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Abstract

We believe that the lack of advancementin thedevelopmentof novel distributedsystems
is the direct result of a lack of necessaryfunctionality to correctly describeand imple-
ment their communicationrequirements.Existing communicationprotocols,specifically
theTCP/IPsuite,caterstrictly to staticpoint-to-pointdatastreams.Thecurrentstateof the
Internetclearly reflectsthe strengthsandweaknessesof this model: Popularapplications
arealmostuniversallystructuredasclient-server.

The difficulties in realizing effective servicelocation and client mobility are the
consequenceof anetwork abstractionin whichonly endpointsmaybenamedandmessages
travel only from pointto point. By namingindividualdatastreamsandallowing thenetwork
to resolve changingendpointparticipation,thesegoalsbecomevery easyto address.

Theexistingcommunicationsinfrastructureis theinevitableresultof long-standing
preconceptionsof network anddistributedsystemcomposition.Thenetwork isnon-wholistically
treatedasacollectionof disjointendpoints.Messagesaretreatedassecond-classobjectsin
anenvironmentwhereonly endpointsarenamed.Goalsof transparency areimplemented
at the lowestpossiblepoint in thesystemthroughabstractionssuchasRPC[4] which, in
anattemptto makeprocedurecallsseemlocal,makesit impossibleto publishdistribution-
relatedfault andcontrolmessagesto applications.

Theexistingnetwork infrastructuredoesnotmeettheneedsof emergingdistributed
systems.For this reason,it is a relevanttimeto reconsiderthedesirablefunctionalityof the
network infrastructure.

This paperintroducestheconceptof a communicationsflow. Theflow is in many
waysanextensionof previouswork regardingdatastream-centriccommunication[12] that
hasbeenaugmentedspecificallyto supportthedemandsof large-scaledistributedsystems.
A flow is a namedentity thatprovidesa handleon thenetwork resourcesassociatedwith a
datastreamin thesamemannerthata processID associateslocal resourceswith a compu-
tationaljob [19].
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Chapter 1

Intr oduction

At theheartof all softwaresystemsliesthetaskof informationmovement.Dataisgenerated

at somepoint within a systemandthenmoved to somenumberof otherpoints,possibly

beingmodifiedalongtheway.

Recently, many large-scaleprojectshave begun to build very large, Internet-scale

distributed systems.Theseprojectsaim to provide world wide accessto distributed file

systems[13], mediadelivery [22], andso-calledubiquitous[17], invisible [11], or perva-

sive[20] computingenvironments.In additionto theseresearchsystems,industrialprojects

suchasMicrosoft’s ‘.net’ 1 [6] framework attemptto allow theprovisionof distributedser-

vicesacrossheterogeneousdevicesat theInternetscale.

With theseambitiousprojects,themechanismsof informationsharingarebecoming

moreimportantthanever. Unfortunately, thearchitectureof theunderlyingcommunications

infrastructureis not evolving asquickly as the demandsof this new classof distributed

application.Frequently, desiredfunctionssuchasqualityof service,groupcommunication,

andmobility 2 mustbeinefficiently provided,asthey arenotsupportedwithin thenetwork.
1Pronounced‘dot net’.
2to nameonly a few...
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TheTCP/IPprotocolsuitehasremainedessentiallyunchangedsinceits inception,

and hasmanagedto scalewell beyond all expectations. However, TCP/IP is unableto

efficiently supportapplicationsthat are not client-server in nature. Attemptsto develop

applicationswith a collaborative groupstructureresultin excessive resourceconsumption,

poorscalability, anddifficultiesin handlingfailure.This is veryproblematic,becausegroup

communicationsareexactlywhatis requiredof thisemerging classof application.

Thispaperpresentsthecommunicationflow, astream-centricmodelfor distributed

communications.Theflow is a namedstreamof communicationthatprovidesmany prop-

ertiescrucialto thedevelopmentof very large,finely distributedsystems.

Our intentionis thattheflow modelbeconsideredasanetwork protocolthatwould

operatein parallelwith TCP/IP. However, asthedeploymentof a new network protocolis

anunrealisticinitial approach,we presenta prototypeof our modelasa middlewarelayer

above TCP/IP.
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Chapter 2

RelatedWork

As flows areintendedto actasa universalcommunicationsabstractionfor distributedsys-

temsattheInternet-scale,they fit betweenseveralbroadareasof existingwork. Thissection

presentssummariesof pertinentwork in eachof theseareas.

2.1 Stream-centricCommunication Models

Uniquelynamingcommunicationstreamsprovidesmany advantages:Namedstreamsmay

bereferencedtooptimizedatamovementacrossasystem.Namesmaybeusedasreferences

to dataacrossapplicationdomains.Thefollowing systemsexemplify theseproperties.

2.1.1 NamedPipes

Namedpipeswereimplementedvery early in UNIX. Themechanismallows a namedfile

handleto becreatedandaccessedasa FIFO messagequeue.Any applicationon a single

hostcould connectto the queueandsendor receive messages1. This mechanismseems

to be thefirst point in operatingsystemsdevelopmentin which it waspossibleto namea
1NotethatUNIX namedpipesstill donothaveany notionof supportfor groupcommunications.

Their behaviour with morethanonesenderor receiver is undefinedandmaybeerratic.
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specificcommunicationsresource,independentof endpoints.This decouplingprovidesa

new degreeof flexibility to concurrentapplications.

2.1.2 Plan 9

Plan9 [28] is an operatingsystemdevelopedat AT&T Bell Labs. Thesystemcarriesthe

notionof namedpipesfurtherby treatingevery resourcein thesystemasa file. All com-

municationchannels,includingTCPstreams,appearasfiles in thelocalfile system.This is

similar to theperspective presentedby flows,in thatstreamsareindividually namedateach

local host. It is different though,in that the streamnameshave no relevancebeyond the

local host;they do not identify anend-to-endcollectionof resourceswho areparticipating

in thestream.

2.1.3 Scout

Scout[12] is a communications-oriented operatingsystemthatuses paths, which areop-

timized routesfor dataacrossthesystem.For instance,a Scoutsystemis ableto setup a

pathfor MPEGvideothatmovesdatafrom thenetwork interfaceto theMPEGdecoderand

thento thedisplayasquickly aspossible.

Scoutpathsexist primarily asanoptimizationmechanismfor datatransfer, although

they do representa fundamentalchangein theway that this transferis representedwithin

systemcode.Pathobjectsarecreatedin thesystemandboundto by moduleswho partic-

ipatein a particulardataflow; this changestheperspective with which programmersmust

approachindividual moduleswithin thesystem.

For themostpart,we seemany of thepropertiesof scoutpathsasa complimentary

mechanismto flows. Indeed,flows addressa fundamentalproblemin Scoutpaths,which

is the needto usea packet classifierin orderto determinewhich streaminboundpackets
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belongto. Thereareseveralaspectsof Scoutpathsthatwouldbenefitfromareconsideration

in orderto provideamoregeneralpurposesystem.Firstof all, pathsareunicastandtendto

becreatedwithin ahighly local scope.Wefeel thatagreatdegreeof extensibility mightbe

affordedby providing multicastsupportandameansof sharingPathIDswithin thesystem.

Additionally, it may be beneficialto provide paths2 that areexpresslywilling to accept

sup-optimalperformance.An exampleof thismightbeamodulethatgathersstatisticsona

givenpathandis willing to accepta lossof messages,underhigh load,in orderto preserve

performanceacrosstherestof thesystem.

2.2 IP Multicast

IP Multicast is an extensionto the InternetProtocol(IP) to allow multicasttransmission

of IP packets. Many commercialrouterscurrently provide somedegreeof supportfor

multicastrouting.Themulticastprotocolshave evolvedslowly over thelife of theInternet,

having beenembodiedby anoverlaynetwork calledtheMBONE. In recentyears,therehas

beena strongdrive towardsproviding integratedmulticastsupportthroughouttheInternet

andmany RFCshavebeenput forwardarguingthemeritsof varyingapproachesto routing

traffic. IP Multicastwill inevitably bring considerablebenefitto distributedsystems,who

will beableto drasticallyimprove theiruseof thenetwork.

Despitetheobvious benefitsof IP multicast,concernsexist regardingits security,

performance,andscalability. Routersmustbetrustedto forwardpacketsappropriately, and

almostall aspectsof securityareleft to overlying applications.Dueto thefactthatrouting

is handledin a completelydecentralizedmanner, join andleave latenciesaresignificant.

Finally, the namespacereserved for multicaststreamspresentsadministrative difficulties

andmayalsonotbelargeenoughto supporttheglobalcommunity.
2or sub-paths...
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2.3 Publish and SubscribeEvent Ar chitectures

During thepastdecade,muchwork hasbeendonein demonstratingtheusefulnessof pub-

lish andsubscribeevent infrastructuresto large distributed systems.Oneof the guiding

observationsof this researchhasbeenin theacknowledgementthatpublishandsubscribe

eventsystemsareanextremelyusefulinfrastructurefor building largedistributedsystems

[26, 16] but aredifficult to scaleeffectively [5]. Thepublishandsubscribemodelis power-

ful becauseit providesanamedhandleonaconversationbetweenany numberof distributed

parties.As messagesarepublishedto andreceivedfrom thenamedconversation,endpoints

arenotashighly coupledandthesystemmayeasilybeextended.

From a conceptualperspective, there is very little differencebetweenissuinga

subscriptionin a publish and subscribesystemand joining a multicastcommunications

channel.Both mechanismsdecouplesenderandreceiver, while still allowing system-wide

many-to-many messagepassing. In practice,the only real differencebetweentheseap-

proachesis that existing network multicast techniquesdo not allow the samedegreeof

messagespecificationastypedeventsystems.

One intentionof flows is to forge a middle groundbetweenthesetwo solutions.

Groupmessagingsystemsclearlybenefitfrom network level multicastandmessagefilter-

ing, however, network abstractionsmustprovide structuresthatmake themmapappropri-

atelyto thissortof system.

