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Abstract

We present a technique to decompose digital images using generalizations of the
Discrete Fourier Transform (DFT). This method arises from the representation the-
ory of iterated wreath product groups, which describe symmetries of the quad tree
decomposition of an image. In addition, we describe applications to compression,
edge detection, and de-noising, as well as experimental results to evaluate the per-
formance of these operations.
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Chapter 1

Introduction

Image processing refers to the various operations performed on pictures that are
digitally stored as an aggregate of pixels. There are many problems in image pro-
cessing, including enhancing or degrading the quality of the image, artistically
transforming the image, and finding and recognizing objects in an image.

Our approach traces back to Cooley and Tukey’s seminal paper on the Fast
Fourier Transform (FFT) algorithm [4]. Subsequent efforts to formulate the dis-
crete Fourier transform (DFT) in terms of the representation theory of finite cyclic
groups provides the basis of our approach. In two recent papers, Foote et. al. and
Mirchandani et. al. ([8], [18]) link the spectral analysis approach for data on finite
groups with the world of wavelets. Their framework realizes the DFT and the Haar
wavelet transform as special cases of a more general construction. In particular,
the use of iterated wreath products as automorphism groups of spherically homo-
geneous rooted trees (SHRTs) provides the vital link between wavelets, spectral
analysis, and image processing.

Following in the same direction, this paper explores the spectral decomposition
algorithm from [8]. The main contribution of this paper is the application of iter-
ated wreath products of different symmetry groups, which is previously unexplored
in the field. We derive individual decompositions based on choices of symmetry
groups, noting the differences of the Haar, Fourier, dihedral, alternating, and sym-
metric decompositions. In addition, we investigate the applicability of classical
image processing techniques to our image spectra by demonstrating compression,
edge detection, and de-noising techniques.

Our approach in the following chapters is as follows. First, we give the neces-
sary background tools from representation theory, and we explain how to general-
ize the Discrete Fourier Transform (DFT) using these tools. Second, we introduce
wreath products and describe their structure. Third, we derive a wreath product
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invariant decomposition with respect to several iterated wreath product groups.
Lastly, we describe approaches for compression, edge detection, and de-noising as
a proof-of-concept that our spectral analysis is applicable to standard image pro-
cessing problems.



Chapter 2

Representation Theory

In this chapter, we briefly cover the basic tools of representation theory. We as-
sume basic knowledge of groups, rings, and modules. A more complete treatment
of representation theory can be found in the later chapters of [6]. As a concrete
application of representation theory, we derive the classical DFT. This material is
found (concisely presented) in [8], [17], and [21].

2.1 Representations of Finite Groups

Let G be a finite group, letF be a field and letV be a vector space overF .

Definition 2.1. Let n∈ Z+.

(1) A linear representationof G is any homomorphismϕ from G to GL(V).

(2) A matrix representationof G is any homomorphismϕ from G to GLn(F).

A representation for a group is simply a map from group elements inG to
linear transformations inGL(V). WhenV is a finite dimensional vector space, we
can fix a basis forV and obtain an isomorphism fromGL(V) to GLn(F). Since this
paper only concerns finite dimensional vector spaces, we will use linear and matrix
representations interchangeably.

Although we can think of representations as maps, we can also think of them
as modules over group rings. Recall the definitions of group rings and modules:

Definition 2.2. Thegroup ringof G overF , denotedFG, is the set of all formal
sums of the form

∑
g∈G

αgg, αg ∈ F

where addition and multiplication are performed in the usual distributive fashion.
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Definition 2.3. Let R be a ring (not necessarily commutative nor with 1). Aleft
R-moduleor a left module over Ris a setM together with

(1) a binary operation+ onM under whichM is an abelian group, and

(2) an action ofRonM (that is, a mapR×M →M) denoted byrm such that for
all r,s∈ Rand for allm,n∈M

(a) (r +s)m= rm+sm,

(b) (rs)m= r(sm),

(c) r(m+n) = rm+ rn,

(d) if the ringRhas a 1, then 1m= m.

Now, supposeϕ : G→GL(V) is a representation ofG. Amazingly enough, we
can consider the vector spaceV (overF) as a module over the ringFG, where the
action ofFG onV is defined by(

∑
g∈G

αgg

)
·v = ∑

g∈G

αgϕ(g)(v) for all ∑
g∈G

αgg∈ FG,v∈V.

Conversely, given anFG-moduleV, we can obtain a representationϕ : G→GL(V)
using the action ofFG onV:

ϕ(g)(v) = g·v for all v∈V,

whereg·v is the action of the group elementg on the elementv of V. Therefore, a
representationϕ : G→ GL(V) is equivalent to specifying anFG-moduleV. Here,
we say thatV affordsthe representationϕ.

This correspondence between representations and modules is very useful be-
cause now we can apply module theory to explore properties of representations.
In particular, we are interested in the basic building blocks of representations by
consideringsubmodules, which correspond to ”sub”-representations. Furthermore,
we can define the notion of asimpleor irreducible representation analogously to
how a simple module is defined. To refresh the reader’s memory, let us recall the
definitions of a submodule and a simple module:

Definition 2.4. Let M be a nonzeroR-module for a ringR.

(1) An R-submoduleof M is a subgroupN of M which is closed under the action
of ring elements, i.e.,rn ∈ N for all r ∈ R,n∈ N.

(2) M is said to beirreducible or simple if its only submodules are 0 andM;
otherwise,M is calledreducible.
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One of the most important problems in group theory is theHölder Program,
which attempts to classify all finite simple groups and to find all ways of putting
simple groups together to form other groups. In module theory, an analogous prob-
lem is theextension problem, in which we study exact sequences of modules, direct
sums of modules, and tensor products of modules. In the representation theory of
finite groups,Wedderburn’s theorem(Theorem 2.2) tells us how to break represen-
tations up into smaller irreducible representations. This astounding result forms the
foundation for our approach in decomposing signals and images. For the remainder
of this section, we will focus on Wedderburn’s theorem and other important objects
and tools in representation theory that allow us to use Wedderburn’s theorem.

The first important theorem we will discuss is Maschke’s theorem. Intuitively,
this theorem states that for any submodule of anFG-module, you can always find
a complementary submodule. This enables us to split the original module into a
direct sum of two submodules.

Definition 2.5. Let 1F be the multiplicative identity of the fieldF . Thecharacter-
istic of a fieldF is the smallest positive integerp such thatp ·1F = 0 if such ap
exists, and 0 otherwise.

Theorem 2.1. (Maschke’s Theorem)Let G be a finite group and let F be a field
whose characteristic does not divide|G|. If V is any FG-module and U is any
submodule of V , then V has a submodule W such that V= U ⊕W.

In terms of representation theory, if we are given a representationϕ for a sub-
space ofV which is closed the action ofϕ, then we can find acomplementwhich
is also closed underϕ. In addition, for complex representations, you can find a
orthogonal complementto the original subspace with respect to some inner prod-
uct. Maschke’s theorem will be important in proving Theorem 4.2. In addition,
this theorem is useful in proving Wedderburn’s theorem. But first we state a quick
corollary from Maschke’s theorem:

Corollary. If G is a finite group and F is a field whose characteristic does not
divide|G|, then every finitely generated FG-module M iscompletely reducible, i.e.
M is isomorphic to a direct sum of irreducible submodules.

This is a direct consequence of Maschke’s theorem: given any non-trivial sub-
module of anFG-moduleM, we can recursively apply Maschke’s theorem to the
submodule and its complement until we cannot break them down any further (i.e.
until we obtain irreducible submodules). In addition, note that for any finite group
G andF = C, everyCG-module over a finite dimensional vector spaceV is finitely
generated, because we can always choose a finite basis which spansV. Therefore,
all finite dimensionalCG-modules are completely reducible.
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Now we are ready to state Wedderburn’s theorem. We will conveniently apply
this theorem toCG-modules, since they are guaranteed to be completely reducible.

Theorem 2.2. (Wedderburn’s Theorem)Let R be a nonzero ring with1. If every
R-module is completely reducible, then the ring R considered as a left R-module is
a direct sum:

R∼= L1⊕L2⊕·· ·⊕Ln,

where each Li is a simple module with Li = Rei , for ei ∈ R which satisfy

(1) ei
2 = ei for all i (the ei are idempotents),

(2) eiej = 0 if i 6= j (the idempotents areorthogonal),

(3) and∑n
i=1ei = 1.

This theorem guarantees us a decomposition of anyCG-moduleM as a direct sum
of irreducible submodules:

M ∼= M1⊕M2⊕·· ·⊕Ml .

Note that theMi are not necessarily distinct; in fact, there may be many irreducible
submodules that are isomorphic. Thus, this decomposition is not unique. However,
we can group the isomorphic components to form aisotypic decompositionof M:

M ∼= a1N1⊕a2N2⊕·· ·⊕akNk,

where eachai is a nonnegative integer indicating the multiplicity of the irreducible
submoduleNi , i.e.

aiNi =

ai times︷ ︸︸ ︷
Ni ⊕·· ·⊕Ni .

Note thatNi = M j for some j, and eachNi is distinct. We refer to the submodules
aiNi asisotypic subspaces.

Now, recall in Wedderburn’s theorem that we obtained the irreducible modules
Li by projection using the idempotentsei . If there were a simple way of obtaining
these idempotents, then applying Wedderburn’s theorem would be easy. It turns
out that we can use the theory ofcharactersto find these idempotents.

Definition 2.6. If ϕ is a matrix representation ofG afforded by theFG-moduleV,
thecharacterof ϕ is the function

χ : G→ F defined by χ(g) = trϕ(g),

where trϕ(g) is the trace ofϕ(g).
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Recall that trAB = trBA for two n× n matricesA andB. For an invertible
matrixP, we see that the trace is invariant under conjugation byP:

trP−1AP= trP.

Thus, the character of a representation is invariant under any change of basis. In
other words, characters areclass functions, i.e. constant on the conjugacy classes
of G:

χ(g−1xg) = tr
(
ϕ(g−1xg)

)
= tr

(
ϕ(g−1)ϕ(x)ϕ(g)

)
= trϕ(x) = χ(x).

We now apply Wedderburn’s theorem to characters. Suppose we have a characterψ

for the complex representation complexϕ, which is afforded by someCG-module
V. Then, we can decompose the matrix ofϕ as a block diagonal matrix, where
each block corresponds to an irreducible representation ofϕ or an irreducible sub-
module ofV. Then, ψ is actually the sum of the characters of these irreducible
representations:

ψ = a1χ1 +a2χ2 + · · ·+ar χr ,

where eachχi is the character of the representation corresponding to theith irre-
ducible submodule ofV.

