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Abstract

We present a universal routing scheme for unweighted,

undirected networks that always routes a packet along a path

whose length is at most an additive factor of d more than

opt (where opt is the length of an optimal path), using

O(e log2 n)-bit local routing tables and packet addresses,

with d and e parameters of the network topology. For power-

law random graphs, we demonstrate experimentally that d

and e take on small values. The Thorup-Zwick universal

multiplicative stretch 3 scheme has recently been suggested

for routing on the Internet inter-AS graph; we argue, based

on the results in this paper, that it is possible to improve

worst-case performance on this graph by directly exploiting

its power-law topology.

1 Introduction

Compact routing refers to the design of routing algo-
rithms which store a small amount of information in a
routing table at each node in a network, and provide
a bound on the stretch of messaging routes. Following
the terminology of Elkin for graph spanners [12], we
say that a compact routing scheme has stretch (α, β)
when the length of the route taken by a message from
a source node u to a destination v is always at most
αd(u, v) + β, where d(u, v) is the minimum length of a
path from u to v in the network. A scheme with stretch
(α, 0) is said to have multiplicative stretch α; one with
stretch (1, β) is said to have additive stretch β. If the
worst-case size of a local routing table in a given scheme
is o(n), the scheme is said to be compact, and there
is typically a tradeoff between minimizing multiplica-
tive stretch and minimizing routing table size. Com-
pact routing (and the closely-related problems of span-
ner construction and distance labeling) has been well-
studied on special-case networks, such as trees [16, 27],
graphs of bounded genus [19], and, recently, graphs
whose doubling dimension [7] is bounded. There has
also been much recent work on universal compact rout-
ing schemes [1, 10, 15, 27], which provide space bounds
and multiplicative stretch guarantees for any undirected
network. (As far as we know, the only work on compact
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routing in directed networks is work on roundtrip rout-
ing, appearing in [9, 26]; though additive stretch has
been studied for graph spanners [3, 6], we are unaware
of any prior compact routing results, even for special-
case networks.)

A great deal of recent research has focused on
discovering and modeling the topological properties of
various large-scale real-world networks, including social
networks and the Internet graph. In 1999, several
teams [5, 20] reported independently that the degree
distribution of the web graph appeared to follow a
power-law. In a seminal paper of the same year,
Faloutsos et al. [13] reported that the degrees of the
Internet inter-AS graph also appeared to follow a power
law. Since then, there has been extensive interest
in random-graph models which capture this property.
Two popular families of models have been proposed by
Barabási and Albert [5] and Aiello, Chung and Lu [2].
Barabási and Albert proposed a model in which new
vertices are added iteratively to a graph and linked to
existing vertices with probability proportional to their
degree; they showed that this construction induces a
power-law degree distribution in the resulting graph.
Aiello et al. proposed a power-law random graph model
in which the degree sequence of an n-node graph is
constructed according to the desired distribution, and
demonstrate an elegant method of building a graph
using the given degree sequence. In what follows, we
will refer to graphs generated using the Barabási and
Albert model as PC random graphs, and we will call
graphs generated by the Aiello, Chung and Lu model
PLRG graphs.

The minimum multiplicative stretch achieved by
any known universal compact routing scheme is 3
[10, 27]. In the name-independent routing model (cf.
[1, 4]), as well as in the case of name-dependent mod-
els where packet headers are restricted to be precisely
log n bits long, a result of Gavoille and Gengler [18]
shows that this is also a lower bound. Universal rout-
ing schemes only make their guarantees based on worst-
case graph topologies; the question naturally arises as
to the stretch in practice of these schemes on models
of real-world networks, in particular on power-law net-
works. This question motivated the recent work of Kri-
oukov et al. [22], who showed that on power-law random
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graphs generated by the PLRG model, the average ex-
perimental performance of Thorup and Zwick’s univer-
sal multiplicative stretch 3 routing algorithm [27] is in
fact much better than three, and closer to 1.1 on certain
power-law graphs. We consider the same problem they
do (name-dependent compact routing on PLRG mod-
els) but show that designing schemes that exploit the
expected structure of these networks can lead to better
stretch on this class of networks.