A very large numberof publishandsubscribesystemshave beendevelopedand

arein usetodayin commercialdistributedsystems.Severalof thesesystemsarepresented

briefly here.
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2.3.1 The Inf ormation Bus

TheInformationBus[26] wasdevelopedasacommercialdistributedsysteminfrastructure

in the early nineties. The systemprovided publishandsubscribestyle distribution to ap-

plicationsrequiringzerodown time andupgradability. Sampleapplicationscited by the

authorsarestockfloor systemsandintegratedcircuit manufacturingplantsystems.

Thearchitecturewasbuilt atopTCP/IP, andusedspecializedserversto handlemes-

sagequeuing.Ethernetbroadcastwasusedasa optimizationfor groupcommunicationin

local subnets.

2.3.2 Gryphon

Gryphon[16] is a departurefrom traditionalsubject-basedpublishandsubscribesystems.

In Gryphon,subscribersissuesubscriptionsastuples,which describethespecificcontent

that they would like to receive. Thesetuplesarepusheddown into thenetwork andaggre-

gatedto form messageroutingfilters ateachroutingnode.

Theadvantagesto thisapproachcanbeseenin anexampleof afile sharingsystem.

Individual nodesmayissuesetsof subscriptionsdescribingthefiles thatthey arecurrently

sharing.Querymessagesmaybepublishedwithin thenetwork, andwill beroutedto only

thenodeswith matchingfiles.

2.4 RemoteInvocationand Middleware

TCP/IPprovidesasingledatastreambetweentwo hosts.In orderto addfunctionalityabove

this simpleabstraction,distributedsystemstypically provide a mechanismto remotelyin-

vokeor passmessagesto applicationsonotherhosts.Thissectiondescribesseveralexisting

mechanismsfor this,andattemptsto identify how eachmodelexpressesfailureanddistri-
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bution to overlyingapplications.

The differencethat we hopeto identify in this sectionis the capabilitythat flows

provide in enablingtheextensionof theseapproachesto handlefaults.More on this later.

2.4.1 RemoteProcedure Calls

Themotivatingideabehindremoteprocedurecalls[4] is thattheinvocationof codeonare-

motehostcanbemosteasilyrepresentedif it is syntacticallyidenticalto a local invocation.

Thenotionof RPChasexistedsinceat leastthe lateseventies,andhasbeenaninfluential

principle in thedesignof distributedsystemsever since.In RPC,additionalcodeis added

behindthe scenes,andmay even be generatedautomatically, to packageparametersand

shipinstructionsacrossthenetwork. Theabstractionaddsatremendousamountof simplic-

ity to applicationcode,but at acost: remoteinvocationbehavesin a considerablydifferent

mannerthanlocal invocation.Latency is anissue,asinvocationtime in anoptimizedsys-

temis still typically severalordersof magnitudelongerwhencalling remotely. Moreover,

errorscannotbeexpressedto applicationsthroughanything but thereturnvalueof a local

call. This makes it very difficult to identify andresolve, from the application,problems

with thenetwork or remotehost.

2.4.2 Distrib uted COM

DCOM is Microsoft’s approachto remoteinvocation. Microsoft acknowledgesthat RPC

maskssomeerrorsdueto the local-seemingsyntax,andcompensatesby defininga result

field that is capableof representinga broaderrangeof errors.Thenameof this resulttype

is HRESULT, andnon-distributedCOM methodsalsoreturnvaluesof thesametype.So,in

attemptingto broadenthescopeof fault representation,Microsoft imposesthedistributed

error framework on local invocations. Still, this approachforcesan opensetof errorsto
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be representedwithin a singlereturnvalue,which is a numericfield referringto a setof

constantsin an errorsheaderfile. As such,this approachallows only a slightly greater

amountof expressivenessthantheoriginal RPC.

2.4.3 CORBA

The CommonObject RequestBroker Architecture(CORBA) [27] is a standardfor dis-

tributedobjectmiddleware.Theintentionof CORBA is to overcomeissuesthatstemfrom

the heterogeneityof distributed systemsby building a standardizedoverlying layer. The

original CORBA specificationdid not addressissuesrelatingto fault tolerance.Dueto the

increasingdemandfor reliablecommercialdistributed systems,a new standardhasbeen

finalizedasof early2000for Fault-TolerantCORBA [10].

A greatdeal of effort hasgoneinto the designof the FT CORBA specification.

Indeed,it is certainlythecasethata muchhigherdegreeof responseto fault is embodied

by the standard.However, the specificationis very complex and the potentialfor faults

to exist as a result of this approachare real. This fact is demonstratedin [33], which

identifiespotentialproblemsin theinteractionof FT Corbawith legacy Corbacomponents.

Moreover, for themostpartCORBA attemptsto providedistribution transparentlyto appli-

cations;althoughfaultsarehandledmuchmoreappropriatelywithin theCorbamiddleware,

applicationsdo notnecessarilyhave theopportunityto addressthematall.
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Chapter 3

The Flow Ar chitecture

A flow is auniquelynamedmessagestreamwithin thenetwork. Flowsexist independently

of specificendpointsandprovide multicast,allowing any numberof sendersandreceivers.

Flows provide IP-like best-effort messagetransportwith no guaranteeson delivery, order-

ing, or flow control;theseguaranteesareleft to overlying implementations.

This sectionpresentsthe driving designideasbehindflows. Wherepossible,we

avoid mentioningspecific implementationdetails,which are presentedin the Prototype

chapter.

3.1 Naming

Flows arenamedby globally unique128-bit FlowIDs. TheseIDs arecomposedof three

components:A creatorID (64bits),a locationserviceID (32bits),anda local ID (32bits).

The goal of this namingstructureis to provide a simplemeansof creatingand locating

Creator ID LSID LocalID

0 32 64 96 127

Figure3.1: FlowID Composition
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Network Stack
(TCP/IP)

Flow API

Application A Application B

listen(flowA, band x)

listen(flowA, band x)

listen(flowA, band z)

handle_admin_bands()

Flow A

Figure3.2: Bandsallow aflow to crosslayers

flows in a largedistributedenvironment.

ThecreatorID representsthepointwithin thenetwork atwhichaflow wascreated.

Thepurposeof thisfield is to divide thenamingdomainof flowsacrossthenetwork sothat

thereis no needto testfor namingconflict beyondthescopeof thecurrenthost.Eachhost

is responsiblefor theadministrationof the IDs within the ����� entry local ID space,which

includesavoiding ID conflictsacrosssystemreboots.

ThelocationserviceID (LSID) identifiesaservicethatis responsiblefor maintain-

ing themulticastrouting of theflow. LSID’s aremappedto full locationserviceflowIDs

througha lookup. Every routeron thenetwork mustbeconfiguredwith accessto at least

onelocationservice.Locationservices,which will beexpandeduponlater in this section,

form theadministrative domainsfor routingwithin aflow-basednetwork.
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3.2 BandedMessages

Layeringsoftware involvesa division of the systemaccordingto horizontalslices. Each

layer exports an interfaceto be usedwithin the layer above it, and in turn accessesthe

interfaseof the layer below it. Operatingsystemarchitectsdiscoveredvery early that a

layeredapproachto systemstructureprovidedmany benefits[7]. Commonlibrariescould

easilybereusedanduser-level applicationscouldbeprotectedfrom oneanother. Layering

hasalsoprovenusefulin thedevelopmentof datanetworks,theOSIspecifiesaseven-layer

universalmodel [34] for network protocolsagainstwhich all popularprotocolsmay be

mappedto somedegree.

Although layersfacilitate the architectureof systemsin many ways, they impose

interfacesthatgreatlyconstrainverticalinformationflow. In distributedsystems,oneof the

greatestpenaltiesthatresultsfrom a layeredarchitectureis theinability to expressfault in-

formationappropriately. RPChidesthecomplexities of remoteinvocationby makingthem

appearassimpleprocedurecalls,a“well-known andwell-understoodmechanismfor trans-

fer of controlanddatawithin a programrunningon a singlecomputer.” [4] Thedownfall

of this approachis thatby makingcallsappearlocal, RPCforcesa muchbroaderrealmof

errorsto behandledwithin thesamelocalscope.This leadsto difficultiesin describingand

respondingto faultsappropriately. The shortcomingsof a strongly imposedlayeringare

not limited to fault handling. Layeringalsoeffectssystemflexibility andextensibility by

providing generalized,but non-universalinterfaces[31]. Additionally, performancemaybe

lostdueto theoverheadof procedurecallsanddatacopying acrosslayers.

Theseweaknessesof layeringarenot unknown to researchers.Several operating

systemshave beendeveloped[9, 24] thatattemptto minimize interfacesbetweenapplica-

tions andraw devices,providing only protectionandmultiplexing of interfacesto mono-

lithic overlying applications.This approach,however, representsanoppositeextreme:the
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weaknessesof layeringareeliminatedat the costof the benefits.Thesesystemsprovide

limited opportunitiesfor horizontalintegrationbetweenconcurrenttasks,makingsystem-

wideservices,suchasdiskandmemorymanagement,difficult to provide.

The Scoutoperatingsystem[12] makesa significantcontribution by recognizing

thebenefitof a generalizedmodelfor paths. By understandingwherestreamsof dataare

generatedandmustbedeliveredwithin theOS,Scoutprovidestheability to optimizethe

transmissionby providing thefastestpathfor thedatato bedeliveredthroughtheoperating

system.Theauthorsof Scouttermthisoptimizationa vertical integration of thedatapath.

Flows includea mechanism,calledbanding,within the messagestructurethat al-

lows a vertical integrationof communicationstreamswithin a system.Bandingallows the

contentsof adatastreamto belabelled,andallows thenetwork andendpointsystemsto fil-

ter for specificbandswithin astream.WhereScouttakesadvantageof averticalintegration

to optimizedatatransferacrossmodules,flowsallow messagesto passacrossall layersof a

system,potentiallyinteractingwith any of them,in anattemptto provideflexibility andex-

tensibility. This is aconsiderabledeparturefrom thelimited expressivenessandend-to-end

designof TCP/IP.