We can do even more with complex characters; in fact, we can put a inner
product structure on the space of complex class functions as follows (recall that
characters are just particular class functions):

Definition 2.7. For class functionsθ andψ, define their inner product to be

〈θ ,ψ〉= 〈ψ,θ〉=
1
|G| ∑

g∈G

θ(g)ψ(g),

where the bar denotes complex conjugation.

To simplify the calculation of this inner product, we can take advantage of the fact
that class functions are constant over conjugacy classes. So suppose there arel
conjugacy classes with representativesg1,g2, . . . ,gl . Then, the inner product ofθ
andψ can be expressed as

〈θ ,ψ〉=
l

∑
i=1

χ(gi)ψ(gi)
|CG(gi)|

,

where|CG(gi)| is the order of the centralizer ofgi in G. With respect to this formula,
we have an important orthogonality relation between the irreducible characters:
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Theorem 2.3. (The First Orthogonality Relation for Group Characters)Let G be
a finite group and letχ1, . . . ,χl be the irreducible characters of G overC. Then,
with respect to the inner product〈 , 〉 above we have〈

χi ,χ j
〉

= δi j

and the irreducible characters are an orthonormal basis for the space of class
functions. In particular, ifθ is any class function then

θ =
l

∑
i=1

〈θ ,χi〉χi . (2.1)

In addition, we can define a notion of anormof a class function:

Definition 2.8. For θ any class function onG the norm of θ is 〈θ ,θ〉1/2 and is
denoted by‖θ‖.

Applying Theorem 2.3, we see that when the class functionθ is expressed
using irreducible characters,θ = ∑l

i=1 αiχi , then the norm is simply

‖θ‖=

(
l

∑
i=1

αi
2

)1/2

.

Thus it follows that a character has norm 1 if and only if it is irreducible.
Now, we arrive at the long awaited formula for obtaining idempotents. Al-

though we have briefly stated definitions for idempotents in Wedderburn’s theorem,
let us formally define idempotents and some of their properties.

Definition 2.9. Let Rbe a ring, and letZ(R) be the center ofR. Then,

(1) An elemente∈ R is called anidempotentif e2 = e.

(2) Idempotentse1 ande2 are orthogonal ife1e2 = e2e1 = 0.

(3) An idempotente is called aprimitive central idempotentif e∈ Z(R) ande
cannot be written as a sum of two other orthogonal idempotents in the ring
Z(R).

And finally, the formula for calculating idempotents:

Theorem 2.4. Let M be aCG-module, and let Mi be the irreducible submodules
of the Wedderburn decomposition of M. Let e1, . . . ,el be the orthogonal primitive
central idempotents inCG such that ei restricted to the irreducible Mi is the identity
map. Furthermore, letχi be the character afforded by Mi . Then

ei =
χi(1)
|G| ∑

g∈G

χi(g−1)g. (2.2)
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Figure 2.1: A Function Sampled atn Points.

2.2 Applying Representation Theory: A Derivation of the
DFT

In this section, we will apply the tools from the previous section to derive the
classical DFT. In order to do this, we will need a representation of some groupG,
a correspondingCG-module, and the use of Wedderburn’s theorem to decompose
this module.

Suppose we have a complex-valued functionf (k) that is sampled at (or defined
on)n points; i.e.k∈ {0, . . . ,n−1}, e.g., Figure 2.1. Then the classical DFT of this
function is given by

f̂ ( j) =
1
n

n−1

∑
k=0

f (k)e−2π ik j
n . (2.3)

Similarly, the inverse of this transform, the IDFT, is given by

f (k) =
n−1

∑
j=0

f̂ ( j)e2π ik j
n .

Now, denote the cyclic group onn elements asZn, and letG = Zn. Suppose that
the generator forZn is the elementx∈ Zn. Amazingly, for our functionf , we can
identify then points on the domain off with group elements ofZn. Therefore each
f simply becomes an element ofCG:

f = ∑
g∈G

αgg =
n−1

∑
i=0

αix
i , whereαi = f (i).

Therefore the space of all functions defined on this domain can be represented
as aCG-module over itself,CG. Let us proceed to decompose this space using
Wedderburn’s theorem.
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Let {ϕi} be the irreducible representations ofϕ. For a finite abelian group, all
of its irreducible complex representationsϕi are 1-dimensional, since the matrices
ϕi(g) for all g∈ G need be commutative as well. Also, all 1-dimensional complex
representations of a finite cyclic group maps the group elements to thenth roots
of unity in C. Thus, for a primitiventh root of unity ω = e

−2π i
n , the irreducible

characters ofZn are
χk(x j) = ω

jk.

To show that these characters are indeed irreducible, we calculate the norm ofχk:

〈χk,χk〉=
1
|G| ∑

g∈G

χk(g)χk(g)

=
1
n

(
n−1

∑
j=0

χk(x j)χk(x j)

)

=
1
n

(
n−1

∑
j=0

ω
jk

ω
− jk

)
= 1.

From this information, we can derive the orthogonal primitive central idempotents
using Theorem 2.4:

ek =
χk(1)
|G| ∑

g∈G

χk(g−1)g

=
1
n

n−1

∑
j=0

χk(xnx− j)x j

=
1
n

n−1

∑
j=0

ω
− jkx j .

Then, the individual idempotents look like

e0 =
1
n

(
1+x+x2 +x3 + · · ·+xn−1)

e1 =
1
n

(
1+ω

−1x+ω
−2x2 +ω

−3x3 + · · ·+ω
−(n−1)xn−1

)
e2 =

1
n

(
1+ω

−2x+ω
−4x2 +ω

−6x3 + · · ·+ω
−2(n−1)xn−1

)
...

en−1 =
1
n

(
1+ω

−(n−1)x+ω
−2(n−1)x2 +ω

−3(n−1)x3 + · · ·+ω
−(n−1)2

xn−1
)

.



Applying Representation Theory: A Derivation of the DFT11

Now, let us projectCG into its irreducible submodules according to Wedder-
burn’s theorem. For any functionf = ∑n−1

k=0 αkxk ∈CG, where eachαk ∈C, we can
project f onto theith irreducible submodule by calculatingei · f . As an example,
consider the projection off to the second irreducible submodule,e1 · f :

e1 · f =
1
n

(
1+ω

−1x+ω
−2x2 + · · ·+ω

−(n−1)xn−1
)
· f

=
1
n

[
1· f +(ω−1x) · f +(ω−2x2) · f + · · ·+(ω−(n−1)xn−1) · f

]
.

For sake of notational simplicity, let us use vectors to denote elements inCG by

f =
n−1

∑
k=0

αkx
k =


α0

α1

α2
...

αn−1

 .

Then, we can writee1 · f as

e1 · f =
1
n

1·


α0

α1

α2
...

αn−1

+(ω−1x) ·


α0

α1

α2
...

αn−1

+ · · ·+(ω−(n−1)xn−1) ·


α0

α1

α2
...

αn−1





=
1
n




α0

α1

α2
...

αn−1

+ω
−1


αn−1

α0

α1
...

αn−2

+ω
−2


αn−2

αn−1

α0
...

αn−3

+ · · ·+ω
−(n−1)


α1

α2

α3
...

α0



 .

Using matrices, we can simplify the notation even further:

e1 · f =
1
n


1 ω−(n−1) ω−(n−2) ω−1

ω−1 1 ω−(n−1) · · · ω−2

ω−2 ω−1 1 ω−3

...
...

...
ω−(n−1) ω−(n−2) ω−(n−3) · · · 1




α0

α1

α2
...

αn−1

 .
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Multiplying by ωn = 1, we get

e1 · f =
1
n


1 ω ω2 ωn−1

ωn−1 1 ω · · · ωn−2

ωn−2 ωn−1 1 ωn−3

...
...

...
ω ω2 ω3 · · · 1




α0

α1

α2
...

αn−1



=
1
n


1

ωn−1

ωn−2

...
ω


[
1 ω ω2 · · · ωn−1

]


α0

α1

α2
...

αn−1



=
1
n

n−1

∑
k=0

ω
k
αk


1

ωn−1

ωn−2

...
ω

 .

Notice that the vector above only has one degree of freedom. Thus, we are
projecting onto a one-dimensional space, and we only need to store one coefficient.
We pick the coefficient of 1G, and thus we finally obtain

e1 · f =
1
n

n−1

∑
k=0

αkω
k.

This looks exactly like the 2nd Fourier coefficient from the formula we saw earlier
in Equation 2.3.

In general, for any projectionei · f , we obtain (after much calculation)

ei · f =
1
n

n−1

∑
k=0

αkω
ik for 0≤ i ≤ n−1.

This is precisely Equation 2.3. Furthermore, we can express all of the projections
ei · f succinctly in matrix form, denoted as DFTn:

DFTn =


e0 · f
e1 · f
e2 · f

...
en−1 · f

=
1
n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

...
1 ωn−1 ω2(n−1) · · · ω(n−1)2




α0

α1

α2
...

αn−1

 . (2.4)



Chapter 3

Wreath Products

We can use wreath product groups to describe permutations of special types of trees
called “spherically homogeneous rooted trees,” or SHRTs for short. The inspiration
to use SHRTs comes from [8], and we will draw on its definitions and insights
for this chapter. To clarify some basic terminology, arooted tree is a tree with a
designatedvertex(or node) called theroot. These rooted trees are typically drawn
like an upside-down plant with the root at the very top, as in Figure 3.1. In these
trees, the vertices are arranged according to their distance from the root, which is
referred to as thelevelof a vertex. Achild of a specified vertexv is a vertex that
is connected tov and one node further from the root thanv. The leavesof the tree
are the vertices that are of maximal distance from the root, i.e., vertices that have
no children. For the sake of convenience, let the maximum level of any vertex in a
tree be called theheightof the tree.

A SHRT is a rooted tree such that all vertices at a given level have the same
number of children. We denote SHRTs with anh-tuple (m0,m1, . . . ,mh−1) where
h is the height of the tree andmi denotes the number of children at each vertex of
level i. Note here that all of the leaves in this tree are of the same distance to the
root, at the maximum levelh.

Figure 3.1 is an example of a SHRT described by the 3-tuple(2,2,2). This type
of tree, where every vertex (except the leaves) has exactly two children, is called
a binary tree.Similarly, aquad treerefers to a SHRT where every non-leaf vertex
has exactly four children. In general, these trees are calledregularly branching
r-ary trees,wherer specifies the number of children at each vertex.

In an image processing setting, we would like to structure our data so that it
is convenient to define a notion of a group acting on our image. In other words,
we would like to apply symmetry groups to our image in order to find symmetries
within the image. Furthermore, we would like to find decompositions of the image
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Figure 3.1: A Graph of a Binary Tree of 3 Levels.

data with respect to these symmetries. In fact, it is particularly useful to identify
the pixels in the image with the leaves of a SHRT, because it allows for wreath
product groups to act on the image by permuting the corresponding SHRT.

