
Automatic Differentiation and
Continuous System Formal

Verification

A research proposal based on literature survey and
basic experiments

by

Yan Peng

B.Eng., Zhejiang University, 2012
M.Sc., The University of British Columbia

A REPORT SUBMITTED IN FULFILLMENT OF
THE REQUIREMENTS FOR THE COURSE

CPSC513 FORMAL VERIFICATION

MASTER OF SCIENCE

in

The Faculty of Science

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2013

c© Yan Peng 2013

Table of Contents

Table of Contents . ii

List of Tables . iii

List of Figures . iv

Acknowledgements . v

1 Problem . 1
1.1 Problem Description . 1
1.2 A literature survey . 3
1.3 Problem Statement . 4
1.4 Problem Solution . 4

2 Comparative Experiments . 5
2.1 Experiment Description and Design 5

2.1.1 Calculating revised sensitivity matrix 5
2.1.2 Design comparison experiments 6

2.2 Main Technique Problem . 9
2.3 Experiment Results . 10

2.3.1 Runtime comparison 10
2.3.2 Analytical analysis 12
2.3.3 Other attempts on small verification problems 14

2.4 Discussion and Conclusion 14

3 Research Proposal . 15
3.1 Expected Outcome . 15
3.2 Resources Required . 15
3.3 Key Uncertainties . 16

Bibliography . 17

ii

List of Tables

2.1 First experiment. 10
2.2 Second experiment. 12

iii

List of Figures

2.1 Two-Stage Rambus Ring Oscillator 7
2.2 Performance in change of number of stages 11
2.3 Performance in change of number of stages, only JAC and

RVS AD . 11
2.4 Performance in change of number of intervals 12

iv

Acknowledgements

Thank Prof. Mark Greenstreet for the instructions throughout this project.
Thank Jijie Wei for providing the simple version of MATLAB integrator.

v

Chapter 1

Problem

1.1 Problem Description

In the world of formal techniques and formal verification, one tradition ap-
proach for continuous problems is to model the system as ordinary differen-
tial equations or partial differential equations and try finding the dynamical
behaviours of the system in order to recognize the pattern of the dynamics
and verify certain properties of the system. Many formal techniques has
been developed in this field.

In the world of circuits, the problem becomes specific. The variables
becomes node voltages of a circuit and the mechanism of circuits, built upon
mechanism of NMOS and PMOS, can be modelled by ordinary differential
equations. Given different initial voltages to the nodes, the circuit will run
in totally different trajectory to some future states.

Verification of a circuit is important. Two examples serve to show my
statement. First, chip companies need it. Even if a tiny mistake in the
design of a chip circuit can make it useless and once massive production of
it is done, the company can only waits to lose money. Second, safety-required
circuit design needs it. Imagine there are some safety qualifications for a
robot which needs to be implemented in the circuit of it. Other applications
could be in public transportation, public electrical devices and so on.

Reachability analysis Reachability analysis asks the question where the
region will be after the system starts at some point in the space and run for
certain amount of time. The task can be realized through two phases: mod-
elling a group of points and calculating the next states after some time. Pos-
sible modelling can be polygons, ellipsoids, and projectagons, etc. For con-
tinuous state calculation, there exist exact methods and over-approximate
methods.

Finding a Trajectory Based upon reachability analysis, one can seek to
find a possible trajectory of a circuit, which can be a possible trajectory
that is out of the qualification of the circuit, more directly called, a bug.

1

1.1. Problem Description

In real life companies, testers usually tends to design test cases manually
by themselves. Formal methods can provide them a way to find a counter-
example automatically.

For example, when given the ODE of a circuit system, one can work out
the Jacobian of it by differentiation, and further the sensitivity matrix of
the system. The sensitivity matrix tells people how node points’ voltages
change throughout the whole time in relation of the change in initial inputs.
For example, now we know a trajectory is quite close to fail the qualification,
by looking at the sensitivity matrix, we know how to change the initial state
to generate a counter-example for the system.