In TCP/IP, datastreamsareone-dimensionalpipes. It is anestablishedpracticeto

sendtypedmessageswithin a stream,and recentfeature-richroutersprovide the ability

to eavesdropon packet payloadsin order to make routing decisions(e.g., load balanced

routing accordingto HTTP requests).This is an expensive operationwithin routers,as

readingandre-addressingTCPdatais complicated.Flows solve this problemby allowing

datastreamsto be subdivided into bands. The flow headerincludesa field that allows

messagesto optionallybeassignedto oneof 128bandswithin adatastream.

Bandsallow a separationof concernswithin thestream.Thefirst thirty-two bands

arereservedfor administrationanderror-reporting.For instance,aflow’smulticastrouting
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treeis describedwithin thezeroband.By separatingmulticasttreemembershipfrom ap-

plication traffic, we allow routersto be awareof a flow andeasilyallow connectedhosts

to join without incurringtheoverheadof theentirestream’s traffic. Moreover, bandsallow

routingelementsto easilyidentify andhandleadministrativemessageswhile simplyrouting

normaltraffic.

Bandmembershipis currentlyrepresentedthroughoutoursystemasa128-bitmask.

Routingnodesassociateabandmaskwith eachport,andpushbandsubscriptionsdown into

thenetwork to reduceunnecessarytraffic.

3.2.1 Band Filtering

Flow multicastsareorganizedascore-basedtrees[2] with adynamicallyconfigurablemul-

ticastcore. Theuseof bandsallow a given flow to provide a rangeof contenton a single

sharedmulticasttree.Endpointsusebandsto describethespecificcontentthatthey arein-

terestedin receiving andfilters thatdescribethesebandsarepusheddown into thenetwork.

All routersin a flow track the upstreamrouting pathfor that flow. The upstream

pathis the routetowardsthe flow core. All flow messagesmustbe deliveredto the core

in orderto ensurethat they have thepotentialto reachall interestednodes,sothemaskon

theupstreampathnever performsany filtering. Downstreamportsarewheretraffic in the

network is filtered to reflectclient interests.Whena client registersinterestin a specific

band,amessageis senttowardstheflow’smulticastcore,resultingin amodificationin the

downstreambandmasksfrom the coreto that endpoint. At eachrouter, the downstream

bandmasksreflectanaggregateof all interestsbelow thatport. All messagespostedto a

flow travel to thecoredirectly, but areonly percolatedto participantsin thesharedtreewho

areinterestedin receiving them.
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3.2.2 Multicast TreeBand

The multicasttree is maintainedby a singlebandwithin eachflow, bandzero. Routers

andendpointsmay join a flow on this bandin order to becomea memberof the shared

treefor a flow, but will not receive any traffic beyondwhatis requiredin orderto maintain

themulticasttreeitself. This approachallows treemembershipandreconfigurationto be

carriedout in theabsenceof actualtraffic. It alsoallowstraffic subscriptionwithin aflow to

beupdatedveryeffectively, asmulticastrouteshavealreadybeenestablishedfor theshared

tree.

3.2.3 Differ entiated Services

Endpointsareresponsiblefor local routingof messagesoncethey arereceivedfrom aflow.

Many applicationswithin agivenendpointmaybeinterestedin receiving messagesfrom a

flow, additionallyindividualbandsmayneedto bedemultiplexedanddeliveredto different

pointsin anapplication.

Onceanendpointhassubscribedto aflow, applicationsmayaddreceivequeuesthat

filter for specificbands.The benefitof this approachis that thepropertiesandbehaviour

of eachqueuemaybe specifiedseparately, allowing for a differentiationon how inbound

messagesaredelivered.In thecurrentimplementation,this differentiationis fairly limited,

allowing the size of the inboundqueueto be configuredin order to avoid overrun and

droppedmessages.In a completesystem,it is foreseeableto specifydrop strategiesand

partialorderingto individualbandsandpushthesepropertiesdown into thenetwork aswell.

This is a significantbenefitof the bandedapproach,becausemessageswithin a channel

may be cateredto differently. Costly operations,suchasmessageorderinganddelivery

strategies,maybeprovidedby anextensiblesetof endpointdatatypesandaffect only the

necessarytraffic within aflow.
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3.3 Locality

Theability to multicastis veryimportantto allow acollectionof hoststo efficiently commu-

nicateasagroup.Howeverfor someapplications,suchasresourcediscovery, communicat-

ing with anentiremulticastgroupmaypresentfar toomuchoverheadto provideasufficient

solution.Additionally, in many casesit maybedesireableto communicatewith otherend-

pointswho are‘local’, accordingto somedeffinition, to thecurrenthost. To addressthis,

flowsprovide amessagedelivery optioncalled locality.

Trying to find a resourcein a peerenvironmentinvolvescommunicatingwith other

hostson thenetwork in orderto find adesiredresourcethatis available,andhasanaccept-

ablelevel of performance.This is difficult becauseof thepotentialneedto contacta large

groupof connectedhostsin orderto find thedesiredresource.Thebruteforceapproachto

thisproblemis to broadcastsearchrequeststo all participants.Thisapproachis unappealing

dueto the large amountof traffic andcorrespondinglyhigh processingrequirements.The

file sharingapplicationGnutella[1] hasbeenshown to demonstratetheproblemsof scaling

this approachwithin a unicastnetwork. The useof multicastallows a partial solutionto

theproblemby greatlyreducingthevolumeof traffic generatedby attemptingto simulate

multicastin anoverlay, howevermulticastalonestill requiresthatmessagesbedeliveredto

all participantsin agivenmulticastgroup.

Locality providesa furtherrefinementof messagedelivery within amulticastchan-

nel by providing TTL-lik e limitationson multicastdistance.Flow messagesmayspecifya

locality typeandvalueasa delivery parameter. As a flow messageis routed,routersapply

a locality modifierto thelocality valueof themessage.Whena message’s locality reaches

zero,it is dropped.

Therearemany possiblewaysof consideringlocality, asthe‘nearness’of two net-

work endpointscanbeexpressedin any numberof ways. A setof locality typesaresup-
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portedto describedifferentnotionsof locality whenrouting messages.Examplelocality

typesincludebandwidth,delay, andgeographicarea.Bandwidthanddelaymodifiersare

dynamic,andmay be automaticallytunedat flow routersto reflectcurrentnetwork con-

ditionsbetweenneighboringrouters.Geographiclocality is handconfiguredto reflectthe

physicalconfigurationof thenetwork. For example,in our labageographiclocality of zero

representsthelocal application,onerepresentsthelocal host,two representsthelab room,

andthreerepresentsthis floor in thebuilding. Geographiclocality allows a flexible repre-

sentationof thephysicalnetwork thathasprovento beextremelyusefulin locatingdevices

suchas printersappropriately. Within a given locality, applicationsmay useexpanding

ring-searchesto locateresourcesat iteratively moreremoteareasof thenetwork.

In addition,scopesof locality that representthe local hostallow flows to be opti-

mizedfor useasa fastmessagepassingmechanismbetweenapplicationswith exactly the

sameinterfaceasremotecalls.

A similar notion to locality, known asTTL scope,exists in Internetdraftsrelating

to IP addressingandmulticast[21, 25, 32]. ScopeallowstheIP TTL field to determinehow

far multicastmessagesshouldbesentanddefinesa smallnumberof geographicdivisions

within the8-bit TTL range.As thenumberof hopsbetweennetwork endpointsis not nec-

essarilyindicative of geographicdistanceor expectedperformance,TTL is not a universal

solutionto expressing‘nearness’within thenetwork. Locality providesa mechanismwith

which differentmeasuresof nearnessmaybedescribed,andmessagesroutedaccordingly.

Notehowever thattheexistenceof locality doesnotdisplacetherealgoalof theTTL field,

which is ensurethatmessagesarenot routedendlesslywithin thenetwork.
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3.4 Administration

This sectiondescribesoperationsrequiredwithin the infrastructureto provide administra-

tion of flows. Hostsmustbeableto join andleave flow multicasttrees,routersmustmain-

tainflow tablesandgarbagecollectinactive flows. Routersmustalsobeableto reconstruct

flow routingtablesin orderto recover from failure.

Creatingand Destroying Flows

Thenotionsof flow creationanddestructionexist strictly asconveniencesto endpointop-

eratingsystems.As flows arenamedon a host-specificbasis,thereis no potentialnaming

conflict that must be resolved within the network in order to instantiatea new instance.

As such,thecreateanddestroy functionsexist only to manageflow-relateddatastructures

within thelocaloperatingsystem.

Joining and Leaving Flows

A hostwishing to receive messagesfrom a flow mustjoin theflow’s multicasttree. This

join is anasynchronousoperationduringwhich theclient sendsa join requestandexpects

to be attachedto the flow or receive an error messageshortly afterwards. The client join

messagehasthefollowing format:

flow join(flowID, bandmask)

This commandgeneratesa source-routedmessageto themembershipbandof the

flow describingthe join request. A membershipbandhost on the flow may respondto

the join requestmessagewith a join approve message,which cascadesbackto the client

extendingtheflow’smulticasttree.

Hostsmayalsoexplicitly leave flowsby issuingtheflow leave command:

flow leave(flowID, bandmask)
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This commandresultsin the generationof a leave messageon the membership

bandof the flow. This messageis largely for the benefitof applicationswishing to track

membership.Theleave commandwill alsocausearoutingupdatemessageto besentfrom

thehost,indicatingthatit no longerwishesto receive thespecifiedmessages.

Note that join and leave messagesboth specifya bandmaskaswell asa flowID.

Bandsprovide a flexible meansof optimizingmessageflow within a sharedmulticasttree:

All membersof a flow participatein themulticastband,which is a bandreserved specif-

ically to mark theglobalmulticasttreefor a specificflow. Thebandmasksthat individual

hostsspecifymaybepusheddown alongthemulticasttree,allowing flow messagesto be

filteredat optimalpointswithin themulticasttree.

GarbageCollecting Routing Tables

As flows arenot explicitly createdanddestroyed at endpointsor througha centralrout-

ing system,routersmustgarbagecollectflow routing tablesto remove entriesfor inactive

flows. We choosethis approachbecausewe believe that it providesa scalablesolutionto

maintainingroutingtableswithout necessitatingany sortof centraladministration.