While the observation that the degrees of the ac-
tual Internet inter-AS routing graph obey a power-law
distribution is grounded in a lot of research (both the-
oretical and based on empirical measurement) [14, 24],
work has also appeared recently that has convincingly
cast doubt on the full sufficiency of this type of Internet
model. Chen et al. [8] observe that the inferred power-
law distribution may be (at least in part) due to arti-
facts of measurement, and Willinger et al. [29] conclude
that descriptive models in their current form fail to ad-
dress the underlying causes of the observed emergent
properties of the network. Despite this, the idea of a
power-law network remains an object of broad interest,
making appearances in economic, social and biological
models as well as in computer science.

The main theoretical result of this paper is a
universal routing scheme on undirected, unweighted
graphs with additive stretch (1, d), using O(e log2 n)-
bit local routing tables and message headers, where d
and e are parameters of the network. We also describe
a hybrid compact routing scheme which overlays our
stretch (1, d) scheme with the Thorup-Zwick universal
stretch (3, 0) scheme, with table size the same as in
the latter (namely O(

√
n log2 n)). The hybrid scheme

always routes along the best path provided by either
scheme; its stretch is thus min{(1, d), (3, 0)}.

Using the PLRG model, we verify experimentally
that for power-law random graphs generated over a sig-
nificant range of power-law parameters (which includes
all values which have been estimated for the Internet
graph), d and e take on small constant values, suggest-
ing that our new routing scheme may work very well in
practice.

Part of our contribution is the development of
DIGG (DynamIc Graph Generator), a free C++-based
software suite for the efficient generation and repre-
sentation (in XML) of large graphs according to user-
supplied parameters and generation algorithms. As the
name suggests, the software also provides a way to cre-
ate, store and analyze the life-cycles of dynamic graphs;
this functionality was not used in the current paper,
but we intend to demonstrate its utility in future work.
The current (beta) version of the DIGG source code,
the library of graphs which we generated for the exper-

imental component of this paper, and the analytic code
we created for our experiments are all freely available
at http://digg.cs.tufts.edu.

2 Definitions

Consider a communications network modeled as a con-
nected, undirected, unweighted graph G = (V,E), |V | =
n, with network nodes represented as vertices (each
of which is assigned a unique label v ∈ {1, 2, . . . , n}),
and direct communications links represented as edges
uv ∈ E.

A routing scheme R is a distributed algorithm
defined on G which guarantees that any vertex u can
send a message M to any specified destination v (along
some (u, v)-path P in G), using metadata stored in M
along with information stored locally at each vertex in
P .

We refer to the metadata stored (by R) in a message
M as M ’s header, and to the local information stored
at a vertex v as v’s routing table. Given an input graph
G = (V, E), a routing scheme R must specify:

1. the construction of the routing table at each vertex
v ∈ V ,

2. the construction of the header of any message M
originating at a given source u and intended for a
given destination v, and

3. a forwarding function F (table(x), header(M))
computed locally at each vertex x ∈ V which, given
the information in x’s routing table and the infor-
mation in M ’s header, selects an edge adjacent to
x along which to forward M .

F is known as R’s routing function. Given a source
vertex u, a destination vertex v and a message M ,
the sequence of vertices 〈u = v0, v1, . . . , vk〉 defined
by successive applications of F (table(vi), header(M))
must be such that k is finite, and vk = v. We refer
to this (u, v)-path as the route Puv from u to v with
respect to R. Note the distinction between the label of
a vertex v of G and the header of a message destined
for v. Because the header of a message is forced to be
succinct but is otherwise unconstrained, we are studying
compact routing in the name-dependent routing model
(also known as the labeled routing model). In contrast,
routing models in which a message header destined for
v is constrained to contain only the (log n)-bit label of
v are known as name-independent models (cf. [1, 4] for
formal definitions and discussion). Our compact routing
scheme requires neither a port-relabeling nor rewritable
headers, so it is said to be a 1-phase [11] routing scheme
in the fixed-port [16] model.
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As in Elkin [12], we say that a routing scheme R has
stretch (α, β) with respect to a family of graphs Gf if the
length of any route Puv is always at most αd(u, v) + β,
where d(u, v) is the minimum length of a path from u
to v in the network.