Deciding Period of an Oscillator In deciding the period of an oscillator,
one technique to use is Newton’s method. In the updating of period and
initial states, one also needs to figure out the sensitivity matrix of a system,
which requires some differentiation to get the Jacobian matrix as stated
above.

Automatic Differentiation Automatic differentiation is a single field
outside formal verification, however, as one looks into verification of contin-
uous systems, one find automatic differentiation tools of great help.

There exist four ways of differentiation in practise: hand coding when
given the specific functions, numerical methods like divided differences, sym-
bolic differentiation which gives one the exact formula of derivatives and at
last, automatic differentiation.

Automatic differentiation(AD) is a method different from numerical meth-
ods because there is no approximation except for the floating point rounding.
It is also different from symbolic methods because results of AD are differ-
entiation values at given points. The method in essence is quite simple
and beautiful, it just follows the chain rule of basic calculus: if we have a
composition of functions f(x) = g(h(x)), the rule says we can calculate the
derivative of function f in this way: df

dx = dg
dh

dh
dx . There basically exist two

methods in AD: forward method and reverse method. The reverse method
takes less time than forward method in theory because it doesn’t have to
carry out calculation for all variables for each sub-function. Other meth-
ods may be combining the two approaches or other small justifications to
improve performance.

As stated that AD is a useful tool, there exists lots of applications. In
optimization problems, often, gradients and Hessians must be calculated.
Here, the AD methods must be adapted to higher dimension differentiation,

2

1.2. A literature survey

as vectors and matrices. The theory become more difficult to understand.
Another possible application is in our problem of formal verification of con-
tinuous dynamic systems.

1.2 A literature survey

In this part, I want to do a survey on the development of automatic dif-
ferentiation algorithms. Automatic differentiation, also called algorithmic
differentiation, is good for both its automatism and precision.

The original idea of automatic differentiation date back to 1950s when
Kahrimanian and Nolan write their Master’s thesis [6, 7]. The basic idea,
as stated in Nolan’s thesis, comes from how compilers decompose a large
scale program into fragments and solve by part. After that, lots of effort
has been put into implementation AD tools on different computer systems
using different languages.

One person needed to mention is Prof. Andreas Griewank from Humboldt-
University. His main dedication lies in the tremendous books and articles
published in this field by him. In his 1989 paper On Automatic Differenti-
ation[3], he stated:

Under quite realistic assumptions the evaluation of a gradient
requires never more than five times the effort of evaluating the

underlying function by itself.
— A. Griewank(1989).

The statement tells us forward mode AD does too much calculation than
it is necessary. We didn’t wait for long for reverse mode AD came into
people’s sight. G. M. Ostrovskii[11] and Bert Speelpenning[9] independently
introduced the reverse mode AD.

There exist two ways to calculate the reverse mode AD, source trans-
formation and operator overloading. These are two totally different kind of
implementation. Source transformation takes the function for differentiation
as input, compile it based on the chain rule to produce the compiled code.
The compiled function has the original code in reversed order and calculates
the derivatives. The main effort must be spent on writing a compatible
compiler. Operator overloading walks through the function in forward order
and record the computation on a ’tape’. A related technique is the check-
point strategy([4]) to determine the upper bound for use of memory. A more
detailed list of papers and tools in the history of AD can be found at[2].

Some of the most famous tools in MATLAB are INTLAB[8] which imple-
ment forward mode AD using operator overloading method; TOMLAB/MAD

3

1.3. Problem Statement

which also implement forward AD using operator overloading[10]; ADiMat[1]
which implements forward AD using both source transformation and oper-
ator overloading method. One can see from the existing tools that it is
difficult to implement reverse mode AD in MATLAB directly.

1.3 Problem Statement

In this research proposal, the problem I’m addressing is the application of
automatic differentiation in the field of formal verification of continuous
dynamical system.

To be more specific, the AD methods with focus is the pure forward
and reverse mode methods and the continuous dynamic system falls in the
category of analog circuits.