In additionto thefieldsthatdescribeparticipatingportsandbandmasks,routersalso

maintaina field that marksthe lastepochduringwhich a messagewasseenon eachport

thata flow is routedon. This is a small integer, that is incrementedto reflectthe router’s

currentepochwhenever a messageis received from that flow on that port. The epochis

incrementedperiodically, andaftera thresholdnumberof epochs,akeep-alive ping is send

to the flow on theport. After a secondthresholdhaspassed,the port is deletedfrom the

flow’s routingentry. Onceall of theportshave beendeleted,theflow’sentryis removed.

This approachallows routersto maintaintheir own tablesthrougha background

task.Furthermore,theamountof traffic generatedin orderto maintainflows is very small.
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3.5 Fault Expressionand Handling

Oneof theprimarybenefitsof bandingis to provide a meansto publishfault information

within the context of a distributed system. Specificbandsmay be chosento carry fault

messagespertainingto someaspectof the distributed system,and anyone receiving the

flow maychooseto listento messageson thesebands.

Usingflows in this way presentsa fundamentaldifferenceto network communica-

tions. In TCP/IP, it is expectedthat only the endpointapplicationswill addandremove

messageson the stream. The model can be consideredas two queues,connectedby a

transportsystem.The transportsystemincludeseverythingbelow theapplication,includ-

ing middleware, the network stack,the operatingsystem,the network interfaceandany

devices,suchasrouters,thatlie in thepathbetweenthetwo communicatingapplications.

Therearetwo weaknesseswith respectto faulthandlingin theTCP/IPmodel.First,

thetransportsystemis verycomplex. Many thingscanpotentiallygowrongin thetransmis-

sionof messages,but this systemhasno meansof interactingwith themessagestreamto

reportor respondto problems.Second,themessagebuffersateitherendof thestreamhave

a very limited capacityto handle‘out of band’data– datathat relatesto thestream,but is

notpartof theexpectedapplication-specificprotocol.TCP/IPprovidestwo flags,theurgent

bit (URG) andthepushbit (PSH),to expeditedatadelivery within anactive stream.The

urgentbit is usedto alertthereceiver thataspecificregionof theincomingstreamcontains

urgentdata,andthepushbit is usedto indicatethatindividual packetsshouldnotbedeliv-

eredasquickly aspossiblewithout buffering. Note that accordingto the TCP RFC [29],

urgentdatais not necessarilydeliveredout of band– it simply providesa meansto alert

the receiver of specialincomingpackets. Many flavorsof UNIX extendthe interpretation

of theurgentbit, calling it TCP OOB (out of band)data. In thesesystems,urgentdatais

storedseparatelyfrom the receive buffer andmay be readimmediatelyby clients. These
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systemsadditionallyprovide a signal,SIGURG,which maybe usedasanup call to alert

applicationsof thearrival of urgentdata.This interpretationof theurgentbit is not by any

meansuniversalacrossexisting operatingsystems;the Microsoft Windows TCP/IPstack

obeys thepushbit, but takesno specialactionwhatsoever with relationto urgentdata.

By supportingbands,flows areableto addresstheseproblems.Bandsallow fault

messagesto be associatedwith, but kept separatefrom, the messagestream.This means

that messagesmay be insertedwithin a flow at any device or layer within the transport

systemwithout worrying aboutconflictswith application-specificprotocols.Providedthat

fault messagesexist on their own band,they essentiallyrepresenta completelyseparate

streamof communications.Fault messagesmay be generatedon flows from anywhere

within thesystem,andselectively receivedanywhereelse.This allows applicationsto see

deepwithin the system,if they so desire,andtake actionin responseto faultsthat might

otherwiseneedto be resolved at lower layersin order to maintaintransparency. By no

meansdoapplicationshaveto dealwith low level messages;existingapproachesto systems

continueto beapplicablewith flows. However, in caseswhereapplicationswould like to

dealspecificallywith systemmessages,flows provide theability to do so.

In additionto this,flowsallow messagedelivery to bedemultiplexedacrossasetof

queuesat eachendpoint.An applicationthatis written for TCPmaybemovedto flows by

mappingits TCPaccessesto a specificbandwithin a flow. Thereceive queuewill deliver

only messagesfrom theremoteapplication.However, theapplicationmaythenbeextended

to handlefaultsby addingadditionalhandlersandqueuesto respondto messageson other

bands.Thesebandsmaypublishapplication-specificfaults,or maycontainfaultsgenerated

within thetransportsystem,link errorsfor instance.

As an example,a video streamingapplicationmay usean extra bandto advertise

overflow messagesbackto the server. The client may be moved to flows, andthenhave
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Redundant Video Server

Primary Video Server Client Client

Client Client

A status band is used between
primary and redundant servers
to monitor the ongoing 
functionality of the active
server.  By subscribing to this
band, redundant servers need
receiv and process only a small
fraction of service data.

Actual service traffic, such as a video
stream, is delivered within a separate
band.  Potentially, different resolutions
or video content could be delivered
on different bands within a given flow.

Using Bands to Provide Reliable Services

Clients need only be aware
of the flow name and band 
on which the desired content 
exists.  Servers may switch
at any time with no effect on
new or existing clients.

Figure3.3: UsingBandsto ProvideReliableServices

additionalcodeaddedto generatefault messagesin thecasethat its receive buffer should

overflow or underflow. Thesemessageswould besentbackto theserver, wherea handler

could tunethe applicationto reducethe delivery rateof the stream.In addition,network

midpointsthatsupportedflowscouldpublishmessagesto thisbandin thecasethatthey too

wereexperiencingbuffer overflow.

A secondexampleof using bandsto survive faults is shown in Figure 3.3. The

figure shows how redundantserversmay be provided on a flow by usinga separateband

to monitor thestateof theactive server. In thefigure,a primaryserver multicastsa video

streamto a collectionof clients.Meanwhile,on a separateband,this server communicates

stateinformationwith a redundantbackupserver. Throughthis band,the backupserver

canbekeptawareof thecurrentpositionin thevideostreamandtheactive server’s well-

beingwithout theoverheadof receiving theentirevideostream.Shouldthebackupserver

receive a shutdown notificationor timeouton this band,it will take over theresponsibility

of multicastingthe streamdata. If this timeoutandswitch canbe executedmorequickly

thantheclientsexhausttheir receivebuffers,thenservicemaycontinueuninterrupted,with

theclientscompletelyunawareof theserver reconfiguration.
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3.6 Location and Routing

In orderfor flows to beusablein aglobalscope,issuesregardingtheir locationandrouting

mustberesolved. Thesearedifficult problems,andthesubjectof ourongoingresearch.In

this sectionwe presenta partial solutionto the routingof flows. Theshortcomingsof our

solutionareoutlinedaspointerstowardswhatareasneedto beaddressed.

The Internetis currentlyplaguedwith problemsrelatingto difficulties in routing.

Primaryamongtheseis thefactthatthenetwork coreis unableto copeefficiently with the

volumeof traffic that is beingsent. In additionto this, it is extremelydifficult to provide

differentiatedservicesandguaranteea specificquality of serviceto any givenconnection.

Therearemany reasonsfor theseproblems:for example,thenamingof endpointson the

net is very disorganizedandmakesmessageforwardingdifficult. Also, individual streams

cannotbe easilydistinguishedleadingto difficulty in differentiatingservice. The recent

developmentof the Multi-Protocol Label SwitchingArchitecture(MPLS) [30] addresses

many of theseconcernswithin the network core. MPLS is not, however, an end-to-end

connectionrepresentation.

By namingspecificstreams,flows provide a convenientmeansof differentiating

service.However, theincreasednamespaceof flows greatlycompoundsissuesin routing.

Moreover, asindividual flows arenotboundto specificnetwork endpoints,their locationis

morecomplex thanthatof IP.

We addressthe issueof flow locationthroughtheuseof LocationServices(LSs).

Locationservicesarecollectionsof hosts,residingonasingleflow, whomanagethemulti-

castroutingof a collectionof flows. In many ways,LSsareanalogousto thecoresof core

basedmulticasttrees(CBTs)[2]. A flow’slocationserviceis identifiedthroughthelocation

field within theflowID. A flow is boundto a given locationservicefor its entirelife time.

Locationservicessolve many problems.First, they actasa point of administrationfor the
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Figure3.4: Multicastroutingwith flows

provision of flows. Oneof the few assumptionsmadeof thenetwork is thata given loca-

tion serviceis ableto find any otherlocationservice.As such,a userneedonly beableto

contacta singleLS in orderto gainaccessto theglobalnetwork. Thesecondbenefitof the

locationserviceis to actasanetwork midpointin orderto locateflows. Althoughflowsare

labelledwith theiroriginator’s uniqueID, theoriginatoris notboundto participatein them

forever. The locationservicecanbe countedon asanavailableentity within thenetwork

throughwhicha flow canbelocated.

In orderto sendamessageto anunknown flow, theflow mustfirst be advertisedto

its associatedLS.Theadvertisementof aflow involvespushingazero-bandsubscriptionof

aflow towardsits associatedlocationservice.Theadvertisementestablishesa link between

theendpointparticipatingin theflow, andthelocationserviceto whichtheflow will belong.

Onceadvertised,any endpointon thenetwork cansendamessageto theflow.

Sendingamessagefrom a nodethathassubscribedto a flow is very simple.When
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a flow is advertised,the upstreampath to the locationserviceis configuredto acceptall

messageson all bands. The downstreampathsareconfigureddynamicallyto reflect the

bandsubscriptionsof theleaf nodesbelow them.Bandflagsareturnedon asendpointsre-

questsubscriptions,andprunedusingthegarbagecollectionmechanismsdescribedabove.

This approachensuresthatall messageswill reachthecoreof themulticasttree,andthen

bedistributedappropriatelyaccordingto bandsubscriptionsacrossthenetwork. Moreover,

thelocationservicemayalsousebandsto filter messagespassedacrossthemulticastcore.

As eachparticipantof the LS is awareof the subscriptionsof the hostsbelow it, it may

advertisethatmaskto theothercoreroutersandreducetraffic within thecoreaccordingly.