A routing scheme is called compact if headers have
size bounded by O(logc n) bits for some constant c, and
local routing tables each have size bounded by o(n)
bits. There is a natural tradeoff between header size
and routing table size. There is also a natural tradeoff
between the total size of all data structures employed
by a routing scheme and its stretch; intuitively, if we are
willing to take longer paths, we can use less information
overall to get where we’re going.

Recent experimental work of Krioukov et al. [22]
looked at the performance of the best known universal
multiplicative stretch-3 compact routing algorithm (due
to Thorup and Zwick) on graphs generated by the
PLRG model, and showed that the average stretch of
routes on these graphs was much better than 3, and was
closer to a multiplicative stretch of 1.1. The question
we asked that led to this paper was: can you do better
still on PLRGs?

2.1 Some facts about power-law graphs

Definition 2.1. A power-law graph G = (V, E) is an
undirected, unweighted graph whose degree distribution
approximates a power law, i.e. the number y = |{v ∈
V | deg(v) = x}| of vertices whose degree is x satisfies

1.

{
y = bcc − r when x = 1
y =

⌊
c

xγ

⌋
when x = 2, 3, . . . ,

⌊
c

1
γ

⌋ ,

2. r = n−

⌊
c

1
γ

⌋
∑
x=1

⌊
c

xγ

⌋
, and

3. c is a value minimizing |n− r|
for some constant γ ∈ R+, called the power-law param-
eter of G.

Definition 2.2. A γ-RPLG (for “random power-law
graph”) is a graph Gγ = (V, E), |V | = n, which has been
uniformly randomly selected from the set of all n-vertex
power-law graphs with power-law parameter γ.

Using a model very close to the PLRG model (but
not exactly identical, see [2, 23] for discussion); Lin-
coln Lu [23], in his probabilistic analysis of power-law
graph topology, observed that for sufficiently large val-
ues of n, with high probability1 the following hold:

1When we say “X is true with high probability,” we mean that
the probability that X is false is o(n−1).

1. For all ranges of γ > 0, a random power-law
graph Gγ has a unique giant component, and all
components other than the giant component have
size at most O(log n).

(Throughout the following – since we consider a
routing problem on connected networks, and since
all non-giant components are small – we ignore all
non-giant components, and abuse notation slightly
by identifying Gγ with its giant component.)

2. For 0 < γ < 2, Gγ contains an edge-dense “core”
of diameter at most 3, which is connected to a set
of “tree-like tails” of constant length.

3. For 2 < γ < 4, Gγ contains

• an inner layer consisting of a small edge-dense
“core,”
• an outer layer of “tree-like tails,”
• and a “middle layer” in between the core and

the outer layer.

Furthermore, each of these three layers is of diam-
eter Θ(log n).

4. For all ranges of γ, the highest-degree vertices in
Gγ are contained in the “core.”

These facts suggest considering routing algorithms that
employ different strategies in the core and in the tails,
which is what we do in the next section.

3 Our new routing scheme

Definition 3.1. Let G be an undirected, unweighted
graph, and let h be the node of G of highest degree
(breaking ties lexographically by node names, so that
h is always uniquely defined). For each positive even
integer d, we define the d-core of G to be the subgraph
of G induced by the set of vertices of distance at most
d/2 from h (thus the d-core is of diameter d). We also
define the d-fringe of G to be the subgraph of G induced
by the set of vertices which are not in the d-core of G.

Definition 3.2. Given a graph H, we define the extra-
edge count eH of H to be the minimum number of
edges that must be removed from H in order to make
H acyclic.

