrast,
Perfume infers models to help developers understand system re-
source utilization characteristics. The timed automata [2] formalism
extends finite state machines with real-valued clocks to describe
systems for which time plays an important role. Perfume can be
seen as a first step toward inferring timed automata system models.

InvariMint [8] proposes declaratively specifying FSM-based model
inference algorithms. InvariMint does not support resource-based
properties. We plan to express Perfume with InvariMint using an
extended set of intersection and union operations over automata that
encode metric values.

Perfume mines temporal properties with constraints from the
input log. Prior specification-mining work has focused on min-
ing temporal [21, 51] and data [18] properties, as well as richer
performance-related properties of distributed systems [26]. On their
own, however, mined properties can easily overwhelm a developer,
which is why Perfume uses mined properties to infer a more com-
prehensible, concise model of a system’s resource utilization.

Other approaches for tracing and capturing performance data
in complex systems [1, 6, 20, 24] are complementary to ours as
they produce logs that can reveal system structure [9]. Perfume
targets sequential systems and requires a totally-ordered log of
system behavior; Perfume models cannot describe multi-threaded
or distributed systems.

Recent work on statistical debugging indicates that most user-
reported performance issues are diagnosed through comparison
analysis [45]. Building on [41], Perfume can support performance
comparison by differencing two Perfume-derived models. More
generally, Perfume models can be used for performance fingerprint-
ing [12], testing, and other tasks. Depending on the specificity of the
logged information, Perfume models may also be used to support
lag hunting [27].

Software performance engineering research can be classified into

two distinct approaches [49]: predictive model-based approaches
used in early phases of a software development, and measurement-
based approaches like Perfume that improve the comprehension of
existing systems. Predictive model-based approaches have been
extensively surveyed [5].

Perfume is not intended to replace specialized and fine-grained
performance analysis tools, such as runtime profilers like YourKit7,
or memory tools like Valgrind8. These specialized tools provide
thorough performance analysis of a specific resource and require
instrumentation. Perfume relies on existing log messages (though
more can be added to improve its analysis), does not require instru-
mentation, and can model any numerically-valued resource that is
interesting to a developer. Further, Perfume can take advantage of
prior work on fine-grained logging of performance information [46],
and recent tools that make it easy to collect and manage event logs9.

9. Discussion and Future Work
Our evaluation results indicate that Perfume models can help de-

velopers understand the performance characteristics of their systems.
We are working to expand the capabilities of the Perfume front-end
website to allow developers to interact with Perfume models in more
meaningful ways. For example, developers will be able to visualize
answers to queries like “which path in the model has the least sum
total resource use?” (front-end answer: highlight path) or “why are
these two states split?” (front-end answer: highlight property type
that is violated when the two nodes are merged).

The focus of our evaluation was primarily on the inference of
models from logs with timing information like timestamps, though
the user study described in Section 7.1 included two non-temporal
models. We believe that Perfume models generalize easily to many
other kinds of resources that can be expressed numerically, such as
energy, throughput, and memory use. We will explore the modeling
of these various resource types in our future work.

Perfume-inferred models describe not only the system but also
its environment. Thus a model inferred from a set of executions
in an environment with environment-specific resource use may not
generalize to other contexts, but does accurately describe that and
similar deployments. Our view is that the model is a compromise
between the design-time specification model and the low-level log
of an execution, helping developers reason about the system and its
deployment.

Perfume models may have more nodes and edges than Synoptic
models (as Perfume satisfies a superset of the Synoptic properties).
This may hurt human comprehension. More generally, there is a
trade-off between including more information in the models and
making the modes useful for comprehension. However, there are
tools (e.g., Gephi) that are designed to make large graph exploration
more tractable. In fact, we used Gephi when dealing with the more
complex model in Section 7.3.

We also envision other non-comprehension uses for Perfume
models. For example, developers can use these models to identify
erroneous executions based on performance characteristics during
debugging. Also, Perfume models can be thought of as specifica-
tions of a system’s actual runtime behavior. This can be useful to
library developers who can use the inferred models to document
good and bad library usage practices.