If a messageis sentto a flow from a hostthat is not a subscriber, routing is only

slightly different.Intermediaterouters,thatdonothave routinginformationspecificto that

flow, forwardthemessagetowardsthelocationservice.In thecasethatthemessagearrives

at a routeron theflow’s multicasttreeprior to reachingtheLS, it is routednormally. Oth-

erwiseit is routeddownwardsonall pathsfrom thecore.This is identicalto theforwarding

approachproposedin thecore-basedtree[2] strategy.

Theuseof locationservicesprovidesa benefitbeyondtheCBT mechanismin that

it addressesthe provision of a multicastcore. As LS IDs namespecificcoreswithin the

network, while still decouplingthosecoresfrom specificendpoints,locationservicesmay

adaptively reconfigureto provide optimal routing within the network. A full exploration

of theexact functionof the locationservice,at a globalscope,is beyond therealmof this

thesis.Thereareissuesthatneedresolution,suchastheactualmechanismsin reconfiguring

LS membership,andthepartitionof heavily loadedLSs,whichwe have not yet addressed.

Our prototype,describedin thenext section,implementssimple,handconfiguredLS par-

ticipantgroupsanddoesnotaddressthetaskof dynamicreconfiguration.

A final shortcomingof ourapproachliesin thepotentialsizeof routingtableswithin
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the network core. As mentionedearlier, flows compoundthe degreeto which IP already

suffers from this issuewithin the core. We discussthis issuebriefly in the future work

sectionlater.
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Chapter 4

Prototype

We have designedandbuilt a prototypeimplementationof flows. Theprototypeis a mid-

dlewarelibrary thatis usedin conjunctionwith asoftwarerouterto form anoverlaynetwork

above TCP/IP. Theprototypehasbeendevelopedin C andhasbeenwritten for usewithin

Linux.

This sectiondescribesthedesignandimplementationissuesof theprototype.The

client library androuterarepresentedseparately, followed by an explanationof the flow

messagestructures.

4.1 Client Library

Theprototypemiddlewareprovidesaclient library with whichapplicationsmayuseflows.

Applicationsincludethe library andinitialize it to connectto anactive flow server. Once

connected,clientscommunicateusingonly flowIDs, completelyindependentof endpoint

locations.TheAPI instantiatesathreadto attachto theflow routerandhandleinboundmes-

sages.Thedetailsof theclient API andthemessagequeuesareprovidedin theremainder

of this section.
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Table4.1: Flow API - Core Functions
Function Description
flow create(flowid) Createanew flow with thespecifiedID.
flow advertise(flowid, localtiy) Advertisethisflow.
flow addlistener(flowid, bandmask) Add a listenerto thespecifiedflow.
flow removelistener(flowid) Removea listenerfrom thespecifiedflow.
flow get(flowid) Getamessagefrom a flow messagequeue.
flow get blocked(flowid) Getamessagefrom a flow messagequeue.
flow send(flowid) Sendamessageto thespecifiedflow.

4.1.1 Client API

Theinterfaceto theflow library from applicationcodeis intendedto beverysimple.Flows

are administeredfrom the local host using the createand advertisefunctions. Message

queuesareattachedto flows usingtheaddandremove listenerfunctions.Finally, a setof

messagesendandreceive functionsareprovided.Considereachof thesefunctionsindivid-

ually:

flow create(flowid) - Createa flow with thespecifiedflowID. This function reg-

istersa routingentryfor theflow in thelocal flow table. It alsoensuresthat theflow

hasavalid ID by checkingthecreatorID andthelocationID, andensuringthelocal

ID doesnot conflict with any existingflows.

flow advertise(flowid, locality) - Advertisethisflow beyondthelocalhost.

This functionforcesanextensionof theflow multicasttree(bandzerosubscription)

towardsthelocationserviceby a distancespecifiedby thelocality. In mostpractical

cases,we imaginethatflows would beadvertisedall theway to the locationservice

by usinga global locality value. However, this doesprovide a mechanismfor flows

to beadvertisedonly within thelocal area.In retrospect,it mayprove to bea better

approachto alwaysadvertiseall thewayto alocationservice,andto provideseparate

locationservicesfor theadministrationof local flows.
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flow addlistener(flowid, bandmask) - Attacha messagequeueto thespec-

ified bandson thespecifiedflow. This function instantiatesandreturnsa pointerto

a messagequeue.Thequeueis registeredin the local flow tableto receive inbound

messagesmatchingtheflowID andbandmaskprovided. Additionally, thelocal sub-

scriptionbandmaskis aggregatedto accommodatethenew subscription.If new bands

areaddedto the flow membership,a messageis passedto the routerto changethe

bandmaskthere.

If this is the first listeneraddedto the specifiedflow, the library will issuea join

requestmessageto theflow, negotiatingtheextensionof theflow’s multicasttreeto

thelocal host.

flow removelistener(flow queue) - Detachthe specifiedmessagequeueand

deleteit. The local flow table is modified to reflect the deletionand the multicast

messagepathswill begarbagecollectedto makeappropriatechangeson their own.

flow get(flow queue) - Asynchronouslyremove the next messagefrom the flow

queue.If nomessageis available,null is returned.

flow get blocked(flow queue) - Synchronouslyremove thenext availablemes-

sagefrom thespecifiedqueue.If no messageis currentlyavailable,block until one

is.

flow send(flowid, msg) - Senda messageto thespecifiedflow. Theclient need

notbeamemberof thespecifiedflow to sendamessageto it, all messagesaresimply

routedtowardstheassociatedlocationservice(flow core)for transmissionalongthe

flow. Currently, authenticationmechanismsthatwouldprotectclientsfrom receiving

messagesthatdo not belongwithin theflow areleft to applications.It remainsto be
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exploredexactlyhow muchsecurityandauthenticationcanproductively beincluded

within theflow network.

4.1.2 Linking to the Flow Overlay

Theonly locationdependencein theflow prototypeis thebootstrapproblemof connecting

to a flow router. Client applicationsmustusethe flow connect(server, port)

commandto connectthe local host to a specifiedflow router. Ideally, the client should

connectto a routerwith low load andhigh performance.Unfortunately, this is a difficult

problemto resolve.

As we have beenassuminganimplementationof flows thatwill modela network-

layersystem,the locationof a routeris not a hugeproblem. In a flow-enablednetwork, a

hostwould simply sendmessagesto its next-hop router. Unfortunately, thereis consider-

ably morecomplexity in addressingthis problemin an overlay: Thereis no easyway to

pick anoptimal routerfrom a large collectionwithout a high performanceoverhead.Fur-

thermore,routerperformancemaychangeover timeandtheremaybebenefit,in thecaseof

anoverlay, to migratingtheuplink to analternaterouter. Migrating uplinkswould require

modifying multicasttreesacrossthenetwork and,if not performedcarefully, could result

in animplosionof administrative loadacrossthesystem.

A final issuehereinvolvessurviving failure. If theuplink routercrashes,theclient

is droppedfrom theflow network. It is possibleto compensatefor thisproblempartiallyby

providing thehostwith informationaboutotherrouterswithin thenetwork thatmaybeused

for fail-over. Unfortunately, failing over to a secondroutercould involve issuingrequests

to join multicasttreesandresultin apartialtraffic loss.Solutionsto theseproblemsremain

to beexplored.
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4.1.3 ReceiveQueue

Whenclientsusetheadd listenercommandto subscribeto a flow, a circularreceive queue

is createdin usermemory. This queuemaybearbitrarily sizedby theclient. As messages

arriveat thelocal listenthread,they arematchedagainstthelocal listenerlist anddelivered

to theappropriateclient queues.

In our prototype,this doesnot representan optimal messagedelivery mechanism

asthedatais copiedthreetimesasit is passedthroughthesystemto theclient. First, the

kernelmovesthedatafrom thereceivebuffer of thenetwork interfaceto kernelmemoryfor

processing.Onceprocessed,thenetwork stackcopiesthemessageinto usermemory, where

it is receivedby theflow library. Finally, theflow library deliversa copy of themessageto

eachlistenerqueue.

Thegoalof thiswork hasnotbeento achieve bestcasemessagedelivery within the

localhost.A largeamountof researchhasalreadybeendonein thisarea[3, 8, 12], andthe

goalof thisprototypehasbeento demonstratethegeneralfunctionalityof flows. However,

it is easyto imaginehow anincorporationof theflow library into thekernelnetwork stack

could eliminateoneof thesecopies,makingflow messagepassingsimilar in local over-

headto TCP. A kernelincorporationwould have thefurtherbenefitof demultiplexing and

deliveringmessagesto all applicationson thelocal system,insteadof requiringanindivid-

ual routerconnectionfor each.Finally, theimplementationof a copy-on-writemechanism

wouldallow efficientdeliveryof flow messagesto acollectionof local listeners,eliminating

theneedfor extraneouscopying.

Theintentionof usingcircularreceive queuesin this implementationis to maintain

messagerecency. As flows do not guaranteedelivery, we felt that it mademoresenseto

allow applicationsaccessto themostrecentwindow of inboundmessagesasopposedto fill-

ing thebuffer andjustdroppingnew arrivals.This approachis notuniversal,anddefinitely
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achievesworsebuffer performancethandroppingany messagesthatcannotbeaccommo-

dated.Futurework couldexploreproviding a moreexpansive setof buffer primitivesthat

wouldallow applicationsto clearlyspecifythemessagedeliverybehaviour thatthey desire.

Buffersprovide aninterestingexampleof how bandscanbeusedto expressfaults.

In the currentimplementation,an error bandis usedonly to expressreceive queueover-

flow. Whenabuffer overflowsandanexistingbufferedmessageis overwritten,anoverflow

notificationmessageis deliveredto this band. This allows a handlerto beprovided to re-

spondto thebuffer overflow, perhapsby resizingthebuffer or performingapplication-layer

flow control with the remoteend. Of course,cautionmustbe taken in respondingto an

overflowedstateby generatingadditionalmessages.For this reason,overflow messagesare

generatedvery infrequently. After a notificationhasbeensent,thebuffer waits for a large

numberof inboundmessagesto pass(currently2000),prior to generatinganothernotifica-

tion. Additionally, overflow messagesarenevergeneratedfrom bufferswhoaresubscribing

to theflow stackmessageband,asthiswouldbecounter-productive.