With the parameters d and e defined, we are now ready
to state our principal theorem:

Theorem 3.1. For any (unweighted, undirected) graph
G = (V, E), |V | = n, there is a routing scheme cfroute
that uses O(e log2 n)-bit headers and routing tables, and
has a stretch of (1, d), where e is the extra-edge count of
the d-fringe of G.
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Notice that it is easy to construct graph families for
which either d or e must always be large, meaning that
there exist graph families where this routing scheme
isn’t even compact. In this section, we prove this
theorem. In the following section, we describe an
experimental study of the tradeoffs between d and e
for the PLRG model, and demonstrate ranges of γ for
which we will expect to achieve small additive stretch
using this routing scheme.

In order to present cfroute, we first need to
slightly modify a known compact routing algorithm on
trees, which we do in subsection 3.1. In subsection 3.2,
we present and analyze cfroute as a proof of Theorem
3.1.

3.1 A compact routing algorithm for trees
There exist compact routing schemes for trees due both
to Fraignaud and Gavoille [16] and to Thorup and
Zwick [28] which use O(log2 n)-bit headers, O(log n)-
bit routing tables, and guarantee stretch (1, 0) (that is,
they always route along optimal paths). Given a tree
T = (V, E), we denote by TZT table[u] the local routing
table assigned to vertex u by the Thorup-Zwick tree-
routing scheme on T , and by TZT header[w] the header
assigned to vertex w by the Thorup-Zwick tree-routing
scheme on T . Let dT (u, v) represent the length of the
unique (u, v)-path in T .

Peleg [25] demonstrated that given any tree T with
uniform edge weights, each vertex v of T can be assigned
an O(log2 n)-bit label l(v), such that given the labels of
any two vertices v, w in T , the distance d(v, w) between
them can be computed exactly. Such a labeling scheme
is referred to as an (exact) distance labeling scheme; we
will refer to the scheme in [25] as the Peleg scheme. We
denote by lT (v) the label generated by the Peleg scheme
for a vertex v in a tree T .

We augment the Thorup-Zwick tree-routing scheme
slightly to create a new tree-routing scheme TZ ′ as
follows.

Let T = (V, E) be any tree with root r.

1. Initially, store a routing table TZT table[u] at each
node u, and let TZT header[w] be the header of
node w, exactly as in the Thorup-Zwick tree-
routing scheme.

2. For each vertex u, add the label lT (u) to
TZT table[u] to form TZ ′T table[u].

3. For each vertex v, add the label lT (v) to
TZT header[v] to form TZ ′T header[v].

4. Routing decisions are made exactly as prescribed

by the Thorup-Zwick tree-routing scheme.

Lemma 3.1. TZ ′ uses O(log2 n)-bit headers, O(log2 n)-
bit routing tables, and allows any vertex u, given the
header of any destination v, to compute dT (u, v).

Proof. The header and routing table size bounds are im-
mediate from the fact that TZ ′ only requires O(log2 n)
more bits than the corresponding headers and tables in
the original scheme. dT (u, v) can be computed from
lT (u) and lT (v) exactly as described in [25]. 2

3.2 Proof of Theorem 3.1 Given an unweighted,
undirected graph G = (V, E), |V | = n, and an even
integer d, denote the d-core of G by I, and denote the
d-fringe of G by F . Let h be the vertex of G of highest
degree, with ties broken lexicographically. Let T be a
single-source shortest path tree spanning G, with source
h. Consider T ∩ F . Extend T ∩ F by adding edges
between vertices in F , until we have a spanning tree
on each connected component of F . Call the resulting
forest TF . Let E′ = {uv | uv ∈ E, uv /∈ TF , u, v ∈ F}
be set of all edges of G between vertices in F which
are not contained in TF . Let eF denote the extra-edge
count of F ; note that because TF spans each connected
component of F , |E′| ≤ eF .

For any u, v ∈ V , let d(u, v) denote the distance
from u to v in G, let dT (u, v) represent the distance
from u to v in T , and let dTF (u, v) represent the distance
from u to v in TF , or ∞ if there is no (u, v)-path in TF .

Definition 3.3. We define a set T of trees Ti to be the
union of the following two sets:

1. a set of spanning trees {T0 = T, T1, . . . , T|E′|} on
G, constructed as follows:

• i←− 1.
• For each edge uv ∈ E′,

– Grow a single-source shortest path tree Ti

rooted at u which includes uv.
– Increment i.