1.4 Problem Solution

My solution to this problem can be accomplished in three steps. First, find
out working mechanism of forward and reverse mode methods and do some
basic comparison experiments between hand code method, forward method
and reverse method. Decide whether AD is better and which mode to use.
Second, try some simple verification methods on AD tool and think about
possible functions that needs to be supported in the tool in order to meet
the requirements of a verification problem. Third, fulfil the implementation
of the AD tool and use it in bigger problems.

In order to commit the first step, I did some comparative experiments
forward mode AD, reverse mode AD and manual-effort Jacobian method
and shows the performance results. After that, I did analytical analysis on
the performance of the three methods and use it to explain the performance
in experiments.

Then I tried the forward mode AD tool provided by INTLAB library
on some simple problems in circuit verification and figured out possible
missing functions of existing AD tools which is specifically for out verification
problems.

In the chapter of research proposal, I concluded what I have found in
the project and proposed a possible M.Sc. research topic and its possible
solution based on my observation. Basically, I want to implement an AD
tool based upon reverse mode method and possibly the other two which
can support functions for a large part of the analog circuit verification and
use it to verify a big formal verification problem.

4

Chapter 2

Comparative Experiments on
Forward Mode AD, Reverse
Mode AD and Manual-effort
Jacobian method

As is stated in the first chapter, there exists many possible methods in
calculating the derivative of a function. Here, I choose manual-effort Ja-
cobian method in calculating the revised sensitivity matrix as the method
in comparison to forward-mode AD and reverse-mode AD. This is because
hand code method produces same derivative results as AD methods, but
numerical methods produce approximations which is a level lower than AD
methods and symbolic methods produce symbolic solution which is a level
higher than just derivative value at a specific point. One can see hand code
method is more comparable to AD methods.

2.1 Experiment Description and Design

2.1.1 Calculating revised sensitivity matrix

Consider a continuous dynamic system given by its ODE:

ẋ = f(x)

x(0) = x0
(2.1)

Here, x ∈ Rn, ẋ is the derivative of x(t), f is a n-dimensional vector of
functions of x and x0 ∈ Rn stands for the initial state of the system. The
set of ODE functions tells one the derivative value at specific states.

The Jacobian matrix of the system is calculated in this way:

Ji,j(f, x) =
∂fi(x)

∂xj
(2.2)

5

2.1. Experiment Description and Design

Here, J ∈ Rn×n. One can see that it is the dimensions of both x and f
make sure that there are n2 elements in the Jacobian matrix for the ODE
system.

The sensitivity matrix of a dynamical system shows how the states
change in relation to the change in initial states. Knowing the dimension of
the state vector, one can also easily figure out the dimension of the sensitivity
matrix S, where:

Si,j(t) =
∂xi(t)

∂xj(0)
(2.3)

According the Jacobian method, the sensitivity matrix can be calculated
in below way:

S(0) = I

Ṡ = S × J(f, x)
(2.4)

Now, we may want to know the sensitivity of a state variable at a given
time with respect to any variable at any former time, not just for the initial
inputs. This way, we want to be able to calculate the revised sensitivity
matrix Sr, where:

Sri,j(tm, tn) =
∂xi(tm)

∂xj(tn)
(2.5)

We can calculate this matrix by a little change to the algorithm for
calculating the original sensitivity matrix. The method is to take the s-
tate at time tn and integrate until time tm. Another practise is to cal-
culate Sr(t2, t1), Sr(t3, t2), ... Sr(tp, tp−1)first and then calculate the re-
vised sensitivity matrix between any two time point in t1, ... , tp, tm and
tn by multiply all revised sensitivity matrix between them: Sr(tm,n) =
Sr(tn+1, tn) × Sr(tn+2, tn+1), ... × Sr(tm, tm−1). This is the approach I
used here.

2.1.2 Design comparison experiments

My experiments to conduct here is to calculate the revised sensitivity matrix
introduced above using all the three methods: forward mode AD, reverse
mode AD and manual-effort Jacobian method.