An interestingpropertyof thedistributedbenefitsof flows is shown in thiscase.As

overflow messagesaregeneratedon their own band,it is foreseeablefor a server to listen

for remotebuffer overflow messages,achieving a basicend-to-endflow control feedback

mechanism.Unfortunately, this approachrunsa risk of generatinga large amountof ex-

traneousmulticasttraffic. Currently, theflow stackbandis not forwardedbeyondthelocal

hostandservesonly asa local administrative mechanism.Theflow controlapproachjust

describedcouldbeexplicitly achievedby copying overflows to aseparate,forwardedband.

4.2 Flow Router

Theflow middlewareusesanoverlaynetwork of softwareroutersto deliver messagesbe-

tweenflow participants.This sectiondescribesthedesignandimplementationof a proto-
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Figure4.1: Structureof theFlow Router

typerouterto acceptanddeliver flow messages.

4.2.1 Router Ar chitecture

The architectureof the flow router is illustratedin Figure 4.1. The router is composed

of threetypesof thread: a main listenerloop to acceptinboundconnections,a garbage

collector, andasetof threadsto handlemessagesfor individual inboundports.

4.2.2 The Link Table

Theroutersimulatesaphysicallink environmentby maintaininga tablethatdescribesdata

links to otherroutersandendpointswithin the overlay network. Eachof theselinks is a

TCPstreamalongwhich flow messagesmaybesent. The link tableis akin to a port list,

anddescribesall of therouter’s currentconnections.

Eachlink is handledby a listeningthread.ThethreadreceivesinboundTCPmes-
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Table4.2: Flow Router - Link Table
LinkID sock linkT ype linkState locDeltas flows remoteHost
1001 4 L ROUTER L UP K x, y, ...L K A, C, ...L K ...L
1002 5 L ROUTER L DOWN K p, q, ...L K C L K ...L
1002 5 L ENDPOINT L UP K s, t, ...L K A, C L K ...L

sages,which it buffersandbreaksinto flow messages.Theflow messagesareeitherrouted

immediatelyaccordingto theflow table,or processedlocally. The routingalgorithmwill

bedescribedin moredetaillaterin thissection.

Thelink tablemaintainsacollectionof informationfor eachconnection.Thestruc-

tureof thelink tableis shown in Figure4.2.Eachentryis describedbriefly here.

Link ID - This is anarbitraryidentifier thatuniquelydescribesthelink. This identifieris

negotiatedat connecttime betweenthe two participants,andis usedin conjunction

with theremotehostID to reestablisha lost connection.

TCP Socket (sock) - This is a handleon thesocket for this connection.TCPsocketsare

mutexed for write andall threadswrite directly to eachother’s outboundports. It

remainsto beseenif this is anacceptablestrategy to manageroutingunderload. A

betteroptionmaybeto associateoutboundmessagequeueswith eachlink, but this

wouldmeananincreasein complexity within theroutercode.

Link Type - Thetwo acceptablevaluesfor this field are L ROUTER and L ENDPOINT.

The value is usedto differentiaterouting behaviour and reconnectionmechanisms

betweenthetwo typesof node.

Link State - This field hasthreeacceptablevalues, L UP, L DOWN, and L DELETED.

A link that is marked as up is connectedto a remotehost and is actively routing

messages.A down link doesnot currentlyhave a connection,but will be able to
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resumerouting if a connectionis established.Finally, a deletedlink is flaggedfor

garbagecollection.

Locality Modifiers (locDeltas) - This field representsan arrayof locality modifiersfor

eachlink. Locality modifierscurrently reflectgeographicarea,latency, andband-

width. In theprototype,thesefields areassignedmanually. Additional work to the

routercouldaddthefunctionalityto tunethesevaluesdynamically.

DependentFlows (flows) - This list maintainsreferencesto entriesin theflow routetable

thatareroutedon thelink. In thecaseof link error, this list maybeusedto generate

error messagesto the affectedflows. Additionally, links may not be deletedin the

currentprototypeuntil all hostedflowshave beenremoved.

RemoteHost - Theremotehostfield containshostandport informationthatmaybeused

to reconnectin thecaseof a lost connection.This structurealsostoresa hostID that

is usedto preventconcurrentflow clientson a singlehostfrom interferingwith one

another.

4.2.3 The Flow Route Table

Theflow routingtableis asimplestructure,usedby all messagingthreadswithin therouter

to forward messagesappropriately. The table is designedto allow a route to be looked

up quickly and to allow forwardingdecisionsabouta messageon that route to be made

aseasilyaspossible.The structureof the table is shown in Figure4.3, andits fields are

describedhere.

FlowID - This is the128-bit ID of a flow. Eachflow that is beingroutedby the current

routerhasanentryin thetable.A lookupfunctionis usedto retrieve a specificentry

from thetable.
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Table4.3: Flow Router - Routing Table
FlowID AggregateBandmask Link List
Flow A K ...00100111L K (LinkA, K ...11111111L ), (LinkB, K ...L ) L
Flow B K ...11101011L K (LinkA, K ...11111111L ), (LinkC, K ...L ), ...L
Flow C K ...11111111L K (LinkB, K ...11111111L ) L

AggregateBandmask - This field storesthe aggregateof all downstreamsubscription

bandmasks.By aggregatingthisvalueacrossall ports,therouteris ableto doasingle

comparisononmessagesin orderto dropunneededmessagesimmediately. Thisalso

facilitatesrepliesto subscriptiontestsduringgarbagecollection,asupstreamreplies

only needto betestedagainstthis singlefield.

Link List - This is a list of all links currentlyparticipatingin theflow. Theupstreamlink

is alwayslisted first, followed by eachotherparticipant.Associatedwith eachlink

is a bandmaskthat describesthe bandsthat shouldbe forwardedto that link. The

upstreambandmaskis alwayssetto forwardall messages.

4.2.4 The Location Service Table

The locationservicetable is usedasa second-level routing lookup for messagessentto

flows that arenot listed in the routing table. This tableequates32-bit LocationID fields

from FlowIDs to specificentriesin thelink table.In thecurrentprototype,all activelocation

servicesmustberegisteredwithin this table.Futurework might involve allowing wild card

entriesto specifydefault routes.

4.2.5 How Messagesare Routed

As TCP messagesare received by threadsattachedto an active link, they areplacedin

a per-threadreceive buffer. The threadparsesthis buffer, removing flow messagesand
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Figure4.2: PrototypeFlow Router– RoutingMechanism
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performingacursoryverificationon thesanityof themessagestructure.

Messagesareremoved individually from the receive buffer andtestedfor admin-

istrative content. Administrative messagesmay be flaggedin oneof two ways: (1) They

mayhave a bandvaluelower than16,or (2) they mayhave a LocationID valuebelow the

reservedlocationrange.Thelow sixteenbandsareusedto passmessagesthatmayberele-

vantto flow routers.In our prototype,thesemessagesincludemulticasttreerouteupdates,

garbagecollection,andlink errors.ThereservedlocationIDs arenotcurrentlyused,but are

left to provide supportfor specialservices,for instanceroutingandnetwork management.

Administrativemessagesarepassedto specifichandlersandmayeitherbedropped,

or returnedfor forwarding.

To forwarda message,its destinationflowID is lookedup in theflow routingtable.

Themessage’sbandis testedagainsttheaggregatebandfor theroutingentry, andif thereis

nomatch,themessageis forwardedonly to theupstreamport. Notethatamessageis never

forwardedon the arrival port, so messagesfrom thecorethat do not matchtheaggregate

bandmaskaredroppedimmediately.

If a messagedoesmatchthe aggregatebandmask,the routerwill iteratethrough

thelist of links in theflow routingtableandforwardto all links with matchingmasks.As

messagesareforwarded,theirTTL is decrementedby one,andtheir locality is modifiedby

thevaluespecifiedin thelink table.

4.2.6 GarbageCollector

All endpointinitiatedoperationsin thenetwork of flows move towardscreatingnew mes-

sagedelivery paths. Flows arenever explicitly deleted,nor aremulticasttreesprunedor

bandfilters explicitly narrowed. Themotivation for this approachis thatoperationsfrom

clientsshouldmovethenetwork towardsadesiredstateof messagedelivery, but thatclients
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cannotbetrustedto cleanup afterthemselves.As such,network endpointsarein a steady

stateof requestingandusing flow services,while the network itself attemptsto remove

serviceswhich arenot beingused. Clientsneedonly be awareof the flows that they are

involvedin andwantto remainavailable.

Thegarbagecollectorin ourprototypeoperatesonasinglemessageband.Garbage

collectioninvolvesbroadcastingmembershippingsalongeachflow thathasnot transmit-

ted traffic for a periodof time. The strategy usesthe notion of epochs,describedin the

architecturechapter.

Parallel to the flow table is a garbagecollection table, which is associatedwith

eachlink registeredfor eachflow. Thegarbagecollectionentrieslist two epochvaluesin

associationwith eachlink. The first valuerepresentsthe last epochduring which traffic

wasreceived from that link for thecurrentflow. Thesecondvalueindicatesthelastepoch

duringwhichapingwassentalongtheflow on thatlink.

As traffic is receivedfrom aflow, thegarbagecollectionvaluesareupdatedto reflect

activity. The collector threadwandersthe tableandgeneratesping messagesto inactive

flows. If no reply is received to the ping message,the garbagecollectorwill generatea

deletemessagethatis sentdown theinactive link andremovethatlink from theflow routing

entry.

Note that only endpointsgeneratereplies to garbagecollection messages.This

allows routersto sharethe useof thesemessages,by updatingcollectiontableentriesto

reflectpingsgeneratedelsewhereon the network. Garbagecollectionpingsareonly sent

andforwardedto downstreamentriesin theflow routingtable.