In ideal circumstances, executions in the input log would exercise
all possible system behavior. In reality, however, most logs will be
incomplete, so Perfume predicts system behavior that is not present

7http://www.yourkit.com
8http://valgrind.org
9http://logstash.net

disconnected

auth
77

EAP
[0,1]

auth
[0,1]

connected
[2, 2510]

rekey
[43, 3600]

rekey
[10, 3530]

connected
[2, 3590]

Figure 12: A ground truth model of wpa_supplicant’s high-level
behavior, including time bounds in milliseconds.

in the log. One way to assess the effectiveness of Perfume’s predic-
tions is to evaluate its ability to recover a known ground truth model
of a system’s behavior using logs covering varying proportions of
all possible system behavior. We have begun a preliminary evalua-
tion in this direction on the wpa_supplicant wireless authentication
daemon10 model pictured in Figure 12. We used this model as the
ground truth (although Perfume originally inferred this model from
daemon logs). We generated a log from this model that provides full
coverage of model behavior by traversing each path in the model
two times: one execution exercised all minimum metric values, and
another exercised all maximum metric values. For each loop in the
model, at least one execution traversed that loop, and no executions
traversed any loops more than once. Using the complete set of such
paths, Perfume recovered the ground truth model in Figure 12. We
are working to extend this early result to circumstances in which
the set of observations generated from a ground truth model is
incomplete or noisy.

10. Contributions
We have presented Perfume, a resource-aware approach for infer-

ring behavioral software models. A preliminary evaluation shows
promise that Perfume-inferred models encode important behavior
missed by prior approaches and improve developers’ comprehension.
For example, a small-scale user study showed that using Perfume
improves comprehension task correctness and speed by 12% over
using logs, and by 4% over using a prior model-inference tool.

By using resource-use information only available at runtime, Per-
fume can improve the inferred model’s precision, and convey infor-
mation that other approaches ignore. Perfume-inferred models may
also improve software processes and various forms of program anal-
ysis. For example, library developers can use Perfume to document
the performance characteristics of the library API. These models can
then be used to optimize programs automatically according to their
library’s usage patterns. In testing, Perfume models can be used to
broaden a test suite’s coverage by producing and testing Perfume-
predicted executions. Further, testing can focus on likely executions
that are especially slow and are more likely to contain performance
bugs. Our early results show great promise for Perfume’s model
quality, and suggest applying Perfume in these contexts.

11. Acknowledgments
We thank Kevin Thai for his initial work on prototyping Perfume.

This work was partially supported by NSERC and by Microsoft Re-
search via the Software Engineering Innovation Foundation Award.

10http://hostap.epitest.fi/wpa_supplicant/

http://www.yourkit.com
http://valgrind.org
http://logstash.net
http://hostap.epitest.fi/wpa_supplicant/

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance debugging for distributed sys-
tems of black boxes. In ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, April 1994.

[3] R. Alur and T. A. Henzinger. A really temporal logic. Journal
of the ACM, 41(1):181–203, January 1994.

[4] D. Angluin. Finding patterns common to a set of strings. Journal
of Computer and System Sciences, 21(1):46–62, 1980.

[5] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-
based performance prediction in software development: A
survey. IEEE Transactions on Software Engineering (TSE),
30(5):295–310, May 2004.

[6] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using mag-
pie for request extraction and workload modelling. In Sympo-
sium on Operating System Design and Implementation (OSDI),
2004.

[7] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open
source software for exploring and manipulating networks. In
International AAAI Conference on Weblogs and Social Media,
2009.

[8] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and
A. Krishnamurthy. Unifying FSM-inference algorithms through
declarative specification. In ACM/IEEE International Confer-
ence on Software Engineering (ICSE), pages 252–261, San Fran-
cisco, CA, USA, May 2013. DOI: 10.1109/ICSE.2013.6606571.

[9] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy.
Inferring models of concurrent systems from logs of their be-
havior with csight. In ACM/IEEE International Conference on
Software Engineering (ICSE), pages 468–479, Hyderabad, In-
dia, June 2014. DOI: 10.1145/2568225.2568246.

[10] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D.
Ernst. Leveraging existing instrumentation to automatically in-
fer invariant-constrained models. In European Software Engi-
neering Conference and ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (ESEC/FSE),
pages 267–277, Szeged, Hungary, September 2011. DOI:
10.1145/2025113.2025151.

[11] A. W. Biermann and J. A. Feldman. On the synthesis of finite-
state machines from samples of their behavior. IEEE Transac-
tions on Computers, 21(6):592–597, 1972.

[12] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. An-
dersen. Fingerprinting the datacenter: Automated classification
of performance crises. In European Conference on Computer
Systems (EuroSys), pages 111–124, Paris, France, 2010.