2. the connected components of TF , with each assigned
an arbitrary root vertex.

Note that each vertex of G is in at most one component
of TF . Throughout the following we refer to an element
of T as Ti.

cfroute consists of four parts: a preprocessing step,
in which we construct temporary data structures using
TZ ′, a labeling step, in which nodes are assigned
headers, a storage step, in which a local routing table
is constructed at each node, and the routing procedure
itself.

122



header[v] ←− ∅
For each Ti ∈ T | v ∈ Ti, 0 ≤ i < |T |

header[v] ←− header[v] ◦(i, TZ ′Tiheader[v])

Figure 1: The labeling step

table[u] ←− ∅
For each Ti ∈ T | u ∈ Ti, 0 ≤ i < |T |

table[u] ←− table[u] ◦(i, TZ ′Titable[u])

Figure 2: The storage step

3.2.1 Preprocessing Process each tree Ti ∈ T using
TZ ′. Let TZ ′Titable[u]) be the routing table for node
u in tree Ti, and let TZ ′Tiheader[v]) be the header
assigned to node u in tree Ti.

3.2.2 Labeling Assign to each vertex v a list of pairs
(i, TZ ′Tiheader[v]) (ordered by increasing i), one for
every tree Ti which contains v.

3.2.3 Storage The routing table stored at each ver-
tex u consists of a list of pairs (i, TZ ′Titable[u]) (or-
dered by increasing i), one for every tree Ti which con-
tains u.

Lemma 3.2. cfroute uses O(eF log2 n)-bit headers
and routing tables.

Proof. Given any node v ∈ G, the number of trees
Ti ∈ T containing v is at most eF + 2:

• v is contained in T (because T spans G),

• v is contained in |E′| ≤ eF spanning trees Ti in T
by construction, and

• v is contained in at most 1 component of TF .

So since the routing table at each node u contains
at most eF + 2 entries (i, TZ ′Ti

table[u]), and since
the header assigned to each node v contains at most
eF + 2 entries (i, TZ ′Tiheader[v]), the result follows
immediately from Lemma 3.1. 2

3.2.4 Routing procedure Routing from a source
vertex u to a destination v using cfroute proceeds
as follows:

1. For each tree Ti containing both u and v, ex-
tract lTi

(u) from TZ ′Ti
table[u], extract lTi

(v) from

TZ ′Tiheader[v], and compute dTi(u, v) according
to the Peleg scheme ([25]).

2. Choose some tree Tj such that dTj (u, v) is mini-
mized.

3. Route from u to v in Tj according to TZ ′.

3.2.5 Analysis of the routing procedure

Lemma 3.3. Given any node u and any destination v,
cfroute routes from u to v along a path of length at
most d(u, v) + d.

Proof. Let u and v be any two vertices which are both
in I. Since dT (u, v) ≤ dT (u, h) + dT (h, v) = d(u, h) +
d(h, v) ≤ d

2 + d
2 = d, and since 1 ≤ d(u, v), we have that

dT (u, v) ≤ d(u, v) + (d− 1) < d(u, v) + d.

Now let u and v be such that u ∈ I and v /∈ I. Since
u ∈ I, d(u, h) ≤ d

2 . Since d(h, v) ≤ d(h, u) + d(u, v) ≤
d
2+d(u, v), we have that dT (u, v) ≤ dT (u, h)+dT (h, v) =
d(u, h) + d(h, v) ≤ d

2 + [d
2 + d(u, v)] = d(u, v) + d.

Finally, let u and v be any two vertices both in F , and
let P be any shortest (u, v)-path in G.

Either dTF (u, v) = d(u, v), or dTF (u, v) > d(u, v). If the
latter is the case, then there exists some edge u′v′ ∈ P
which is not in TF . We consider two cases.