The continuous dynamical system I used in my experiments is the famous
Rambus Oscillator analog circuit. A typical 2-stage Rambus ring oscillator
looks like below:

6

2.1. Experiment Description and Design

Figure 2.1: Two-Stage Rambus Ring Oscillator

One can see that a 2-stage Rambus oscillator has 4 state variables. De-
spite some details in the circuit of the oscillator, we use tanh function to
model the oscillating behaviour of the oscillator:

ẋ1 = −tanh(g · x4)− x1 + r · (−tanh(g · x3)− x1)

ẋ2 = −tanh(g · x1)− x2 + r · (−tanh(g · x4)− x2)

ẋ3 = −tanh(g · x2)− x3 + r · (−tanh(g · x1)− x3)

ẋ4 = −tanh(g · x3)− x4 + r · (−tanh(g · x2)− x4)

(2.6)

Here, g stands for some parameter of the ’forward’ inverters and r stands
for some parameter of the ’cross-coupling’ inverters. I use g = 4 and r = 0.5
in my program.

hand code Jacobian method The hand code here means to calculate
the derivative by hand. Here in our problem, we need to calculate the
Jacobian matrix, which is a n × n matrix of functions in x. In example of
the Jacobian matrix of the 2-stage Rambus oscillator above:

J = −

r + 1 0 rgsech2(gx3) gsech2(gx4)

gsech2(gx1) r + 1 0 rgsech2(gx4)
rgsech2(gx1) gsech2(gx2) r + 1 0

0 rgsech2(gx2) gsech2(gx3) r + 1

(2.7)

Once we have the hand code version of the Jacobian of Rambus ring
oscillator, we can use the method discussed in before section to integrate
out the revised sensitivity matrix.

7

2.1. Experiment Description and Design

forward mode AD For the forward mode AD, I use the library provided
in INTLAB. The main problem here is that integrator ode45 in MATLAB
does not support data structure except for vector of doubles. Therefore, I
used the simplified integrator provided by Jijie Wei and did some modifica-
tion to it.

The idea of the forward mode AD in INTLAB is to produce a new class
instead of traditional vectors of doubles. The new class of objects overloads
the basic arithmetic operators for double and some other usual functions,
e.g. triangular functions, hyperbolic functions, logarithmic functions, expo-
nential functions etc. The overloading function calculates the value and at
the same time calculates the derivative results according to chain rules.

With the simplified integrator Ode DP, we are able to integrate on the
new objects and get the resulting sensitivity matrix in the new objects as
we calculate for the function value. Special attention should be taken when
initializing the input for integrator and initialize data structures in the in-
tegrator.

reverse mode AD For the reverse mode AD, I take the easy way to first
hand code the ’program after compilation’ and then use it for calculating
the derivatives.

I did two examples for the reverse mode AD. One of them is as follows[5].
The example is a function of 3 variables.

f(a, b, c) = (w − w0)
2

w = ln(v2 + 1) + cos(c2 − 1)

v = eu
2−1 + a2

u = sin(ab) + cb2 + a3c2

(2.8)

In my implementation, given initial state (a, b, c) = (a0, b0, c0), the for-
ward propagation stage calculates all immediate values in the forward se-
quence. In the backward adjoint stage, the calculation sequence in reversed

8

2.2. Main Technique Problem

order, suppose initially (da, db, dc) = (0, 0, 0), is as follows:

df = 1

dw = 2(w − w0)df

dc = dc− 2csin(c2 − 1)dw

dv =
2v

v2 + 1
dv

da = da + 2adv

du = 2ueu
2−1dv

da = da + (bcos(ab) + 3a2c2)du

db = db + (acos(ab) + 2cb)du

dc = dc + (b2 + 2a3c)du

(2.9)

One can see that reverse mode AD omits many unnecessary calculation of
sub-function derivatives. The only difference when calculating derivatives
for each variables happens in the last several calculation with the former
calculations the same calculated only once.

In this way, I rewrite the code for Rambus oscillator as if it is compiled
to calculate the reverse mode AD already. The revised code produce the
function value and the function derivative as output, then give it to the
integrator.