Now, how would one describe permutations of trees? Intuitively, we would
like some way to describe a reordering of vertices in the SHRT. Since we want to
preserve the adjacency of the vertices of the tree (otherwise, we would be creating
a completely different tree), we would like to permute closely connected vertices
amongst themselves. We can do this by only permuting children (of a particular
vertex) amongst themselves, for all vertices in the tree.

This is equivalent to picking an element from the symmetric group for each
vertex in the tree, where the element describes how the vertex permutes its children
while keeping the subtrees below the children intact. But recall that for SHRTs, the
number of children is exactly the same for vertices at a given level. So theithin the
tree, we can pick an element of the same groupSmi for each vertex of that level.
This is precisely the algebraic structure offered by wreath products of symmetric
groups. Note that for regularly branchingr-ary trees, the number of vertices gets
exponentially large as the height of the tree increases, so we would expect these
wreath product groups to become very large very fast.

Now, another way to interpret these permutations is to see how they pertain to
permutations of just the leaves. In fact, the wreath products describe astructured
permutationof the leaves. This aspect proves to be especially useful when defining
the wreath product group action on an image.

In addition to this interpretation of wreath products, there has been much theo-
retical work with other uses of wreath products. For further reading, Kerber ([12],
[13]) talks about the representation theory of wreath products in more detail. Rock-
more ([20]) gives a FFT for wreath products. Furthermore, Eldredge ([7]) describes
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an approach to finding isotypic decompositions of data in the binary tree case by
using separating sets. In addition, wreath products are used in a variety of differ-
ent settings. Straubing ([23]) applies wreath products in finite automata theory,
deriving a “wreath product principle” for formal languages. Finally, Schoolfield
analyzes random walks on wreath products of groups [22].

3.1 Wreath Products

Definition 3.1. Let G be a finite group, andH a permutation group onn elements
(H ≤ Sn). Let Gn = G×G× ·· · ×G (n times) be the set of orderedn-tuples of
elements ofG. Let g,h∈ Gn, σ ,π ∈ H, and lethi denote theith coordinate in the
n-tupleh. Then thewreath productof G with H, denotedG o H, is the setGn×H
with multiplication defined as

(g,σ)(h,π) =
(
g
(
σ
−1h
)
,σπ

)
where (

σ
−1h
)

i = hσ−1(i). (3.1)

We illustrate the wreath product with a simple example, using the tree in Figure
3.2. The group that describes all adjacency preserving permutations of this tree is

S2 o S3. Let (g,σ),(h,π) ∈ S2 o S3 be the permutations
((

1,(12),1
)
,(132)

)
and((

(12),1,1
)
,(12)

)
, respectively. Then, the composition of these two permutations

(by multiplication inS2 o S3) is

(g,σ)(h,π) =
((

1,(12),1
)
,(132)

)((
(12),1,1

)
,(12)

)
=
((

1,(12),1
)[

(132)−1((12),1,1
)]

,(132)(12)
)

=
([(

1,(12),1
)(

1,1,(12)
)]

,(23)
)

=
((

1,(12),(12)
)
,(23)

)
.

The resulting permutation should be equivalent to applying the permutations
(h,π) and then(g,σ) in that order. To check, we can apply(h,π) and then(g,σ)
as shown in Figure 3.3. Here, we applied the permutations in a top-down fashion,
first applyingπ (or σ ) by swapping the whole subtrees with rootsb,c,d and then
applyingh (or g) to the leaves, where theith coordinate ofh applies to the chil-
dren of theith subtree. We see in this example that the final permutation does in
fact correspond to the one obtained by the multiplication formula for the wreath
product.
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b c d

Figure 3.2: Graph of a (3,2) SHRT.
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(g,σ)
−−−−→

Figure 3.3: Subsequent Permutations of Figure 3.2.
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An intuitive way to see why this works is to observe that the permutations
of vertices higher up the tree will affect the permutations below. Therefore, in
composing permutations of trees, the permutations below have to be “untwisted”
in order to be applied correctly. This reveals the semidirect product structure of
the wreath product, where the action ofH on Gn is to permute the ordering of the
n-tuples. More precisely,G o H is a semidirect product ofH andGn with respect
to the permutation representation fromH into Aut(Gn) defined by Equation 3.1,
where Aut(Gn) denotes the full automorphism group ofGn.

In addition, we can also create a correspondence between the permutations
of the leaves and permutations of the tree. However, not all permutations of the
leaves can be constructed using permutations of the tree. For example, in Figure
3.2, since the adjacency of the vertices needs to be preserved, we would not be able
to permute the leaveseand f so that they have different parents, since they are con-
nected to a common parent. But there exists a unique wreath product permutation
for each permutation of the leaves that is realizable using permutations from the
wreath product group.

Proposition 3.1. Let (m0,m1, . . . ,mh−1) be a SHRT of height h. Letπ be a permu-
tation of the∏h−1

i=0 mi leaves of this tree, which is realizable by adjacency preserving
permutations of the tree. Then there exists a unique element in Smh−1 o Smh−2 o · · · o
Sm0 that gives rise toπ.

Proof. We prove this by induction on the height of the tree. First, forh = 1, there
arem0 leaves connected directly to the root of the tree, and clearly there exists
a unique permutation inSm0 that permutes the leaves of this tree. Now, suppose
that our proposition is true for some heighth. Consider the SHRT of heighth+1.
Since the permutations of the leaves is adjacency-preserving, we can partition this
set of leaves intomh−1 sets ofmh vertices of distance 2 from each other. For
each of these sets, there exists a unique element inSmh that describes the permu-
tation of its vertices. Thus, there exists a unique element inσ ∈ Smh × ·· · ×Smh

(mh−1 times) that describes each permutation of vertices in allmh−1 sets. By the
induction hypothesis, there exists a unique element inτ ∈ Smh−1 o Smh−2 o · · · o Sm0

that describes the ordering of themh−1 groups. Thus, we have a unique element
(σ ,τ)∈Smh o Smh−1 o · · · o Sm0 that corresponds to this permutation of the leaves. By
the principle of induction, the proposition follows.

This proposition tells us that there exists a bijective correspondence between
realizable permutations of the leaves and wreath product permutations of the tree.
In this manner, the wreath product gives rise to astructured permutationof the
leaves. In the next chapter, we will see that this structure will allow us to identify
pixels in the image with a unique SHRT. In addition, we will be able to use the
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wreath product to permute the pixels in the image in a very organized manner. Fur-
thermore, we can investigate whether there exists a transformation that is invariant
under the wreath product group action, which will in turn lead to a decomposition.



Chapter 4

Image Decomposition using
Wreath Product Groups

The idea of applying wreath products to image processing was first introduced in
[10]. Further developing this idea, Foote et. al. and Mirchandani et. al. ([8],
[18]) describe the quad tree decomposition of an image, which involves a scanning
method to identify pixels with quad trees. In this chapter, we will look in greater
detail at the algorithm given by [8], and we will introduce a decomposition of the
image data which is invariant under the wreath product group action.

4.1 Quad Tree Decompositions of Images

How can automorphisms of trees help us with image processing? We can construct
a tree-like structure from a digital image by recursively breaking the image into
pieces, creating a hierarchy within the image. This structure allows us to permute
pixels in an image just like how we would permute the leaves of a tree using iterated
wreath product groups.

Procedure 4.1.Suppose we are given a image with dimensions 2h×2h.

(1) Break the image up into four quadrants, each of dimension 2h−1×2h−1.

(2) Order the four quadrants clockwise, starting from the top left quadrant.

(3) Continue the process recursively, breaking quadrants into sub-quadrants (of
dimension 2h−2× 2h−2) and sub-quadrants into sub-sub-quadrants (of di-
mension 2h−3×2h−3), and so on.
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(4) Stop at thehth recursive step, when quadrants cannot be broken up further
since they are made of individual pixels.

Example 4.1. Suppose we have an 4×4 image, represented by the matrix

M =


a b c d
e f g h
i j k l
m n o p

 .

We first break the image into four quadrants:
a b c d
e f g h
i j k l
m n o p

 ∼

 A B

D C

 .

And, for each of the four sub-quadrants, we can break them down again into sub-
sub-quadrants: 

a b c d
e f g h
i j k l
m n o p

 .

At this point, we must stop the recursive process since we cannot subdivide the
matrix any further. Now, using the ordering scheme, we can order the vertices as
follows: 

1 2 5 6
4 3 8 7
13 14 9 10
16 15 12 11

.


This gives rise to the quad-tree in Figure 4.1.

We note that this scanning method can be generalized to other trees as well,
however, the size of the image must be adjusted to match the number of leaves in
the desired tree. There are also variations within quad trees. For any treeTm where
m is ann-tuple(4k,4k, . . . ,4k), we obtain different quad trees for different choices
of k andn. We can then generalize our scanning procedure as well. For example,
in the 4×4 matrix given above, we could have scanned 16 vertices at once, giving
the ordering 

1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7

 .
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Figure 4.1: A Graph of the Quad Tree Decomposition.

Although we can generalize in this fashion, we will consider the case of scanning
only 4 vertices at once, i.e., the case of a quad tree.

4.2 Spectral Decomposition

Given the scanning algorithm that constructs a function on the leaves of a quad
tree, the wreath product group can act on the tree, resulting in permutations of
the original image. In this section, we describe a wreath product group invariant
decomposition from [8]. In addition, we describe an iterative algorithm that speeds
up the decomposition.

4.2.1 Multiresolution Decomposition

Consider any treeTm given by then-tuplem = (m0,m1,m2, . . . ,mn−1). Let the set
of leaves ofTm be denotedX, and letL(X) denote the space of all complex valued
functions onX. Let G be any wreath product group acting on this tree. Recall that
the ith level denotes the set of all vertices in the tree that are of distancei from the
root.

First, we can filterL(X) into an ascending chain of subsets ofL(X). The fol-
lowing is stated as Theorem 4.4 in [8] without proof, so we provide a proof of this
theorem.
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a a a a a a

V0

a a b b c c a b c d e f

V1 V2

Figure 4.2: A Filtration of the(3,2)-tree from Figure 3.2.

Theorem 4.1.Let Vi ∈ L(X) be the space of all functions that are constant on each
subset of leaves Ai that descend from a common node at level i. Then Vn = L(X),
and the subspaces Vi form a filtration of L(X):

0⊂V0 ⊂V1 ⊂ ·· · ⊂Vn = L(X).

Moreover, each Vi is G-invariant, i.e., for any permutation in G, g·v∈Vi .

Proof. First, we showVn = L(X). By definition,Vn denotes all the functions that
are constant on the leaves descending from each vertex that is distancen away
from the root. Since the vertices that are distancen away are exactly the leaves of
the tree, and since each leaf can take on only one value, any function inL(X) is
constant on each leaf, i.e.,Vn = L(X).