1. If there exists some such edge where u′, v′ ∈ F , then
because u′v′ /∈ TF , u′v′ ∈ E′, so the preprocessing
routine of cfroute constructed a single-source
shortest path tree Ti spanning G with source u′

(or v′; wlog assume u′). Since we have dTi(u, v) ≤
dTi(u, u′)+ dTi(u

′, v) = d(u, u′)+ d(u′, v) and since
u′ is on some shortest (u, v)-path P in G, we
conclude that dTi

(u, v) = d(u, v) for some Ti.

2. Now assume that u′ ∈ I or v′ ∈ I (or both) for all
edges u′v′ ∈ P which are not in TF .

Notice that because P contains at least one vertex
in I, we have that d(u, I) + d(I, v) ≤ |P | =
d(u, v). So we conclude that dT (u, v) ≤ dT (u, h) +
dT (h, v) ≤ [d(u, I)+ d

2 ]+ [d
2 +d(I, v)] ≤ d(u, v)+d.

TZ ′ routes with stretch (1, 0) on each tree Ti. We have
shown that for any two vertices u, v ∈ V , there is always
some tree Ti ∈ T such that dTi

(u, v) ≤ d(u, v)+d. Given
a source u and a destination v, since we always choose
to route within a tree Ti minimizing dTi(u, v), we have
that any (u, v)-route in cfroute has length at most
d(u, v) + d, giving a stretch of (1, d) as desired. 2
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3.3 A hybrid scheme In practice, when faced with
a network that may or may not be a PLRG, we remark
that the right thing to do is to superimpose our scheme
and Thorup and Zwick (TZ)’s universal stretch (3, 0)
routing scheme, resulting in a hybrid scheme. (Note
that the latter is a different scheme from the Thorup-
Zwick tree-routing scheme discussed in Section 3.1).
The key observation is that the universal TZ scheme
can be modified so that a packet that arrives at any
node u destined for some node v can, with help from
the local routing table stored at u, compute exactly
the length of the path from u to v that would be
traversed using that scheme. (Our scheme already uses
an analogous function.) The details are straightforward
and are omitted from this extended abstract.

Thus we can simply concatenate headers for both
schemes, and store tables for both schemes at every
node. A packet then decides which scheme to follow
by computing which one would result in a shorter
path to its destination, then routing according to that
scheme. The hybrid scheme is guaranteed to have
better stretch than either the universal TZ scheme or
our new scheme implemented separately: its stretch
is min{(1, d), (3, 0)}. It also uses tables of the same
asymptotic size as those used by the universal TZ
scheme, namely O(

√
n log2 n) bits.

4 Experiments

We have shown that for a given graph G, a given value
of d, and I and F being the d-core and d-fringe of G
respectively, cfroute guarantees an additive stretch
of (1, d) and uses O(eF log2 n)-bit headers and routing
tables. It remains to determine what values of d and eF

are typical for power-law graphs.
We conducted two sets of experiments: the first was

an exploration of RPLG topology, and the second com-
pared the performance of the Thorup-Zwick universal
scheme, our scheme, and the hybrid scheme outlined in
Section 3.3 on RPLGs.

Our topology experiments were designed to provide
answers to the following:

• For a given γ-RPLG Gγ , can we find a small value
of d such that the extra-edge count eF of the d-
fringe F of Gγ is also small?

• Lu [23]’s results on the properties of power-law
graphs hold for sufficiently large n. We were
interested in whether or not the desirable properties
(such as a low-diameter core) were observed for the
graph sizes we were interested in.

For the topology experiments, we used DIGG to imple-
ment the PLRG generator in [2], with which we gener-

ated random power-law graph instances on n vertices
(for n = 2500, 5000, 10000, 20000 and 40000) for
power-law parameter γ (for 1.2 ≤ γ ≤ 3.0). We con-
structed 30 graph instances for each value of the pa-
rameter pair (n, γ). DIGG supports the fast saving and
loading of graph instances to and from XML files; we
were thus able both to create a permanent library of
all the graph instances we generated, and to provide a
basis for exact or parallel replication of our experiments
by others.

For each generated graph instance Gγ , we calculated2

the following:

1. dmin, the minimum value of d such that the d-fringe
of Gγ was exactly a forest, and

2. for each 1 ≤ d ≤ dmin,

• the extra-edge count e of the d-fringe of Gγ .