2.2 Main Technique Problem

All main technique problems lie in the proper use of the new class gradient.

Column vector and row vector When initializing a gradient object as
column, the derivative of it is a two dimensional matrix; but when initializing
a gradient object as row vector, the derivative of it is still a two dimensional
matrix but stored in a three dimensional matrix with the first dimension
fixed at 1. Special attention should be taken with this kind of design when
necessary.

Data structure initialization When implementing some functions, I en-
counter some situation when I need to initialize new variables in the middle
of code. When this new variable is initialized carelessly as double and is
assigned as some gradient value, there exists no mechanism to convert the
gradient type to double. Therefore, this assignment can not be realised.

9

2.3. Experiment Results

My solution is to read through the code and figure out the structure I
need here and initialize the gradient vectors or matrices accordingly. This
requires lots of effort.

Subscript reference When multiple gradient objects are produced in a
vector, the derivative matrix in the object becomes 3 dimensional matrix and
the subscript reference becomes different and there is a difference between
column vector of gradient objects and row vector of gradient objects.

2.3 Experiment Results

I conducted two sets of experiments. The first experiment increases the
number of stages in the Rambus ring oscillator and the second experiment
increases the number of time intervals when calculating the revised sensitiv-
ity matrix.

2.3.1 Runtime comparison

For the first set of experiments, I increase number of stages of the Rambus
oscillator from 8 to 16 and fix number of time intervals at 32. The revised
sensitivity matrix I’m calculating is S(t4, t1). Below table shows the results:

stages 8 10 12 14 16

FWD AD/s 5.025829 5.114733 5.238651 5.286655 5.926259

RVS AD/s 0.693135 0.718496 0.910159 0.910864 0.981068

JCB/s 0.857869 0.866685 0.959758 0.953296 1.201402

Table 2.1: First experiment with number of stages increasing.

Below is a graph showing the change potential:

10

2.3. Experiment Results

Figure 2.2: Performance in change of number of stages

In order to see the comparison between Jacobian method and reverse
mode AD clearly:

Figure 2.3: Performance in change of number of stages, only JAC and RVS
AD

The reason I start at 8 stages is because for stages smaller than 8, the
integrator’s step length change a lot which makes it difficult to see the

11

2.3. Experiment Results

influence of stage number on derivative calculation.
For the second set of experiments, I increase number of intervals from

4 to 64 and fix number of stages at 4. The revised sensitivity matrix I’m
calculating is also S(t4, t1). Below table shows the results:

interval num 4 8 16 32 64

FWD AD/s 0.821029 1.435060 2.687066 5.155991 10.281717

RVS AD/s 0.108053 0.187385 0.346121 0.672408 1.316860

JCB/s 0.137884 0.232701 0.435869 0.834923 1.637169

Table 2.2: Second experiment with number of intervals increasing.

Below is a graph showing the change potential:

Figure 2.4: Performance in change of number of intervals

2.3.2 Analytical analysis

Suppose the number of stages is n(Therefore, the number of variables is
2n and the number of functions is 2n, too.), the number of intervals is m.
Suppose the cost of a function evaluation is F and the number of time
intervals in the integrator is v. The analysis is based on the assumption
that the number of steps in integrator doesn’t change much for each set of
parameters.

12

2.3. Experiment Results

for forward AD Suppose p = 4 is the number of variables per function.
The number of partial calculation in forward AD:

partialFWD = O(n2 ∗ p ∗ v ∗m) = O(4vmn2) (2.10)

for reverse AD The number of partial calculation in reverse AD:

partialRV S = O(n2 ∗ v ∗m) = O(vmn2) (2.11)

for Jacobian The number of partial calculation in Jacobian method:

partialJCB = O(n2 ∗ v ∗m) = O(vmn2) (2.12)

For the coarse analysis, we see forward AD’s running time must be 4
times larger than reverse AD and Jacobian and the running time for all
three methods change linearly with number of time intervals, which matches
what we see in the experiment result. But there are also other inconsistency:
the running time for all three methods in change to number of stages seems
more linearly than quadratically.