[13] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbo-
gen. Reversible debugging software. Technical report, Univer-
sity of Cambridge, Judge Business School, 2013.

[14] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Computer
Aided Verification, pages 154–169, 2000.

[15] B. Dagenais and M. P. Robillard. Creating and evolving de-
veloper documentation: Understanding the decisions of open
source contributors. In FSE, 2010.

[16] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller.
Generating test cases for specification mining. In International
Symposium on Software Testing and Analysis (ISSTA), pages
85–96, Trento, Italy, 2010.

[17] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in prop-

erty specifications for finite-state verification. In ACM/IEEE In-
ternational Conference on Software Engineering (ICSE), 1999.

[18] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dy-
namically discovering likely program invariants to support pro-
gram evolution. IEEE Transactions on Software Engineering
(TSE), 27(2):99–123, 2001.

[19] D. Fahland, D. Lo, and S. Maoz. Mining branching-time sce-
narios. In IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2013.

[20] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica.
X-trace: A pervasive network tracing framework. In USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), 2007.

[21] M. Gabel and Z. Su. Javert: Fully automatic mining of general
temporal properties from dynamic traces. In ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering
(FSE), Atlanta, GA, USA, 2008.

[22] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli. Min-
ing behavior models from user-intensive web applications. In
ACM/IEEE International Conference on Software Engineering
(ICSE), Hyderabad, India, 2014.

[23] E. Gold. Language identification in the limit. Information and
Control, 10(5):447–474, 1967.

[24] M. Grechanik, C. Fu, and Q. Xie. Automatically finding per-
formance problems with feedback-directed learning software
testing. In ACM/IEEE International Conference on Software
Engineering (ICSE), 2012.

[25] P. Hooimeijer and W. Weimer. Modeling bug report quality. In
IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 34–43, 2007.

[26] G. Jiang, H. Chen, and K. Yoshihira. Efficient and scalable
algorithms for inferring likely invariants in distributed sys-
tems. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 19(11):1508–1523, 2007.

[27] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if you can:
Performance bug detection in the wild. In ACM International
Conference on Object Oriented Programming Systems Lan-
guages and Applications (OOPSLA), pages 155–170, Portland,
OR, USA, 2011.

[28] I. Krka, Y. Brun, and N. Medvidovic. Automatic mining of
specifications from invocation traces and method invariants. In
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), Hong Kong, China, November
2014.

[29] I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic. Us-
ing dynamic execution traces and program invariants to enhance
behavioral model inference. In New Ideas and Emerging Results
Track at the ACM/IEEE International Conference on Software
Engineering (ICSE NIER), pages 179–182, Cape Town, South
Africa, May 2010. DOI: 10.1145/1810295.1810324.

[30] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo. Mining
message sequence graphs. In ACM/IEEE International Confer-
ence on Software Engineering (ICSE), pages 91–100, Honolulu,
HI, USA, 2011.

[31] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isola-
tion via remote program sampling. In SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 141–154, San Diego, CA, USA, 2003.

[32] C. Liu, R. W. White, and S. Dumais. Understanding web brows-
ing behaviors through weibull analysis of dwell time. In Inter-
national ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 379–386, New York, NY, USA,

http://dx.doi.org/10.1109/ICSE.2013.6606571
http://dx.doi.org/10.1145/2568225.2568246
http://dx.doi.org/10.1145/2025113.2025151
http://dx.doi.org/10.1145/2025113.2025151
http://people.cs.umass.edu/brun/pubs/pubs/Krka10icse-nier.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Krka10icse-nier.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Krka10icse-nier.pdf
http://dx.doi.org/10.1145/1810295.1810324

October 2010.
[33] D. Lo and S.-C. Khoo. SMArTIC: Towards building an accurate,

robust and scalable specification miner. In ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering
(FSE), pages 265–275, Portland, OR, USA, 2006.

[34] D. Lo and S. Maoz. Scenario-based and value-based specifi-
cation mining: Better together. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages
387–396, Antwerp, Belgium, 2010.

[35] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation
of software behavioral models. In ACM/IEEE International
Conference on Software Engineering (ICSE), 2008.

[36] G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion
models: Bridging the gap between source and high-level models.
In ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), pages 18–28, Washington, DC,
USA, 1995.