We divided our topology experiments into two
phases. In phase 1, we looked at graphs Gγ where
1.2 ≤ γ ≤ 1.9; in phase 2, we examined Gγ for
2.0 ≤ γ ≤ 3.0. According to the predictions in [23],
we expected to find that graphs in the first range
would actually have cores of constant diameter, and
that graphs in the second range would have core of
diameter O(log n). The extremely slow growth rates
of the observed diameters for both types of graph this
seem to confirm this prediction.

The table size of our algorithm is acceptable when e
is not too large, and its stretch is smallest when d = 2r
is as small as possible. Define e to be the average
value of the extra-edge count e of the d-fringe of Gγ

(for given values of n, γ and d) across all graphs Gγ

in the corresponding sample set; we denote by σe the
estimated standard deviation of this statistic.

In phase 1 (1.2 ≤ γ ≤ 1.9), we found that for all
observed values of n and γ, there was a sharp threshold:
e was large when d was set to be 2 or 4, but setting d = 6
produced values of e and σe which were both less than
1. (In other words, for all values studied, the 6-fringe
of Gγ differed on average from a forest by less than one
edge.)

In phase 2 (2.0 ≤ γ ≤ 3.0), we found that for
all observed values of n and for 2.0 ≤ γ ≤ 2.5 (this
being the range containing the vast majority of power-
law parameter estimates for the various models of the

2 Exceptions: we generated graphs for (n = 20000, γ = 1.2),
but could not analyze them due to memory constraints. Also
because of memory issues, for n = 40000, we only generated
graphs for 2.0 ≤ γ ≤ 3.0. As our data will show, however, the
properties under consideration began to conform very closely to
their predicted values in [23] well before n became this large.
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Internet and web graphs), setting d = 10 produced
values of e and σe which were both less than 5. (In other
words, for these values, the 10-fringe of Gγ differed on
average from a forest by less than 5 edges.)

Thus we conclude that for graph sizes up to 40,000,
our scheme displays a worst-case additive stretch of
(1, 6) for phase 1 graphs, and (1, 10) for phase 2 graphs,
while maintaining O(log2 n)-bit tables. Compare to
the Thorup-Zwick multiplicative-stretch scheme which
uses O(

√
n log2 n)-bit tables and has worst-case stretch

(3, 0). Note that the theory of [23] implies that for
phase 1 graphs, the additive stretch and table size of our
scheme is unlikely to increase much as n grows beyond
40,000, whereas for phase 2 graphs, additive stretch and
table size should increase logarithmically.

As was noted by Krioukov et al. in [22], the average
stretch of the Thorup-Zwick scheme is considerably
better than worst-case stretch on power-law graphs. In
our routing experiments, simulations of the Thorup-
Zwick scheme on our synthetic RLPGs yielded average-
case (multiplicative) stretch between 1.25 and 1.18 (for
γ between 2.0 and 2.2).3 Simulations of the additive
scheme presented in this paper produced an average
multiplicative stretch between 1.22 and 1.11 (for γ in
the same range), and the hybrid scheme outlined in
Section 3.3 resulted in an average multiplicative stretch
between 1.13 and 1.07. See Figures 9 - 11 for details.

The observed average stretch of our scheme was
consistently better than the average stretch of the TZ
scheme; also, the margin of improvement increased
significantly as γ increased, which is intuitively due to
the fact that the fringe becomes more sparse as the
exponent of the power-law increases.

The hybrid scheme significantly outperformed both
schemes (indicating that the sets of optimal routes
discovered by each scheme were different from one
another, so that when taken together, they provided
a strong improvement over either scheme on its own).

We present two sets of figures summarizing two
different perspectives on our topology results.

In Figures 3 and 4, n is fixed at a particular value
in {10000, 20000}. Within each chart, e is plotted as a
function of γ and d.