I think here, two factors need to be taken into consideration:

a. Steps taken by integrator are the same for different methods, but are
different for changing parameters. This factor may influence the result a
lot.

b. The analysis is still vague, some small factors are not taken into con-
sideration. These small factors may not be a great deal to the whole
landscape, but can be influential to the small set of experiments I did.

Another observation is that there is slightly difference between reverse
mode AD and Jacobian method. I think the reason for reverse mode AD
to be faster goes into the detail of how my Jacobian matrix is calculated
and how the reverse mode derivative is implemented in my code. For coding
convenience, I use sparse matrix for Jacobian calculation, but didn’t use
it for reverse mode AD. I believe sparse matrix operations will be more
expensive than ordinary operations although it takes less memory, and if
I make it the same, their running time will be even more closer. But for
coding convenience and automation, reverse mode AD saves one the time to
hand code the Jacobian matrix.

13

2.4. Discussion and Conclusion

2.3.3 Other attempts on small verification problems

I also did two experiments on small verification problems using the provided
library in INTLAB of forward mode AD. In the process, I find some impor-
tant functions to be supported in the field of verification problems, which
fulfils my understanding of a complete AD tool.

One of them is to use the tool to find a possible oscillating trajectory
for the Rambus oscillator. The function not supported is spline and the
sequence of functions called by it:ppval and mkpp.

The other of them is to use the differentiation tool to find the period of
the vdp oscillator. I find that the backslash root finding is not supported
by the INTLAB tool.

These two examples give me possible future research ideas.

2.4 Discussion and Conclusion

According to these comparison experiment and analysis, we can see that the
reverse mode AD has the best performance, hand code Jacobian method is
close to it next and forward mode AD takes more time than the two method
to an order.

In comparison of reverse mode AD and hand code Jacobian method,
they both have their drawbacks. Obviously, hand code Jacobian takes a lot
of human effort in figuring out the Jacobian of a ODE system. If the scale
of system is large and sophisticated, it becomes a huge task for the coder
and it becomes easy to make mistakes in the process. In this aspect, reverse
mode AD is better than Jacobian method. However, one may say that in
my experiment, I didn’t take the time of compiling out the new function
into consideration. Whereas, the time for a computer to ’think’ can never
be longer than a human. And once it is compiled for a system, this function
can be used forever. Therefore, the time spent is not a big deal. One can
even give way to exponential compilation time.

14

Chapter 3

Research Proposal

3.1 Expected Outcome

The experiments I’ve done shows a possibility of integrating automatic d-
ifferentiation tools into the verification of continuous dynamical systems.
One can see that if reverse mode AD is applied, some amount of time can
be saved and a large amount of time can be saved in deriving the Jacobian
of a system. Looking at this aspect, it’s worse trying.

I think it is important to have a broad goal first, in case any problems
happen and I have to switch to other sub-problem, I still have the broad
goal. Generally speaking, I expect in the end of my M.Sc. research, I have a
fast enough workable AD tool specifically designed for analog circuit formal
verification, if possible I want to embed it into COHO.

In detail, I want to implement a AD tool that can take forward, re-
verse mode AD and hand code Jacobian into consideration, deciding which
method to use itself. And then use it on a big enough verification problem
to help verification.

Based on my experiments, I think there are several aspects to be done:

a. forward mode AD: Add in new functions to support verification-needed
functions.

b. reverse mode AD: Need a compiler for the generation of new function.

c. combination: Need a criterion for deciding which method to use.

d. a verification problem: I expect this problem to be related to part of the
PLL.

3.2 Resources Required

I might need INTLAB for its library on forward mode AD. I also need JAVA
to write the compiler.