Note thatV0 is the set of functions that are constant on all leaves of the tree,
and as the index increases, we allow for functions of progressively further detail.
In fact, for eachVi , we can partitionX into k = ∏i−1

j=0mj subsetsAi (with m−1 = 1),
where each subset corresponds to the leaves that descend from one of thek vertices
at level i. Then,Vi describes all of the functions that are constant within each of
those subsets. For example, we can filter the(3,2)-tree from the previous chapter
as shown in Figure 4.2.
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From this, it’s clear thatVi ⊂Vi+1 sinceVi+1 consists of the functions that are
constant on a smaller sets of leaves, compared toVi . Thus theVi form a filtration
simply because they form a chain of subsets.

Finally, to show that eachVi is G-invariant, recall thatG provides adjacency
preserving transformations of the tree. As a result, no matter how we permute the
tree, eachAi will contain the same elements (up to a reordering of theAi ’s), because
they descend from a common vertex in the tree. Therefore, each set will still have
the same constant value; thus the permuted function will remain inVi .

This filtration is called a multiresolution filtration ([8]), because of the way
that eachVi subsequent allows for further detail. If we considerL(X) as aCG-
module, where elements inCG permute and scale functions defined on the leaves
of a tree (such a correspondence is possible because of Proposition 3.1), eachVi

is a submodule ofL(X) because it isG-invariant and thus closed under permuting
and scaling by elements ofCG. Furthermore,Vi is a submodule ofVj for all j ≥ i.
Applying Maschke’s theorem (Theorem 2.1), we can decompose eachVi into two
submodulesVi−1 and its orthogonal complement. This results in the following
theorem:

Theorem 4.2. For eachCG-module Vi , Vi−1 is a submodule of Vi with orthogonal
complement Wi such that

Vi = Vi−1⊕Wi .

Now, we need a method to filter constant values for eachVi in order to con-
struct aG-invariant transformation in a multiresolution fashion. Foote et. al. ([8])
constructs such a transform based on theRadon transform. This takes the average
function value on each subset of leavesAi (descending from a common node at
level i), decomposing theVi into two components: the average value component
and its complement.

Definition 4.2. Let the Radon transformRi : L(X)→Vi be defined by

Ri( f )(x) =
1

|Ai(x)| ∑
xn∈Ai

f (xn), (4.1)

whereAi(x) is the subset of leaves that containsx and descends from some common
node at leveli.

Since the Radon transform gives rise to functions inVi , we can apply Theorem
4.2 to obtain a transformation that filtersL(X) (starting fromVn down toV0). This
is the general multiresolution decomposition ofL(X) for any wreath product group
G.



24 Image Decomposition using Wreath Product Groups

4.2.2 Recursive Algorithm

Theorem 4.2 gives us a decomposition ofL(X), but in a recursive manner. In other
words, we decomposeL(X) = Vn by starting withVn and working down toV0:

L(X) = Vn = Vn−1⊕Wn

= (Vn−2⊕Wn−1)⊕Wn

= Vn−3⊕Wn−2⊕Wn−1⊕Wn

= · · ·

= V0⊕

(
n⊕

i=1

Wi

)
.

Thus, we can apply the Radon transform recursively at each level fromn to 0,
successively averaging pixel values and finding the complement to those values.

Now, let us construct decompositions for a specific group. Consider the case
with a quad treeT(4,4,...,4) andG the iterated wreath product of cyclic groups on
four elements, i.e.,

G = Z4 o Z4 o · · · o Z4.

The invariant transform forZ4 is the classical Discrete Fourier Transform (DFT)
on four points. Note that Theorem 4.2 only gave a constant-value filtration of
the image, and the DFT actually gives rise to three more coefficients. In other
words, Theorem 4.2 enables us to breakZ4 down into a one-dimensional constant-
value subspace and a three-dimensional space describing variance from the average
value. By using the DFT, we have made a specific choice to decompose the three-
dimensional space in a certain way. In fact, the DFT breaksVi into four one-
dimensional spaces, where one of the projections is a average-value filtration and
the rest describe differences of the data from this average with respect to the group
action. ThusL(X) becomes

L(X) = V0⊕

(
n⊕

i=1

Wi1⊕Wi2⊕Wi3

)
,

where each subspace is one-dimensional and invariant under the action ofG. Here,
Wi j corresponds to thej th DFT coefficient performed on the setsAi . Thus we have
a recursive algorithm:

Algorithm 4.3. (1) Divide the image into quadrants.

(2) Recursively divide quadrants into sub-quadrants, until we cannot divide the
image any further into quadrants that contain more than one element.
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(3) Perform the DFT on all 2× 2 blocks of pixel values by placing them in a
4×1 vector, where the values are ordered according to our ordering scheme.

(4) Recursively perform DFTs on the first coefficients of these blocks (the aver-
age values) until we cannot gather coefficients any longer.

Example 4.2.To visually illustrate this algorithm, consider the 4×4 matrix earlier
from Section 4.1 that was divided into four blocks:

a b c d
e f g h
i j k l
m n o p

 ,

A =
(

a b
e f

)
, B =

(
c d
g h

)
, C =

(
k l
o p

)
, D =

(
i j
m n

)
.

We cannot divide the matrix up any further. Now we can perform the DFT sepa-
rately on each of these blocks:

DFT4(A) = DFT4


a
b
f
e

=


α1

α2

α3

α4

 DFT4(B) = DFT4


c
d
h
g

=


β1

β2

β3

β4



DFT4(C) = DFT4


k
l
p
o

=


γ1

γ2

γ3

γ4

 DFT4(D) = DFT4


i
j
n
m

=


δ1

δ2

δ3

δ4

 .

Now, we store the DFT coefficients in a new matrix, storing all of the first coeffi-
cients in the first quadrant, the second coefficients in the second quadrant, etc.:

α1 β1 α2 β2

δ1 γ1 δ2 γ2

α4 β4 α3 β3

δ4 γ4 δ3 γ3

 .

We recursively perform the DFT on the first coefficients of the four DFTs; i.e., we
perform the DFT on the first quadrant of this matrix:

DFT4


α1

β1

γ1

δ1

=


ε1

ε2

ε3

ε4

 .
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Now we store this result in place of the first coefficients, so our decomposition
matrix becomes: 

ε1 ε2

ε4 ε3

β1 β2

β4 β3

δ1 δ2

δ4 δ3

γ1 γ2

γ4 γ3

 .

There is only one average value coefficient left(ε1), and thus we are done.

4.2.3 Iterative Algorithm

Although we can perform the recursive algorithm, we can speed up the perfor-
mance of the decomposition by using an iterative method. This method relies on
a quick way of calculating the ordering of the pixels in the image. Recall from
Section 4.1 that an ordering of the pixel values is

1 2 5 6
4 3 8 7
13 14 9 10
16 15 12 11

 .

Simply “marching” through the pixel values and performing DFTs along the way
is faster than the recursive method. This is because the recursive method allocates
memory for each recursive call and has to divide the image to find the relevant
subsets{Ai} at each level.

A quick march is obtained as follows. Suppose we would like to scan a 2n×2n

image. We start on the upper-left-most pixel and attach ordering numbers to the
pixel, starting from 1. In addition to this counter, denoted byi, we have three more
variables: the row and column position of the pixel(r,c), and the current levell of
the pixel (we begin at the 0th level).

Procedure 4.4. Initialize i = 0, (r,c) = (1,1), andl = 0. At each pixel, perform a
test on the pixel numberi:

(1) Find the largest non-negative integerk such that 4k dividesi.

(2) If k= l , we havecompleteda level and must move on to the next level. Thus,
reset(r,c) = (1,2l + 1), and incrementl by 1. However, ifk = n, then we
have reached all pixels in the image and we are done.

(3) If k 6= l , computem=
(
i/4k

)
mod 4. Here,k represents alocal level, and

m represents the relative position within that local level. First, we reset our
row and column positions back to the first pixel in our local level; this can
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be accomplished by decrementingr by 2k−1 and leavingc fixed. Now, we
change the row and column positions based on the value ofm, which has
three possible values:

(a) If m= 1, then incrementc by 2k.

(b) If m= 2, then incrementr by 2k.

(c) If m= 3, then decrementc by 2k.

Notice that the case wherem= 4 cannot occur, sincek was defined to be the
largestinteger such that 4k dividesi.

This procedure gives the row and column position in the image given the index
in the quad tree scan, and makes it possible to march through the image quickly.
Then, to recursively break down the first coefficients of the computed DFTs, the
algorithm runs again on the first coefficients of the spectrum above. We repeat this
process until we are left with one number: the average value of the entire image.

4.3 Decompositions with Other Iterated Wreath Products

For the cyclic case, our spectral decomposition involved the recursive use of the
DFT. However, the DFT can also be thought of as a change of basis particular to
cyclic groups, as in Equation 2.4. Carrying this idea further, we can investigate
whether other choices of bases give rise to different decompositions.

Instead of wreath products ofZ4, consider wreath products of the groupZ2×Z2.
The invariant decomposition in this case corresponds exactly with the Haar wavelet
transform. From the DFT matrix obtained in Section 2.2, we can find the DFT
matrix forZ2:

DFT2 =
1
2

(
1 1

1 −1

)
.

To find the DFT-like transformation forZ2×Z2, we may simply take the Kronecker
product of the DFT matrices from each direct summand. Thus, we arrive at the
Haar transform:

DFT2×2 =
1
4

[(
1 1

1 −1

)
⊗

(
1 1

1 −1

)]
=

1
4


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .
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To apply this transformation, instead of the DFT matrix DFT4, we can substitute
DFT2×2. Unlike DFT4, the Haar transform does not yield complex coefficients, so
the decomposition itself is very different.

We can also derive a DFT-like matrix for other iterated wreath product groups
as well. We use the term “DFT-like matrix” to refer to the group invariant trans-
formations in this section, because we obtain them considering the permutation
representations of the groups. For the remainder of this section, we will derive the
DFT-like transformation for all subgroups ofS4 that act transitively on four points:
the dihedral groupD8, the alternating groupA4, and finally the symmetric group
S4.

4.3.1 The Dihedral Group

Using the method outlined in Section 2.2, we can use a similar approach to derive
the DFT-like matrix forD8. First, we need to define howD8 acts on a block of four
data points. RecallD8 has eight elements, wherea represents a cyclic shift andb
represents a flip:

D8 = {1,a,a2,a3,b,ab,a2b,a3b}.

Consider the representation ofD8 acting on a 2×2 matrix by way of permutation,
where

a·

(
1 2

4 3

)
=

(
4 1

3 2

)
, b·

(
1 2

4 3

)
=

(
4 3

1 2

)
.

Then, we can realize each element ofD8 as a permutation matrix; for example

a =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 , b =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 .