[37] C. D. Nguyen, A. Marchetto, and P. Tonella. Automated ora-
cles: An empirical study on cost and effectiveness. In European
Software Engineering Conference and ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering
(ESEC/FSE), Saint Petersburg, Russia, 2013.

[38] T. Ohmann, K. Thai, I. Beschastnikh, and Y. Brun. Mining
precise performance-aware behavioral models from existing in-
strumentation. In New Ideas and Emerging Results Track at the
ACM/IEEE International Conference on Software Engineering
(ICSE NIER), pages 484–487, Hyderabad, India, June 2014.
DOI: 10.1145/2591062.2591107.

[39] Perfume (ASE 2014 supplementary content), http://people.
cs.umass.edu/~ohmann/perfume/ase2014/.

[40] C. Rigney, S. Willens, Livingston, A. C. Rubens, Merit, W. A.
Simpson, and Daydreamer. Remote authentication dial in user
service (RADIUS). Technical Report 2865, June 2000.

[41] R. R. Sambasivan, A. X. Zheng, M. D. Rosa, E. Krevat, S. Whit-
man, M. Stroucken, W. Wang, L. Xu, and G. R. Ganger. Di-
agnosing performance changes by comparing request flows. In
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2011.

[42] S. Schneider, I. Beschastnikh, S. Chernyak, M. D. Ernst, and
Y. Brun. Synoptic: Summarizing system logs with refinement. In
Workshop on Managing Systems via Log Analysis and Machine
Learning Techniques (SLAML), Vancouver, Canada, October

2010. DOI: 10.1145/1928991.1928995.
[43] M. Schur, A. Roth, and A. Zeller. Mining behavior models from

enterprise web applications. In European Software Engineering
Conference and ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE), pages 422–
432, Saint Petersburg, Russia, 2013.

[44] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Ri-
nard. Managing performance vs. accuracy trade-offs with loop
perforation. In European Software Engineering Conference and
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 124–134, Szeged,
Hungary, 2011.

[45] L. Song and S. Lu. Statistical debugging for real-world per-
formance problems. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA), Portland, OR, USA, October 2014.

[46] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and
D. Gunter. The NetLogger methodology for high performance
distributed systems performance analysis. In IEEE Interna-
tional Symposium on High Performance Distributed Computing
(HPDC), pages 260–267, Chicago, IL, USA, 1998.

[47] N. Walkinshaw and K. Bogdanov. Inferring finite-state models
with temporal constraints. In IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 248–257,
L’Aquila, Italy, September 2008.

[48] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long
will it take to fix this bug? In International Workshop on Mining
Software Repositories, Minneapolis, MN, USA, 2007.

[49] M. Woodside, G. Franks, and D. C. Petriu. The future of soft-
ware performance engineering. In Future of Software Engineer-
ing (FOSE), pages 171–187, Minneapolis, MN, USA, 2007.

[50] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Expe-
rience mining Google’s production console logs. In Workshop
on Managing Systems via Log Analysis and Machine Learning
Techniques (SLAML), 2010.

[51] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Per-
racotta: Mining temporal API rules from imperfect traces. In
ACM/IEEE International Conference on Software Engineering
(ICSE), pages 282–291, Shanghai, China, 2006.

[52] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving
software diagnosability via log enhancement. ACM Transac-
tions on Computer Systems (TOCS), 30(1):4:1–4:28, February
2012.

http://dx.doi.org/10.1145/2591062.2591107
http://people.cs.umass.edu/~ohmann/perfume/ase2014/
http://people.cs.umass.edu/~ohmann/perfume/ase2014/
http://doi.acm.org/10.1145/1928991.1928995

	1 Introduction
	2 Perfume Overview
	2.1 Goals and Challenges
	2.2 The Perfume Approach

	3 Log Parsing
	4 Property Mining
	4.1 Property Types
	4.2 Handling Varied Resource Types

	5 Model Construction
	5.1 Initial Model Construction
	5.2 Refinement
	5.3 Coarsening
	5.4 Model Checking

	6 Implementation
	7 Evaluation
	7.1 User Study
	7.2 Modeling TCP
	7.2.1 Methodology
	7.2.2 Results and Observations

	7.3 Modeling User Behavior
	7.3.1 Methodology
	7.3.2 Results and Observations

	8 Related Work
	9 Discussion and Future Work
	10 Contributions
	11 Acknowledgments