15

3.3. Key Uncertainties

3.3 Key Uncertainties

difficulty in enriching library of forward mode AD Sometimes, it
can be very difficult to write a correct function for our use. Therefore, some
tricks need to be taken when thinking about calculation of a function. This
makes forward mode AD not that ’automatic’, because more human-effort
derivation must be made.

implementation of reverse mode AD There exists two ways of reverse
mode AD implementation. One is called Source Transformation. This is
the method I want to use in the future. This method basically means to
reorder the source code and ’compile’ it to a new code in the reverse order
that can calculate the derivatives. However, the other method, Operator
Overloading is also a possible method. I might want to try this too, but
only time permitted.

whether or not take use of existing software I hope to implement
the code myself first. But existing software have more improvements and
optimization. Therefore, it’s difficult to decide which. However, problems
might happen with existing software, e.g. it may be incompatible to my
specific problem in formal verification. It’s a fine line to take.

An example of existing software to take use: FADBAD++ is a free
software that implements forward mode AD, reverse mode AD and Taylor
methods using C++ templates and operator overloading.

compatibility with COHO The compatibility problem can happen at
any small piece of code. One of the problem I can think of for now is about
the forward mode AD provided by INTLAB. This problem is also described
in former chapter about main technique difficulties. If new data structure
is initialized in the middle of code and assigned to a ’gradient’ object, an
error will be raised. Thus, to maintain the compatibility, I need a way to
cast the new variable to ’gradient’ class in a proper way without change my
original COHO code to much. But I don’t know if it’s possible or not.

16

Bibliography

[1] RWTH Aachen University Andre Vehreschild, Institute for Scientif-
ic Computing. Adimat: Automatic differentiation of matlab. http:

//www.sc.rwth-aachen.de/adimat/.

[2] Christian H. Bischof, Paul D. Hovland, and Boyana Norris. On the im-
plementation of automatic differentiation tools. Higher Order Symbol.
Comput., 21(3):311–331, September 2008.

[3] Andreas Griewank. On automatic differentiation. In IN MATHEMAT-
ICAL PROGRAMMING: RECENT DEVELOPMENTS AND APPLI-
CATIONS, pages 83–108. Kluwer Academic Publishers, 1989.

[4] Andreas Griewank. Achieving logarithmic growth of temporal and s-
patial complexity in reverse automatic differentiation, 1991.

[5] C. Homescu. Adjoints and Automatic (Algorithmic) Differentiation in
Computational Finance. ArXiv e-prints, July 2011.

[6] H. G. Kahrimanian. Analytical differentiation by a digital computer.
M.Sc. Thesis, Temple University, 1953.

[7] John F Nolan. Analytical differentiation on a digital computer. M.Sc.
Thesis, Massachusetts Institute of Technology, 1953.

[8] Siegfried M. Rump. Intlab-interval laboratory. http://www.ti3.

tu-harburg.de/rump/intlab/.

[9] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Giv-
en by Algorithms. PhD thesis, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, Urbana-Champaign, IL, Jan-
uary 1980.

[10] TOMLAB. Tomlab /mad. http://tomopt.com/tomlab/products/

mad/.

17

http://www.sc.rwth-aachen.de/adimat/
http://www.sc.rwth-aachen.de/adimat/
http://www.ti3.tu-harburg.de/rump/intlab/
http://www.ti3.tu-harburg.de/rump/intlab/
http://tomopt.com/tomlab/products/mad/
http://tomopt.com/tomlab/products/mad/

Bibliography

[11] Yu. M. Volin and G. M. Ostrovskii. Automatic computation of deriva-
tives with the use of the multilevel differentiating technique — I: Algo-
rithmic basis. Computers and Mathematics with Applications, 11:1099–
1114, 1985.

18

	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Problem
	Problem Description
	A literature survey
	Problem Statement
	Problem Solution

	Comparative Experiments
	Experiment Description and Design
	Calculating revised sensitivity matrix
	Design comparison experiments

	Main Technique Problem
	Experiment Results
	Runtime comparison
	Analytical analysis
	Other attempts on small verification problems

	Discussion and Conclusion

	Research Proposal
	Expected Outcome
	Resources Required
	Key Uncertainties

	Bibliography