Denote this permutation representation byρ. We need to first find the irreducible
representations withinρ. This can be accomplished by finding the characters for
each conjugacy class inD8 and computing the inner product of this character with
the irreducible characters ofD8. This way we are able to determine which irre-
ducible representations are contained inρ.

Recall from Section 2.1 that the character is simply the trace of a matrix. A
permutation matrix has a 1 in the diagonal if an element is fixed, and 0 otherwise.
Therefore, we can calculate the character table of our representation by counting
the number of elements fixed as a result of applying the permutation. Thus, we
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gi 1 (a,a3) a2 (b,a2b) (ab,a3b)

|CG(gi)| 8 4 8 4 4

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 1 −1 1 −1

χ4 1 1 −1 −1 1

χ5 2 −2 0 0 0

Table 4.1: Irreducible Characters forD8

obtain the following character table:

Conjugacy Classes 1(a,a3) a2 (b,a2b) (ab,a3b)

ρ 4 0 0 0 2

Now, we compute the inner product ofρ andχi , according to Equation 2.1 and
referring to Table 4.1 obtained from [11]:

〈θ ,ψ〉=
l

∑
i=1

χ(gi)ψ(gi)
|CG(gi)|

,

〈χ1,ρ〉=
4(1)

8
+

0(1)
4

+
0(1)

8
+

0(1)
4

+
2(1)

4
= 1,

〈χ2,ρ〉=
4(1)

8
− 2(1)

4
= 0,

〈χ3,ρ〉= 0,

〈χ4,ρ〉= 1,

〈χ5,ρ〉= 1.

Thusχ1,χ4,χ5 are the irreducible representations inρ, each with multiplicity 1.
Now we find the projection matrices for these irreducible representations by com-
puting their corresponding idempotents, using the formula from Section 2.1:

ei =
χi(1)
|G| ∑

g∈G

χi(g−1)g,
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e1 =
1
8

(
∑
g∈G

g

)
=

1
4


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 ,

e4 =
1
8

(
∑
g∈G

χ4(g−1)g

)

=
1
8

(
1(1)−1(a)+1(a2)−1(a3)−1(b)+1(ab)−1(a2b)+1(a3b)

)

=
1
4


1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

 ,

e5 =
1
2


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

 .

From this, we can pick out the firstχi(1) rows from each idempotent (since the
dimension of the projection ofχi is χi(1)), and we obtain the DFT-like matrix for
D8:

1
4


1 1 1 1

1 −1 1 −1

2 0 −2 0

0 2 0 −2

 .

4.3.2 The Alternating and Symmetric Groups

We follow exactly the same procedure forA4. A4 is the group of even transpositions
and has exactly 12 elements:

A4 = {1,(12)(34),(13)(24),(14)(23),
(123),(124),(134),(234),
(132),(142),(143),(243)}.
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gi 1 (12)(34) (123) (132)

|CG(gi)| 12 4 3 3

χ1 1 1 1 1

χ2 1 1 ω ω2

χ3 1 1 ω2 ω

χ4 3 −1 0 0

Table 4.2: Irreducible Characters forA4

The action here is more explicit than the case forD8: for bothA4 andS4, we directly
apply the permutation to the four data points. For example,

(12)(34) ·

(
1 2

4 3

)
=

(
2 1

3 4

)
, (123) ·

(
1 2

4 3

)
=

(
2 3

4 1

)
.

Again, we can realize each element ofA4 as a permutation matrix, for instance

(12)(34) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , (123) =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 .

Now we calculate the character table of the permutation representation ofA4

by finding the number of elements fixed:

gi 1 (12)(34) (123) (132)

ρ 4 0 1 1

Computing inner products using Table 4.2 (whereω is a primitive 3rd root of
unity), we find thatχ1 andχ4 are inρ, and thusρ projects the four data points into
a 1-dimensional subspace and a 3-dimensional subspace, where the idempotents
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gi 1 (12) (123) (12)(34) (1234)

|CG(gi)| 24 4 3 8 4

χ1 1 1 1 1 1

χ2 1 −1 1 1 −1

χ3 2 0 −1 2 0

χ4 3 1 0 −1 −1

χ5 3 −1 0 −1 1

Table 4.3: Irreducible Characters forS4

are:

e1 =
1
4

(
∑
g∈G

g

)
=

1
4


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 ,

e4 =
χ4(1)

12

(
∑
g∈G

χ4(g−1)g

)
=

1
4


3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

 .

Therefore, a DFT-like matrix is:

1
4


1 1 1 1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

 .

The case for the symmetric groupS4 is similar. We exhibit the character ta-
bles, the idempotents, and the resulting DFT matrix. The character table for the
permutation representation is:

gi 1 (12) (123) (12)(34) (1234)

ρ 4 2 1 0 0

We see from Table 4.3 thatρ = χ1 + χ4. The idempotents for the irreducible
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representationsχ1 andχ4 are:

e1 =
1
24

(
∑
g∈G

g

)
=

1
4


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 ,

e4 =
χ4(1)

24

(
∑
g∈G

χ4(g−1)g

)
=

1
4


3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

 .

And the resulting DFT-like matrix is exactly the same as the alternating group:

1
4


1 1 1 1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

 .

4.4 Examples

In Figure 4.3, we ran the decomposition algorithm on a black and white photo. In
addition to the decomposition, we constructed an inverse decomposition algorithm
in order to recover the original information from the spectrum. The maximum error
(of a point-by-point pixel value difference) in this case was the negligible quantity
6.6613×10−16. The colors of the spectrum amplitude and phase were inverted for
clarity (white means low magnitude, darker means higher magnitude).

Notice that in the spectrum, the image seems to be repeated four times, and
the first quadrant appears to be subdivided more and more. This is due to our
method of storing the spectrum. We store the spectrum by storing all the first
coefficients resulting from the DFT in the first quadrant, the second coefficients in
the second quadrant, and so forth. Since we recursively compute decompositions
of the first coefficients, the first quadrant is subdivided into subsequent recursive
decompositions.

We illustrate the idea of progressive inverse decomposition in Figure 4.4 with
a color photo. In this figure, we only use a portion of the spectrum to reconstruct
the image. The first image (top left) represents the reconstruction with only four
pixels in the spectrum (the top left four). Subsequent images use higher “levels” of
pixels in the spectrum, i.e., the top left 16,64,256,1024, . . . pixels. Each of these
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levels correspond to traversing the quad tree spectrum only up to a certain depth.
Notice here that the quad-tree scan can be employed to give a progressive stream
of reconstructions, capturing finer and finer details as more and more information
is available.

Finally, we can compare the different transformations of the same image to
build an intuition of what these transformations do. We ran the algorithm on three
images: geometry, sinsin, and tartan, shown in Figure 4.5, Figure 4.6, and Figure
4.7. These images were obtained from MATLAB’s Wavelet Toolbox, and they are
interesting because they contain regular patterns and symmetries.

Overall, the Haar transform and the Fourier transform yield similar results.
Notice in the dihedral, alternating, and symmetric transforms that some of the pro-
jections are two or three dimensional. In the dihedral case, the third and fourth
quadrants comprise a two dimensional projection, and in the alternating/symmetric
case the second, third, and fourth quadrants represent a three dimensional projec-
tion. The darker parts of the spectra represent places where the variance component
(the orthogonal complement to the average) is small. This difference component is
based on how the image differs from the down-sampled average image, depending
on the particular symmetry.

Examining the geometry example more closely, notice that around the far edges
and corners of the original image, the pixel values are nearly the same. This is re-
flected in the Haar, Fourier, and dihedral spectrum, where there is a quadrant that
has darker parts around the edges of the quadrant. In addition, the Haar transform
has an “H” shaped quadrant and an “I” shaped quadrant. This is reminiscent of
the vertical and horizontal flips ofZ2×Z2, and since the original image is sym-
metric horizontally and vertically down the midpoint, the difference component is
small in those areas where there are greater amounts of symmetry. For the Fourier
transform, there seem to be lower (darker) values where there is rotational symme-
try (cyclic shifts); and for the dihedral transform, there are dark diagonals going
across two of the quadrants, probably representing shift-and-flip symmetry. The
alternating transform does not seem to have as many darker parts, because we are
decomposing with respect to a greater number of symmetries, which is harder to
satisfy. Finally, the symmetric transform is exactly the same as the alternating
transform, since the matrix we derived was exactly the same. The sinsin example
seems to yield similar results in comparison to the geometry example, in terms of
which symmetries are encoded as darker parts of the spectrum. The Fourier phase
of the sinsin example is quite strange, because it appears almost three-dimensional.

Comparing these different transforms, we see that some transforms are bet-
ter than others in encapsulating more information using less space, based upon
the particular symmetries that the group presents. This is especially important
when compressing data using these transforms; the darker the image, the better
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Figure 4.5: Decompositions of the Geometry Image
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Figure 4.6: Decompositions of the Sinsin Image
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Figure 4.7: Decompositions of the Tartan Image
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the compression rate. We will explore compression and other applications of these
decompositions in the next chapter.



Chapter 5

Image Processing with Wreath
Product Groups

In this chapter we investigate applications of the wreath product decomposition
from the last chapter. We will consider three main applications: compression,
convolution, and de-noising. By discarding small values in the image spectrum, we
can achieve image compression. In addition, we can construct filters that change
the image spectrum in certain ways in order to achieve certain affects. A high-pass
filter, for example, would be able to filter out edges in the data. These and more
approaches are described with examples in this chapter.

5.1 Compression

5.1.1 Near-Zero Thresholding

In the spectrum of Figure 4.3, the information is very sparse, since most of the
spectrum is white (meaning that the Fourier coefficients are zero at those locations).
We can use this to our advantage to achieve compression. For a given spectrum, we
can discard small values by setting them equal to zero. The results of this method
are in Figure 5.1. Notice that this image results in a high level of compression,
due to the sparse amount of information in the original image. The maximum and
minimum error (denoted by∆ f ) increases as more information is discarded in the
spectrum, as expected. Also, the average error of the image seems to increase as
well.