In each of figures 5 - 8, γ is fixed at a particular
value in {2.0, 2.1, 2.2, 2.3}. (We emphasize the middle
range here because it is in this range that power-law
parameters for the Internet inter-AS topology have been
estimated.) Within each chart, e is plotted as a function

3Note that [22] reports an average TZ stretch of 1.1 on
RPLGs in this range, whereas we observed stretch closer to
1.2. The disparity is attributable to slight differences in the
respective methods used to generate degree distributions for
synthetic RPLGs.

of n and d.
For our routing experiments, we simulated the

Thorup-Zwick scheme, our scheme, and the hybrid
scheme outlined in Section 3.3 on 15 of the 10,000-
node graphs which we generated for the topology ex-
periments: 5 graphs each of γ ∈ {2.0, 2.1, 2.2}.

The essential power of our algorithm lies in exploit-
ing the sparsity of each RPLG, outside the core, using
a small number of spanning trees. We discovered in our
routing simulations that while a single spanning tree
sourced at the highest-degree node provided an aver-
age stretch close to the worst-case bound, adding a very
small number of spanning trees sourced at fringe edges
caused the stretch to drop dramatically. We therefore
added a heuristic to the simulations of our scheme and
the hybrid scheme: if the extra-edge count of the fringe
was less than 5, we added up to 5 trees spanning Gγ ,
sourced at random edges in the fringe.

Figures 9 - 11 describe our results: we measured the
mean stretch over all possible paths (framed both mul-
tiplicatively and additively), as well as the percentage
of optimal paths used by each algorithm. All data has
been averaged over the 5 graphs in each set. More de-
tailed data, including the full distribution of stretch over
all paths for each algorithm on each graph, is available
on our website.

The most commonly studied model of Internet
routing is the inter-AS graph, which represents ASs
(autonomous systems, which are roughly equivalent
to ISPs) as vertices, and communications links (BGP
peering links; cf. [17] for discussion) as edges. Recent
empirical studies of the inter-AS graph [24] suggest that
it has less than 20,000 nodes; its power-law parameter
γ has been estimated to be between 2.0 and 2.5. Our
choices of n and γ are therefore realistic for this type
of model, and our algorithm remains quite compact
(table size O(log2 n)) across observed values of n and
γ, guaranteeing an additive stretch of (1, 10).

We remark that a more granular representation of
the Internet as a graph would model individual routers
as vertices. There are approximately 250,000 Internet
routers at present [21]. A model of this size would be
more than 6 times larger than the graphs we studied
in our experiments, but based on extrapolations of the
observed growth curves of e for phase 2 graphs with γ
between 2.0 and 2.5, we predict that when d = 10, both
e and σe will remain less than 5 for graphs of this size.
Thus for RPLGs of this size, the stretch and table size
of our algorithm would remain (1, 10) and O(log2 n),
respectively. Unfortunately, less is known about the
topology of this type of Internet model; it may not even
exhibit a power-law degree distribution.

While additive-stretch and multiplicative-stretch
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schemes are hard to rank against each other, certainly
we achieve a dramatic reduction in table size. If we have
space resources which can accomodate O(

√
n log2 n)-bit

tables, we can instead implement the hybrid scheme of
Section 3.3, which is always guaranteed to do as well in
stretch as the better of our additive and Thorup and
Zwick’s multiplicative stretch schemes. According to
our simulations, the hybrid scheme appears to signifi-
cantly outperform both schemes in practice.

We have made copies of our code for PLRG gen-
eration, topology analysis, routing simulations, and
routing-scheme stretch analysis, as well as complete
tabulations of all raw and aggregate analysis, and
all generated graphs (encoded in XML) available at
http://digg.cs.tufts.edu.

5 Discussion and future work

Taking into account the unique topological properties
of power-law graphs has allowed us to design better
compact routing schemes with superior performance on
these graphs. We intend to investigate applications of
this approach to other graph topologies.

Xenofontas Dimitropoulos and Dmitri Krioukov at
CAIDA (http://www.caida.org) have recently pro-
vided us with graph data which incorporates estimates
of inferred AS relationships in the real Internet inter-AS
graph, and we intend to study new schemes which take
advantage of their particular topological properties.
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