As an additional optimization to reducingunnecessarytraffic in the network, a

mechanismhasbeenincludedto requestandadvertiseper-flow bandmasksto next-hop

routers. Thesemessagesarenot forwarded,but may result in a cascadeof updates.If a
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Figure4.3: PrototypeFlow MessageHeader

client or routerrealizesthat it is receiving messagesthatdo not matchits forwardingband

masks,it may advertisethe actualbandmaskto upstreamnodes.This allows a client to

immediatelyreduceinboundtraffic assubscriptionsaredropped.

4.3 MessageStructures

Flow messagesin theprototypeareprefixedwith a 192-bitmessageheader, shown in Fig-

ure 4.3. The first 128 bits of this field containthe flowID. The threecomponentsof this

ID weredescribedearlierin this thesis.The remaining64 bits of theflow headerprovide

additionalmessaginginformation.Eachof thesefieldsis discussedbriefly here.

PayloadSize - Thesize,in bytes,of themessagepayloadthatfollows thisheader.

Band - Thebandon which thismessagehasbeenpublished.

Locality Type (L Type) - This field indicateswhat type of locality to use,if any, while

routingthismessage.CurrentlydefinedvaluesincludeLOC BANDWIDTH, LOC DELAY,

LOC GEOGRAPHY, and LOC NONE.

Locality Value (L Val) - Thelocality valueof thismessage.

Time to Li ve (TTL) - A flow-level TTL field wasimplementedto ensurethat messages

would terminatein the prototypeoverlay network. Every routing nodedecrements
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thisvalueby oneeachtime themessageis forwarded.Themessageis droppedwhen

its TTL reacheszero.

4.4 Performance

This sectionpresentsthe resultsof performancetestson the implementedflow routerand

libraries on a three-nodesystem. The testsdescribethe efficiency with which the flow

middlewareis capableof deliveringmessages.

Eachhost usedfor thesetestsis a 450MHz PentiumIII with 128 megabytesof

RAM anda 100 megabit Ethernetinterface(Intel 82557). Eachhost runsLinux 2.2.16.

The testsareintendedto explore the overheadthat the existing implementationof flows,

writtencompletelyat theapplicationlayer, representsabove raw TCP/IPtransport.

In orderto testthroughput,anapplicationwaswritten to generatetraffic on a spe-

cific flow. This traffic was forwardedto the router and then on to an applicationon a

receiving node,which verified thatmessageshadarrived intactandcalculatedthroughput
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statistics.Theresultsof this testareshown in Figure4.4. Flow throughputsarecompared

to maximumTCPthroughputs,calculatedusingnetperf[23]. TheTCPthroughputsreflect

throughputtestsof TCPpacketswith payloadsizesof thespecifiedflow payload,plusthe

192-bitflow header.

As can be seenfrom theseresults,flow throughputconvergeswith TCP/IP at a

payloadsize of approximately250 bytes. At this point, the computationaloverheadof

messagerouting doesnot inhibit delivery rate. This is further exemplified in Figure4.5,

whichshowstherateatwhichtheflow routerprocessesmessagesasmessagesizeincreases.

This rate is initially limited by the routing node,but thendecreasesandstabilizesasthe

network interfacebecomessaturated.

In addition to theseresults,we have testedflow latency overheadby comparing

round-trip time (RTT) betweenflow messagesandTCP/IPpings. On average,we found

thatourimplementationincursa100 S send-to-endlatency onround-tripmessagedelivery.
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Chapter 5

Application Examples

Theprototypeimplementationof flows hasbeenusedto develop two sampleapplications

that demonstratethe benefitsof theflow model. The first applicationis a generallookup

servicethat is usedto provide namesfor flows within the network andstoreinformation

aboutthe locationservices.The secondexampleis a variable-resolutionmulticastvideo

streamingsystem.

5.1 Flow Dir ectory Service

Thefact thatflows have very long numericalidentifiersandtheneedto track locationser-

viceshave led to thedevelopmentof asimpledirectoryservicefor usein thenetwork.

The flow directoryserviceis currentlya singleflow that many network endpoints

participatein. Nodesmay subscribeto the serviceandreceive requestsfor directory in-

formation.All informationtakestheform of tuples,no furtherstructuralspecificationsare

imposed.

Requeststo the servicetake the form of tuplescontainingwild cards,and list a

flowID to whichrepliesshouldbeforwarded.For instance,arequestto thedirectoryservice
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to find thelocationof aflow calledVNC-1,andto havethereplyforwardedto flow A would

take the form ((‘‘FLOWID’’, ‘‘VNC-1’’, *), FlowA). This requestcouldbe

sentto thedirectoryserviceandall hostswith matchingentrieswould sendrepliesto flow

A.

Thisapproachallowslocality tobeusedtodeterminehow farsearchrequestsshould

be sent. Locality may be usedto performan expandingring searchwithin the directory

service,iteratively reachinglargergroupsof endpoints.

Futurework on the directorywill needto addressissuesof scale. It will not be

acceptablefor every hoston the network to be ableto flood this peer-basedservicewith

requests.A suggestedapproachto this will beto uselinkedclustersof hosts,andinstitute

forwarding heuristicsat cross-domainlinks to eliminatemessagesfrom poorly-behaved

hosts.

5.2 VideoOver Flows

A clearbenefittoflowsthathasbeenarticulatedrepeatedlythroughoutthisdocumentarethe

potentialbenefitsto delivering distributedserviceswithin a large heterogeneousnetwork.

WehavemodifiedtheVNC package,developedby AT&T Cambridge,to useourprototype

middlewareinsteadof raw TCP/IPfor delivery. By usingflows,weareeasilyableto extend

thefunctionalityof VNC to provide multicastdelivery, variableservice,andmobility.

VNC allows thedisplayof a computerto beforwardedto a remotehoston thenet-

work. This remotehostis ableto interactwith themachineasif it werelocal,all keyboard

andmouseinteractionsarepassedbackto theVNC serverandappliedlocally. VNC allows

any remotehostto actasa thin client for theserver machine.
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5.2.1 The VNC Flow Protocol

In moving VNC to flows,wehavesplit theprotocolto allow it to takeadvantageof banding.

Two bandsareusedto advertiseandrequestspecificscreenresolutions.New clientsmay

connectto an active VNC flow andsubscribeonly to the resolutionadvertisementband.

Thisbandperiodicallybroadcastsa list of availableresolutionsandtheassociatedbandson

which thoseresolutionsaredisplayed.If thecurrentresolutionsdo not satisfytheclient, a

new resolutionmayberequestedby postingamessageto therequestband.

To join thesession,a client needonly subscribeto oneof theactive streamsat the

desiredresolution.This will resultin thatbandbeingforwardedto themalongtheexisting

multicasttree.

This division alsoresultsin a usefulreorganizationof the VNC server code. Ac-

cessesto thecommunicationsstreammaybespreadacrossthesoftwareto theappropriate

places.An advertiserthreadspins,publishingalist of thecurrentlyactivebroadcastthreads.

Eachof thebroadcastthreadsis identical,exceptfor parametersdescribingresolution,and

thebandto senddataon. Finally, a separatethreadhandlesinboundrequestsandinstanti-

atesnew broadcastthreadswhenever necessary. A very simplereorganizationof thecode,

andtheuseof flows providesbothmulticastandvariableservice.

Mobility is alsoachieved for freevia this approach.We areusingVNC strictly as

a delivery applicationandhave disabledremotemouseandkeyboardinteractions.As the

applicationis stateless,mobile clientsmay simply rejoin the flow from new locationsin

orderto continueto receive thesamestream.In moreadvancedapplications,a mechanism

would be requiredto move the streamacrosstwo locationsandsynchronize,this would

needto beprovidedat theapplication.
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5.2.2 Future work with VNC

Theintegrationof flows with VNC hasleadto many interestingideasfor ongoingwork. It

wouldbevery interestingto exploretheoptionof extendingVNC to provideacollaborative

work environmentfor a setof participants.We imagineextendingthesystemto allow all

participantsto forwardmouseandkeyboardinteractionsto theremotehost,possiblyinter-

actingwith somesortof overlayontheremotehost.Eachusercouldhaveaseparatemouse

pointersandinteractwith different,or thesamewindow all concurrently. Theimplications

for collaborative environmentsusingthisstrategy arevery exciting.
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Chapter 6

Open Problemsand Futur eWork

We feel that the currentprototypehasdemonstratedthe usefulnessof the propertiesthat

flows provide to communicationsin a distributedenvironment. Thereare,however, many

unresolvedproblemsthathavecometo light duringthework to date.Therearealsoseveral

interestingfuture directionsthat could be explored as an extensionof this work. These

topicsarediscussedin thissection.

6.1 Security

In a large distributed environment,securityrepresentsa very hard problem. Oneof the

major reasonsfor this is that in the caseof wide distribution, very few assumptionsmay

be madeaboutthe trustworthinessof resources,or even thenetwork itself. In thecaseof

our prototype,overlaynetwork nodesmaypotentiallybescatteredacrosstheInternet,and

couldpotentiallybecompromised.Somespecificconcernsin thecaseof acommunications

infrastructureinvolve eavesdropping(sniffing), impersonation(spoofing),and malicious

attacks.

Theflow modeldescribedhereis vulnerableto all threeof theseproblems.In our
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prototype,any hostmayjoin agivenflow andsubscribeto receivemessagesonit. Any host

may senda messageto a flow, andthe modeldescribedin this paperdoesnot explicitly

requirethat messagesincludea sourceaddress.Finally, a denialof service(DoS) attack

would be quite easyto carry out within the prototype,and would likely have the initial

resultof overwhelmingthe routers,bringing thenetwork down. It is worth noting that IP

multicastis susceptibleto thesesameproblemsto asimilar degreeasflows.

Solutionsto theseproblemsareespeciallydifficult to solve within the domainof

a communicationsinfrastructurefor two reasons.First, routingneedsto beeasy. Routers

form aninevitablebottleneckwithin communicationssystems,andaddressingsecurityby

movingcomputationallyintensivetasks,suchaskey validation,into thenetwork is probably

notagoodidea.Secondly, distributedsystemaccesscontrol is almostuniversallybasedon

somesortof key scheme.In orderfor aninfrastructureto remainusefulover a long period

of time, it mustnot commit to securitymechanismsthat could potentiallybecomeweak.