Now compare this to Figure 5.2. We see here that parts of the image with finer
detail are left relatively untouched, while sections with less detail are adversely
affected. This is because the places with fine detail have larger coefficients in the



42 Image Processing with Wreath Product Groups

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

(a) Amplitude> 0.0001 (b) Amplitude> 0.03
90.5273% Compressed 93.1854% Compressed

−4.4409×10−16≤ ∆ f ≤ 6.6613×10−16 −0.078163≤ ∆ f ≤ 0.086008
1.4494×10−17 Average∆ f −0.00019505 Average∆ f

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

(c) Amplitude> 0.06 (d) Amplitude> 0.09
93.4128% Compressed 94.5633% Compressed

−0.17512≤ ∆ f ≤ 0.28371 −0.28052≤ ∆ f ≤ 0.56501
−0.0017895 Average∆ f 0.024224 Average∆ f
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spectrum (due to high local variance of the data), and subsequently the coefficients
are not set to zero. However, we have discarded relatively small coefficients, caus-
ing errors that propagate through each level-of-detail subset in the spectrum. The
first key difference is that less information is compressed. This is because the in-
formation in the image varies quite rapidly for adjoining pixels. Thus, the average
amplitude of the spectrum is much higher than in Figure 5.1. There is another
strange difference between the two experiments, and that is the average error. The
average error does not get very high, even when we throw away amplitudes that
are less than or equal to 0.09. In addition, the average error and the compression
rate seems to be correlated, because the overall brightness of the picture increases
as image is more compressed. However, this seems to be image-dependent, since
in Figure 5.1 the average error is small with≈ 90% compression.

5.1.2 Sparsity-Norm Balance Thresholding

With the near-zero thresholding method, it is hard to determine exactly where the
optimal threshold is. If possible, we would like to construct an algorithm that
guesses an appropriate threshold for an image. One such method is the sparsity-
norm balancing method. Under this heuristic, we test successive thresholds and
calculate the norm of the spectrum after each threshold. Thep-norm of a vectorx
is given by ([14]):

|x|p =

(
∑

i

|xi |p
)1/p

.

From this, we can define thep-norm of a matrixA ([14]):

‖A‖p = max
x s.t. |x|p=1

‖Ax‖p .

It turns out that computing the matrix norm is quite difficult for values ofp > 1.
We instead choose a simpler method, modeled after the vector norm:

‖A‖=

(
∑

i
∑

j

∣∣ai j
∣∣2)1/2

.

Our goal in calculating the norm of the spectrum is to balance thresholding
with loss in image quality. The metric we use to measure loss of image quality is
the norm, which actually calculates how much total “energy” we lose after com-
pression. Now, if we were to use the matrixp-norm, we would use the 2-norm
‖A‖2, which is the square root of the maximum eigenvalue ofAHA whereAH is the
conjugate transpose. However, for large matrices, the norm is difficult to compute.
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Since we just want to calculate how much total energy is lost in the image, the
simpler heuristic works well and is much easier to compute To find the right bal-
ance, we calculated the norm of the Fourier spectrum of the image for uniformly
distributed threshold values between 0 and 1. For each threshold, we calculated the
ratio

norm of the compressed spectrum
norm of the original spectrum

.

When the threshold is 0, the percent number of zeros should be close to 0%, while
the percent norm is 100%. However, when the threshold is at 1, we would expect
the percent zeros to be 100%, while the percent norm is 0%. Thus, the curves of
the two quantities intersect at some point, and we set the global threshold to be
at this intersection. This method, borrowed from MATLAB’s Wavelet Toolbox, is
calledbalanced sparsity-norm.

In addition, we recognize that a loss of coefficients at the lower levels of the de-
composition (the smaller quadrants in the upper left corner) makes a much greater
impact on the quality of the image than the coefficients at higher levels of the
decomposition. A solution to this problem is to only decompose the image to a
certain level, instead of decomposing the image down to the last pixel. In fact,
depending on the recursive depth of the image spectrum, one obtains drastically
different compression rates. In the previous examples of near-zero thresholding,
we decomposed the image up to the full recursive depth, but here we decompose
the image only up to the third recursive level.

We present examples of the described method in Figure 5.3 and Figure 5.4. We
performed the decomposition (only up to level 3) and ran the sparsity-norm balance
routine. In most cases, the threshold seemed to be too high in terms of preserving
image quality. To decrease the threshold in proportion to the calculated threshold,
for fixed c and threshold valuet we calculated thesquare-root balance sparsity-
norm threshold,

√
(t/c)/c (also from MATLAB’s Wavelet Toolbox). In our case,

c = 128. In both cases, the square-root balance proves to be the better trade off
between image quality and compression rate. Although the balance threshold gives
us phenomenal compression rates (better than 1:20 compression), the image quality
is sacrificed.

5.2 Convolution

Let G be a finite group acting on a setX = {x0,x1, . . . ,xn−1}. The cyclic convolu-
tion of signalsf andh (onX) is defined by ([18]):

( f ∗h)(xk) =
n−1

∑
i=0

f (xi)h(xk−i) =
n−1

∑
i=0

f (σ ix0)h(σ−ixk),
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whereσ cyclically permutesX, and the underlying groupG is the cyclic groupZn

generated byσ . We can generalize this formula for an arbitrary groupG acting on
X. Again, for signalsf andh defined onX, their group-based convolution is ([18]):

( f ∗h)(xk) =
|X|
|G| ∑

β∈G

f (βx0)h(β−1xk).

Mirchandani et. al. ([18]) develop a convolution for iterated wreath product
cyclic groups based on cyclic convolution. They describe both convolution in the
image spectrum and in the signal space as well. We will state their important
results: Theorem 2.5 and Theorem 2.6 in [18].

Theorem 5.1. For signals f and h defined on the leaves of an SHRT, let Q( f ) and
Q(h) denote their spectra, respectively. Then the convolution of these signals may
be computed in the spectral domain by multiplying each entry in each nested grid
irreducible sub-matrix of Q( f ) by the upper left-hand entry of the corresponding
block matrix of Q(h).

To explain this in more familiar terms, recall example Example 4.2 where we
demonstrated how to explicitly construct the image spectrum. The matrix we ob-
tained in that case was: 

ε1 ε2

ε4 ε3

β1 β2

β4 β3

δ1 δ2

δ4 δ3

γ1 γ2

γ4 γ3

 .

The nested grid irreducible submatrices of this spectrum refer to each and every
dotted square block in the spectrum. Now suppose we have another spectrum:

e1 e2

e4 e3

b1 b2

b4 b3

d1 d2

d4 d3

c1 c2

c4 c3

 .

Suppose that the first spectrum isQ( f ) and the secondQ(h). Then the convolution
of these two signals is obtained by simply scaling each dotted block inQ( f ) with
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the upper left-hand entry of the corresponding dotted block inQ(h):
ε1 ε2

ε4 ε3

β1 β2

β4 β3

δ1 δ2

δ4 δ3

γ1 γ2

γ4 γ3

∗


e1 e2

e4 e3

b1 b2

b4 b3

d1 d2

d4 d3

c1 c2

c4 c3



=


e1ε1 e1ε2

e1ε4 e1ε3

b1β1 b1β2

b1β4 b1β3

d1δ1 d1δ2

d1δ4 d1δ3

c1γ1 c1γ2

c1γ4 c1γ3

 .

Intuitively, this multiplication seems to be a sort of selective or graduated thresh-
olding, since we are scaling each distinct block separately. We now proceed to
describe convolution in the signal space itself, for the case of a quad-tree of height
n and for the iterated wreath product cyclic groupZ4 o Z4 o · · · o Z4 with the follow-
ing theorem ([18]):

Theorem 5.2. Let X = {x0,x1, . . . ,x4n−1} be the set of leaves of the quad tree
Q(n) = T(4,4,...,4) acted upon by the group G= Z4 o Z4 o · · · o Z4. Let G0 be the
subgroup of G fixing the leaf x0. For any index i, let hi ∈ L(X) be the unit impulse
delta function supported at xi ; i.e. hi(x j) = δi j for 0≤ i ≤ 4n−1. Define f0 to be
h0. Then the following hold:

(1) For any index i> 0, the convolution f0∗hi is the function defined by

( f0∗hi)(xk) =


0 if xi and xk do not lie in a common subtree

not containing x0
4s−n where the largest subtree containing xi and xk

but not x0 has root on level s

where f0∗h0 = f0.

(2) Letα j be an element of G such thatα jx0 = x j . Then

( fi ∗hi)(xk) =
4n−1

∑
j=0

f (x j)α j( f0∗hi)(xk) =
4n−1

∑
j=0

f (x j)( f0∗hi)(α j
−1xk).

(3) The linearity of convolution in the second variable reduces the computation
of f ∗h for an arbitrary h to linear combinations of convolutions of the types
in parts (1) and (2).
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To provide a rough sketch of the proof of this theorem, part (1) of this theorem
comes from the group-based convolution formula defined at the beginning of this
section, and Parts (2) and (3) follow as a result of some other properties of group-
based convolution. Part (2) comes mainly from the fact thatα( f ∗h) = (α f )∗h for
all f ,h∈ L(X) and allα ∈G, then showing thathi(α j

−1xk) = α j( f0∗hi)(xk). Part
(3) results from the property that convolution inL(X) is bilinear and associative.
For more details of the proof of this and the previous theorem, consult [18].

To interpret this convolution, we would prefer to think of it as scaling each
quadrant in the decomposition separately. Now, the question is, how do we apply
convolution for image processing? We present two applications of convolution:
edge detection and de-noising.

5.2.1 Edge Detection and De-noising

The idea behind detecting edges in the image is to filter out all the details in the im-
age except for where the pixel values sharply change. This is equivalent to using a
high-pass filter in order to pick out sudden changes. To accomplish this, we selec-
tively filled in the spectrum with zeros (represented by black quadrants), including
the upper left-most corner, which contains a small, average-value filtration version
of the original image.

We obtained two more test images from MATLAB’s Wavelet Toolbox: a pic-
ture of a woman and a noisy closeup. Figure 5.5 is an example where some quad-
rants were filled with zeros. The edges in the image are picked up remarkably well
in the filtered image. In Figure 5.6, the exact same filtration was performed in the
mountain lake image. However, this image was a color image with all three RGB
channels, and as a result of filtering out the upper left-most corner, too much pixel
intensity was lost. To make up for that loss, a constant value of 1 was inserted in
the upper left-most corner. Again, the filtered image seems to have picked up the
edges quite well.

To de-noise an image, instead of trying to retain the highest details as we have
done with edge detection, we remove the highest details in order to smooth the im-
age out. In Figure 5.7 and Figure 5.8, we removed two of the three detail quadrants
at the highest recursive level (largest quadrants).

5.3 Further applications

In addition to edge detection and de-noising, a variety of other image processing
techniques can be employed with our decomposition. Mirchandani et. al. ([18])
describe a method for using the image spectrum to determine image similarity. In
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Figure 5.5: Edge Detection on the Woman Image
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Figure 5.6: Edge Detection on the Mountain Lake Image
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Figure 5.7: De-noising the Noisy Woman Image
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Figure 5.8: Spectra of the Noisy Woman Image



Further applications 55

their approach, they compare two image spectra using standard linear correlation,
which seems to exhibit significantly higher correlation after a low-pass or high-pass
transformation of the spectrum. An application of determining image similarity is
pattern matching in images. Given an input image, and a target image that specifies
a particular shape or object, the goal of pattern matching is to find where the target
is located in the input image. A reliable method to determine similarity between
images would facilitate pattern matching.

Other applications in image processing include sharpening - is it possible to
make an image less blurry using a transformation of the image decomposition?
This problem falls under the more general category of image restoration, along with
many other problems such as unsharp-masking (accentuating edges in the image),
noise suppression, and distortion suppression. These applications and more are
described in [26].





Chapter 6

Conclusion and Future Work

In this paper, we have described a general representation theoretical framework
surrounding iterated wreath product groups, resulting in decompositions of digital
images. We first presented tools from representation theory in Chapter 2, followed
by a derivation of the classical DFT. Next, we described the wreath products and
their structure in Chapter 3, which provided the background for Chapter 4. We
then described a multiresolution filtration that provided us with a wreath product
group invariant decomposition. After presenting examples of image decomposi-
tions with respect to various iterated wreath products, in Chapter 5 we applied our
decomposition to compression, edge detection, and de-noising.

6.1 Future Work

6.1.1 Image Decomposition

In Chapter 4, we described the quad-tree scanning method and derived the spectral
decomposition of a function on the leaves of a quad tree, based on the multireso-
lution filtering of the function space. We have considered the case for a quad-tree,
but it would be worthwhile to investigate decompositions for other SHRTs and their
automorphism groups. Furthermore, our decomposition is with respect to iterated
wreath products of the same group; what happens for decompositions of iterated
wreath products of different automorphism groups for each level of the SHRT?
In addition, how could we better explain the role of each symmetry group in the
decomposition? Further research in this field may result in a catalog of decompo-
sitions of functions defined on SHRTs.

In addition, it would be interesting to investigate decompositions with respect
to finite field-valued functions instead of complex-valued functions. In this case, it
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may not be necessarily true that the characteristic of the field does not divide the
order of the group, and thus new representation theoretical tools would be needed.

Finally, as a natural extension to the decomposition, we would like to see our
methods applied to 3D volumetric data. Is it worthwhile to construct an analogous
oct-treescanning method and decompose it with respect to this oct-tree? What
kind of information would the volume spectrum encapsulate in this case?

6.1.2 Image Processing

The thresholding methods described in Section 5.1 use the sparsity-norm balanc-
ing method to determine an appropriate threshold. In JPEG compression, the im-
age is transformed to YUV space, which separates the image into luminance and
chrominance components. The human eye is apparently less sensitive to changes
in chrominance than to changes in luminance values. We could run the same com-
pression algorithm, but instead of running it on an RGB image, we could run it on
the chrominance components of the YUV version of the image. This might achieve
better compression results in terms of perceived image quality.

Lastly, a promising direction of research would be to determine which wavelet-
based image processing methods could be effectively applied to our decomposition
scheme. So far, the three application areas of compression, edge detection, and de-
noising seem comparable with analogous wavelet-based methods. What are the
comparative advantages of wavelet methods versus wreath product methods?

6.2 In Closing

Researchers are making many connections between practical algorithms and math-
ematical theory. In particular, I have attempted to connect ideas from algebra,
engineering, and computer science in this paper, by linking representation theory,
wavelets, and image processing. I hope that my paper has inspired further interest
in this fascinating area of mathematics.



Appendix A

Manual for my MATLAB
Programs

I developed the image processing software entirely in MATLAB. The scripts are
setup so that some global variables (variables in the workspace) are used among
many scripts, so it is imperative to set these global variables up before attempting
other image processing operations.

In order to initially read an image, first, the image must be located in the current
directory. Next, the scriptrun.m should be modified so that theimagefile
variable is set to the name of the desired image. Next, you can modify a dazzling
number of different global options to suit your needs, and the purpose of each
option is described as comments in the code.

When you are ready to begin processing, typerun in the command win-
dow, which will execute therun.m script. This will automatically generate the
spectrum and run the inverse decomposition routine, displaying everything con-
cisely in one window. After running this command, you are able to run any other
image processing script. These scripts arecompression.m , isocurve.m ,
multiresolution.m , andreplacement.m .
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Programs

B.1 autocrop.m

Routine for automatically cropping an image so that its dimensions are powers of
2.

1 function cropped = autocrop( image )
2

3 % autocrop automatically crops or pads and image so that it’s suitable

4 % for processing. It rounds the smaller dimension to the

5 % nearest power of 2, which compromises between minimizing

6 % the amount of whitespace and preserving features in the

7 % original image. The algorithm also crops pictures a fourth

8 % of the way down in height, because this is where people’s

9 % faces usually end up.

10 %

11 % Usage: autocrop(matrix) where matrix represents a loaded image. The

12 % program can accomodate up to four dimensions.

13 %

14

15 sizearray = size ( image );
16 height = sizearray(1);
17 width = sizearray(2);
18 otherdims = sizearray(3: end );
19

20 new_height = height;
21 new_width = width;
22 log_height = log2 (height);
23 log_width = log2 (width);
24

25 % test "power of 2"-ness

26 powertest = [log_height == floor (log_height), log_width == floor (log_width)];
27

28 % in case we need to reset both width and height,

29 % do some calculations based on the larger dimension

30 suggested_pwr = ceil ( log2 (width));
31 if (height < width)
32 suggested_pwr = round ( log2 (height));
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33 end
34 if (suggested_pwr > 10)
35 suggested_pwr = 10;
36 end
37

38 if height ˜= width
39 disp ’Warning: The number of rows do not match the number of columns.’;
40

41 % if both are powers of 2, then set the new dimensions to the higher value

42 if (powertest(1) && powertest(2))
43 if (height >= width)
44 new_width = height;
45 else
46 new_height = width;
47 end
48 elseif powertest(1)
49 new_width = height;
50 elseif powertest(2)
51 new_height = width;
52 else
53 % just set it to 256 times 256

54 new_height = 2ˆsuggested_pwr;
55 new_width = 2ˆsuggested_pwr;
56 end
57 else
58 % if the rows and columns match, then test only one

59 if ˜ powertest(1)
60 % just set it

61 new_height = 2ˆsuggested_pwr;
62 new_width = 2ˆsuggested_pwr;
63 end
64 end
65

66

67 changetest = [new_height ˜= height, new_width ˜= width];
68

69 if (changetest(1) || changetest(2))
70 disp ([’New dimesions are: ’ num2str (new_height) ’ by ’ num2str (new_width) ’ by ’

num2str (otherdims)]);
71 end
72

73 % if we need to change width

74 if changetest(2)
75 % test if we need to pad with ones or eliminate some lines

76 if width < new_width
77 % number of lines to pad

78 nlines = new_width - width;
79 % distribute both left and right

80 leftpad = floor (nlines / 2);
81 rightpad = nlines - leftpad;
82

83 % assume the height is constant and pad it

84 image = [ones([height leftpad otherdims]), image , ones([height rightpad otherdims
])];

85 width = new_width;
86 else
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87 % let’s try to crop either side of it

88 % number of lines to crop

89 nlines = width - new_width;
90 % distribute both left and right

91 leftcrop = floor (nlines / 2) + 1;
92 rightcrop = leftcrop + new_width - 1;
93

94 % assume the height is constant and pad it

95 image = image (:, leftcrop:rightcrop, :, :);
96 width = new_width;
97 end
98 end
99

100 % if we need to change height (copied directly from the width case with minor changes)

101 if changetest(1)
102 % test if we need to pad with ones or eliminate some lines

103 if height < new_height
104 % number of lines to pad

105 nlines = new_height - height;
106 % distribute both top and bottom

107 toppad = floor (nlines / 2);
108 bottompad = nlines - toppad;
109

110 % assume the width is constant and pad it

111 image = [ones([toppad width otherdims]); image ; ones([bottompad width otherdims])
];

112 height = new_height;
113 else
114 % let’s try to crop either side of it

115 % number of lines to crop

116 nlines = height - new_height;
117 % distribute both top and bottom

118 % ... let’s skew it up a bit, because people’s faces tend to be

119 % ... near the top

120 topcrop = floor (nlines / 4);
121 bottomcrop = topcrop + new_height - 1;
122

123 % assume the width is constant and pad it

124 image = image (topcrop:bottomcrop, :, :, :);
125 height = new_height;
126 end
127 end
128

129 % assign the result

130 cropped = image ;

B.2 batchread.m

Script for reading in a file from the variableimageloc .

1 % % batchread.m reads a file using imread and saves

2 original = imread(imageloc);
3

4 original = double(original)/255;
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5

6 % autocrop the image

7 original = autocrop(original);

B.3 batchrun.m

Script for reading and automatically generating image decompositions in ppm for-
mat.

1 % % batchrun.m - calculation and display script in batch mode

2 batchread;
3

4 % global options

5 spectSelected = ’fourier’; % choose the basis

6 decompLevel = 2; % maximum spectral decomposition level

7 [basis, usesImaginary] = getBasis(spectSelected); % get the basis

8 invertMagnitude = false; % invert magnitude colors

9 invertPhase = false; % invert phase colors

10 brightness = 0.3; % defines the brightness of the colormap

11 % myColormap = brighten(gray, brightness); % assign the colormap with a certain brightness

12 myColormap = pink ; % assign the colormap with a certain brightness

13

14 % compression options

15 compressionRestoreHiLevel = true; % restores the avg pixel values at the highest level

16 % ... (smallest remaining upper left quadrant)

17 % ... after the compression step.

18 selectedThreshold = ’balance’; %

19 % selectedThreshold = ’sqrtBalance’; % thresholding method selection

20 % selectedThreshold = ’nearZero’; %

21

22

23 % Now, run through the decomposition and inverse decomposition

24 % display the original

25 figure ; close
26 imagesc (original); axis square; colormap gray ;
27 print ( gcf , ’-dppm’, [imageloc ’-orig.ppm’]);
28

29 % do the decomposition

30 spect = quad_spectrum2(original, decompLevel, spectSelected);
31

32 % display the decomposition

33 figure ; close
34 if (invertMagnitude) imagesc (1-normalize(spect));
35 else imagesc (normalize(spect)); end
36 axis square; colormap gray ;
37 print ( gcf , ’-dppm’, [imageloc ’-amp.ppm’]);
38

39 % display phase information if we have imaginary numbers

40 figure ; close
41 if (usesImaginary)
42 if (invertPhase) imagesc (1-normalize( angle (spect)));
43 else imagesc (normalize( angle (spect))); end
44 else imagesc ( zeros ( size (original))); end
45 axis square; colormap (myColormap);
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46 print ( gcf , ’-dppm’, [imageloc ’-phase.ppm’]);
47

48 % do the inverse decomposition

49 recovered = quad_inverse(spect, decompLevel, spectSelected);
50

51 % fix numerical errors

52 test = double(recovered >= 0); recovered = recovered.*test; % cast all values

less than 0 as 0

53 test = double(recovered <= 1); recovered = recovered.*test + (1-test); % cast all values

greater than 1 as 1

54

55 % display recovered image

56 figure ; close
57 imagesc (recovered); axis square; colormap (myColormap);
58 print ( gcf , ’-dppm’, [imageloc ’-recov.ppm’]);
59

60 % find error between original and recovered image

61 error = original-recovered;
62 disp ([’Maximum Error: ’ num2str ( max( max( max( error ))))]);
63 disp ([’Maximum Recovered Value: ’ num2str ( max( max( max(recovered))))]);
64 disp ([’Minimum Recovered Value: ’ num2str ( min ( min ( min (recovered))))]);

B.4 blowup.m

Script for enlarging a smaller quadrant of the spectrum to replace a larger quadrant.