For this reason,we feel thatsecuritywithin thissortof infrastructureshouldbelargely left

to overlying applications.

Unfortunately, leaving all assurancesrecardingsecurityto applicationsis insuffi-

cient. In thecaseof dataprivacy, it seemsfair to leave applicationsresponsiblefor incor-

poratingthe appropriatedegreeof encryption. In this sense,we sidewith the endto end

argument1 [31]. However, in orderfor acommunicationsinfrastructureto besuccessfulin

anenvironmentsuchastheInternet,dataprivacy is not theonly concern.Denialof service

hasprovento bea substantialissuein recentyears,andto datethis is only within aunicast

network. Therisksof adenialof serviceattackwithin a largemulticasttreearemuchmore

substantial.It is our opinion that the network needsto be capableof somehow ensuring

somefundamentalpropertiesof messagepassingandaccesscontrolto theendnodes,even
1Althoughthis argumentmayfundamentallydisagreewith theflow abstractionto begin with.
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if theauthenticationanddecisionmechanismsareimplementedat ahigherlevel. Basedon

theseobservations,we suggestsomeideastowardsamodelof usingcapabilitiesto provide

accesscontrol for flows. Theremainderof this sectionbriefly discussesthis modelfirst by

identifying the aspectsof flows for which accesscontrol may be required,andsecondby

outlininghow capabilitiesmight presentausefulsolution.

6.1.1 Limiting Access

The obvious aspectsof communicationswithin flows to which it would be beneficialto

control accessarepostingmessagesandsubscribingto receive messages.Beyond these

propertiesthough,it maybedesirableto provide a finer graineddegreeof accesscontrol.

For instancesubscriptionandpublicationlimitations might be beneficialat the individual

bandgranularity. Also, in orderto prevent thegenerationof hugeamountsof traffic it may

beusefulto limit themaximumlocality valuethatmaybeplacedon amessage.

6.1.2 Capabilities

We feel that,usedproperly, capabilitiespresentanexcellentsolutionfor themanagement

of flows. If administrative decisionsaboutflow management,suchasapproving join re-

quests,areleft to higherlevel (above therouter)applications,a flexible capabilityscheme

maybeused.Moreover, astheschemeis implementedoutsidetheflow protocolitself, ca-

pability mechanismsmayevolve over time, ensuringthat thenetwork retainstheability to

provide goodaccesscontrol. Finally, aslocationservicescanpotentiallybe implemented

asvery powerful distributedclustersof hosts,we expectthata reasonableperformancecan

beachievedin responseto capability-enabled administrative requests.

In orderto implementthis model,a capabilitywould be associatedwith a flow at

the time of creation.As creationoccurslocally, this couldbecarriedout with no security
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concerns.Next, a key exchangewould needto benegotiatedbetweenthecreatorandthe

locationserviceat the time of advertisement.Finally, this exchangewould have to beex-

tendedto allow key exchangewith additionaladministrative hosts.An intelligentapproach

to thiswould likely beto continuewith ourefforts to decoupleaspectsof thesystem;much

in thesamewaythatthedirectoryserviceis providedaboveflows,aserviceto authenticate

andexchangeflow capabilitiescouldbeimplementedwithin thenetwork.

6.1.3 Flow NameSpaceManagement

By allowing endpointsto eachown an explicit sectionof the overall 128-bit flow name

space,weavoid any overheadthatmightotherwisebeinvolvedin requestingnamesfrom a

centralizedservice.Thereremainsanunresolvedflaw in thisapproachthatbecameapparent

during implementation.If anendpointcreatesa flow andthenunsubscribesfrom it while

otherendpointsarestill connected,the client mustavoid usingthat ID for newly created

flows. This presentsan additionalsecurityconsideration,as it must be clear within the

systemthatanendpointdoesnotnecessarilyhave administrative controloverall flows that

arelabelledwith its uniqueendpointID.

In a capability enhancedmodel of flows, a solution to this problemmight be to

allow clientsto requesta list of all active flows within their namespacefrom locationser-

vices.Alternatively, clientsmight beableto testfor conflictsat creationor advertisement.

Capabilitiesshouldallow someassistancein solving this problem,asthey shouldprevent

two unlike flows with thesamenamefrom beinginadvertentlyjoinedtogether.

6.2 Performanceand Scalability

As alludedto at severalearlierpointsin this paper, therearesomeconcernsasto how this

definitionof flows will behave at a globalscale.Thetwo mostprevalentconcernshereare
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thebehaviour of coreroutersin forwardinghugenumbersof active flows andtheability to

efficiently garbagecollecttheresourcesof hugenumbersof shortlivedflows.

6.2.1 Routing Flowsat an Inter net Scale

A significantconcernin the existing structureof the network lies in the fact that routing

tableswithin the network corehave becomeextremely large. The speedwith which ex-

isting routerscanprocessandforwardpacketsis considerablyslower thanthe throughput

availablefrom the transportmedium. Flows, aspresentedhere,make this problemworse

dueto thefactthatall traffic is potentiallymulticastandtherangeof flows(��T ��U ) farexceeds

therangeof IP addresses( ����� ). As eachactive hostcouldpotentiallybeamemberof many

flowsat once,thesizeof coreroutingtableswould inevitably becomevery large.

Ipsilon networks proposeda solution[14, 15] to the IP routing tableproblemthat

hasmorerecentlybeenincorporatedalongwith otherapproachesandembodiedby Multi-

protocolLabelSwitching(MPLS)[30]. Wefeel thattheseapproachesto traffic engineering

arewell matchedto flows. Theirsolutioninvolvesresolvingpathsacrossthenetwork back-

boneat edgerouters,allowing packets to be labelledwith switchinginstructionsto form

a virtual circuit acrossthe network backbone.This approachoffloadsrouting resolution

andtablemanagementaway from thecoreto ingresspoints,wheretraffic is considerably

lighter.

Theflow modelpresentedherecouldbeextendedto allow individual flows to con-

tain otherflows. This would presenta fantasticadministrative benefitin that flow traffic

could be routedhierarchically, by wrappingmessagesat the edgesof the backboneand

sendingthemacrossa smallsetof flows that traversetheedgepointsof thenetwork core.

Moreover, if a hierarchicalimplementationwereefficient enough,it could be usedto the

exclusionof banding.Thiswouldallow aextensibleseparationof concernswithin network
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streams,while alsoproviding individualizedmanagementandadministrationfor eachflow.

6.2.2 GarbageCollecting and Short Li vedFlows

The garbagecollectionmechanismdescribedin this paperfunctionswell within a well-

behaved network. As flows becomeunused,endpointssimply stopreplying to pingsfrom

thegarbagecollector, andthey areremovedfrom routingtables.

Oneconcernaboutthis approachlies in the fact thata routercouldpotentiallyre-

ceive ahugeloadof requeststo createnew flows. A singleclient couldchooseto advertise

its entireaddressspaceof � ��� allowableflowIDs. Eachflow that is actively routedcom-

mits router resources,specificallya singleFRT entry, from the time it is createduntil it

is garbagecollected.This time is at leastthe sumof the two thresholdsusedfor garbage

collection. If oneor moreclientswereto start issuinga very large numberof advertise-

ments,they would likely beableto overwhelma routingtableof any reasonablesize.This

form of denialof serviceattackis verysimilar to theTCPSYN flood2, but wouldconsume

resourceswithin thenetwork insteadof at endpoints,potentiallycompromisingservicefor

theusercommunityasawhole.

A secondconcernwith this situationis that garbagecollectinga hugesetof con-

nectionscould potentiallyproducewavesof high administrative traffic asroutersscanned

their tablesandsentpings. In theworstcaseit is imaginablethat thesepingscouldcause

enoughcongestionto interferewith othertraffic, thusworseningthesituation.

Therearesomeideasas to how to resolve partsof this problem. Routerscould

incorporateheuristicsto block poorly behaved endpoints[18]. Also, mechanismscould
2A SYN flood involvessendinga hugenumberof TCP connectrequeststo a server but not

replyingwith acknowledgementsto completetheTCPconnection.Theserver is forcedto maintain
thestateof all connectrequestssothatit cancompletetheconnectionsetup,andthis attackresults
in the server being unableto serve incoming connectrequests.This specificfor of attackis the
primarydenialof servicetacticthathasbeenseenagainstlargeserverson theInternetrecently.
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be usedto generalizeall traffic to a hostwho is participatingin a very large numberof

flows,perhapsby sendinggarbagecollectiondigestsinsteadof largenumbersof individual

messages.Still, thisproblemdefinatelywarrantsfurtherexamination.
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Chapter 7

Conclusion

As endpointdevicesbecomemorepowerful andinteresting,andnetwork connectionsbe-

tweenthesedevicesbecomefaster, thebenefitsof distributedsystemsbecomemoreobvious

thanever. It seemsclearthatanemergingclassof distributedsystemwill involve theuseof

‘heavier’ clientapplications,possiblyevolving awayfrom themodelof acentralizedserver

completelyin somecases.For this classof system,existing communicationsabstractions,

particularlythoseprovidedby TCP/IP, areinsufficient to effectively provide thenecessary

services.

This thesishaspresenteda communicationsmodelfor distributedsystemsthatad-

dressestheseconcerns.The modelpresentedhereis well suitedto providing the type of

event-driven structuresbeingusedby emerging distributedsystems,while remainingin a

form thatcouldforeseeablybeimplementedasa network layerprotocolfor improvedper-

formance.

Having completedthis implementationof the flow middleware, we are left with

severalobservationsregardingour initial architecture.Primaryamongtheseis the insight

that the notion of recursive flows, mentionedearlier, is a desireablepropertyand could

largely supplantflow bandingby providing a moreversitile andextensiblesolution. The
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secondinsight is that flows shouldsupportsomesort of type descriptor, allowing each

flow’s contentto bedescribed.By providing thesetwo properties,we feel thata network-

layerimplementationof flowswouldproveveryusefulasauniversalconnectiveabstraction

to provide communicationthroughoutdistributedsystems.
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