1 function result = blowup(M, factor)
2

3 height = size (M, 1);
4 width = size (M, 2);
5 colors = size (M, 3);
6

7 result = zeros (height*factor, width*factor, colors);
8

9 for i = 1:height
10 for j = 1:width
11 for c = 1:colors
12 result(factor*(i-1)+1:factor*(i), factor*(j-1)+1:factor*(j), c) = M(i, j,

c)*ones(factor, factor);
13 end
14 end
15 end

B.5 compression.m

Script for compression. Handles the input and output of figures.

1 % compression.m script to run compression routines

2

3 numpixels = numel(spect);
4 ratio = 1;
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5 avgangle = sum( sum( sum( angle (spect))))/numpixels;
6

7 % calculate all the constants necessary

8 dim = size (spect, 1); % the number of rows in the image

9 height = log2 (dim); % the "height" of the quad-tree based on this image

10 highestLevel = 2ˆ(height - decompLevel - 1);
11

12 [threshold, energy] = sparsityNorm(spect, selectedThreshold);
13

14 % nearzeroamp = (normalize(spect) <= threshold);

15 % bigangle = (angle(spect) >= avgangle);

16 % nearzeros = nearzeroamp.*(1-bigangle);

17 nearzeros = (normalize(spect) <= threshold);
18 ratio = sum( sum( sum(nearzeros))) / numpixels;
19 pruned = spect.*(1-nearzeros);
20

21 % we don’t want to threshold the highest level where the average pixels are

22 % stored - restore that part of the spectrum.

23 if (compressionRestoreHiLevel)
24 pruned(1:highestLevel, 1:highestLevel, :) = spect(1:highestLevel, 1:highestLevel, :)

;
25 end
26

27 % reconstruct the image

28 result = quad_inverse(pruned, decompLevel, spectSelected);
29 % fix numerical errors

30 fix = double(result >= 0); result = result.* fix ; % cast all values less than 0 as 0

31 fix = double(result <= 1); result = result.* fix + (1- fix ); % cast all values greater than 1

as 1

32

33 error = original-result;
34 disp ([’Pruning amplitudes less than or equal to ’ num2str (threshold)]);
35 disp ([’Compression Rate; ˜ (# pixels pruned)/(# pixels total) : ’ num2str (ratio*100) ’

%’]);
36 disp ([’Maximum Error: ’ num2str ( max( max( max( error ))))]);
37 disp ([’Minimum Error: ’ num2str ( min ( min ( min ( error ))))]);
38 disp ([’Average Error: ’ num2str ( sum( sum( sum( error )))/numel( error ))]);
39 disp ([’Maximum Recovered Value: ’ num2str ( max( max( max(result))))]);
40 disp ([’Minimum Recovered Value: ’ num2str ( min ( min ( min (result))))]);
41 disp ’ ’;
42

43 if (displayCompress)
44 % display the original image

45 subplot (2, 2, 1); imagesc (original); title (’Original Image’); axis square; colormap (
myColormap);

46

47 % display the result

48 subplot (2, 2, 2); imagesc (result); title (’Compression Result’); axis square;
colormap (myColormap);

49

50 % display the thresholded decomposition

51 subplot (2, 2, 3);
52 if (invertMagnitude)
53 imagesc (1-normalize(pruned));
54 title ([’Spectrum Magnitude After Thresholding (Inverted, ’ num2str (ratio*100) ’%

Compression Rate)’]);
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55 else
56 imagesc (normalize(pruned));
57 title ([’Spectrum Magnitude After Thresholding (’ num2str (ratio*100) ’% Compression

Rate)’]);
58 end
59 axis square; colormap (myColormap);
60 else
61 figure ; imagesc (result); axis square; colormap (myColormap);
62 end

B.6 isocurve.m

Draws lines around pixels of equal color value.

1 function lines = isocurve(M, values)
2

3 % from Schroeder, et. al. "The Visualization Toolkit."

4 %

5 % Marching Squares / Cubes Algorithm (p. 160)

6 %

7 % 1. Select a cell (a 2-by-2 submatrix, or a 2-by-2-by-2 subcube)

8 % 2. Calculate the inside / outside state of each vertex of the cell

9 % 3. Create an index by storing the binary state of each vertex

10 % in a separate bit

11 % 4. Use the index to look up the topological state of the cell

12 % in a case table

13 % 5. Calculate the contour location (via interpolation) for each edge

14 % in the case table.

15 %

16

17 % test case

18 % M = [0 1 1 3 2; 1 3 6 6 3; 3 7 9 7 3; 2 7 8 6 2; 1 2 3 4 3];

19 % value = 5;

20 for value = values
21 drawline = zeros (2, 2);
22 drawline2 = zeros (2, 2);
23

24 % for now, assume M is a two-dimensional matrix.

25 height = size (M, 1);
26 width = size (M, 2);
27

28 for i = 1 : height-1
29 for j = 1 : width - 1
30 % first we select the 2-by-2 cell where (i, j) specifies the upper

31 % left hand corner ((i,j), (i+1,j), (i,j+1), (i+1,j+1)

32 cell = M(i:i+1, j:j+1);
33

34 % next, we calculate the inside / outside state

35 % a vertex is in if its value is greater or equal than the value given

36 inNout = (cell >= value);
37

38 % next, we associate each case with a index (binary, 16 cases)

39 index = inNout(1, 1) + 2*inNout(1, 2) + 4*inNout(2, 2) + 8*inNout(2, 1);
40
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41 top = [i, j + interp(value, cell(1, 1), cell(1, 2))];
42 bottom = [i+1, j + interp(value, cell(2, 1), cell(2, 2))];
43 left = [i + interp(value, cell(1, 1), cell(2, 1)), j];
44 right = [i + interp(value, cell(1, 2), cell(2, 2)), j+1];
45

46 % now, go through the cases for the topology & make contours

47 % lines are represented: height location first, then width location

48 switch (index)
49 case {0, 15}
50 case {1, 14}
51 drawline = [top; left];
52 case {2, 13}
53 drawline = [top; right];
54 case {3, 12}
55 drawline = [left; right];
56 case {4, 11}
57 drawline = [bottom; right];
58 case 5
59 drawline = [left; bottom];
60 drawline2 = [top; right];
61 case {6, 9}
62 drawline = [top; bottom];
63 case {7, 8}
64 drawline = [left; bottom];
65 case 10
66 drawline = [bottom; right];
67 drawline2 = [top; left];
68 end
69

70 % draw the isocurve

71 line (drawline(:, 1), drawline(:, 2));
72 if ((index == 5) || (index == 10))
73 line (drawline2(:, 1), drawline2(:, 2));
74 end
75 end
76 end
77

78 end
79

80 function ans = interp(v, a, b)
81 if (a ˜= b)
82 ans = abs ((v - a) / (a - b));
83 else
84 ans = 0;
85 end

B.7 getBasis.m

Function that returns the appropriate DFT matrix for a group.

1 function [M, usesImaginary] = getBasis(selection)
2

3 % define change of basis here

4 w = -j;
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5 spectTypes = {’fourier’, [1 1 1 1; 1 w wˆ2 wˆ3; 1 wˆ2 wˆ4 wˆ6; 1 wˆ3 wˆ6 wˆ9]/4;...
6 ’haar’, [1 1 1 1; 1 -1 1 -1; 1 1 -1 -1; 1 -1 -1 1]/4;...
7 ’dihedral’, [1 1 1 1; 1 -1 1 -1; 2 0 -2 0; 0 2 0 -2]/4;...
8 ’alternating’, [1 1 1 1; -1 3 -1 -1; -1 -1 3 -1; -1 -1 -1 3]/4;...
9 ’symmetric’, [1 1 1 1; -1 3 -1 -1; -1 -1 3 -1; -1 -1 -1 3]/4;};

10

11

12 % basis selction

13 numTypes = size (spectTypes, 1);
14 M = 0;
15

16 for i=1:numTypes
17 % compare strings to choose basis

18 if ( strcmp (spectTypes{i, 1}, selection))
19 M = spectTypes{i, 2};
20 if ( imag (M) == 0)
21 usesImaginary = false;
22 else
23 usesImaginary = true;
24 end
25 break ;
26 elseif (i == numTypes)
27 disp ([’No match found for basis of name ’ selection ’. Please try again.’]);
28 end
29 end

B.8 multiresolution.m

Script to progressively recover the image from portions of the spectrum.
1 height = log2 ( size (spect, 1));
2

3 for i=height:-1:height-decompLevel
4 G = spect(1:2ˆi, 1:2ˆi, :);
5 H = quad_inverse(G, decompLevel+(i-height), spectSelected);
6 % F = double(H >= 0); H = H.*F; % cast all values less than 0 as 0

7 % F = double(H <= 1); H = H.*F + (1-F); % cast all values greater than 1 as 1

8 figure ; imagesc (normalize(H)); axis square;
9 end

B.9 normalize.m

Normalizes the values of the recovered image so that it falls under 0 and 1.
1 function result = normalize(matrix)
2

3 result = abs (matrix);
4 % result = matrix;

5

6 for i=1: size (matrix, 3);
7 result(:, :, i) = (1/ max( max(result(:, :, i))))*result(:, :, i);
8 end
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B.10 quad inverse.m

Performs the inverse decomposition.

1 function result = quad_inverse(spectrum, spectLevel, basis)
2

3 % quad_inverse quad-tree/DFT inverse decomposition of an image

4 %

5 % Usage: quad_inverse(M)

6

7 % change of basis matrix

8 % w = -j;

9 % d = [1 1 1 1; 1 w wˆ2 wˆ3; 1 wˆ2 wˆ4 wˆ6; 1 wˆ3 wˆ6 wˆ9];

10 % d = [1 1 1 1; 1 -1 1 -1; 1 1 -1 -1; 1 -1 -1 1];

11 [d, usesImaginary] = getBasis(basis);
12

13 % invert the matrix

14 d = inv (d);
15

16 % split the change of basis matrix into real and imaginary parts

17 dr = real (d);
18 di = imag (d);
19

20 % calculate all the constants necessary

21 dim = size (spectrum, 1); % the number of rows in the image

22 cols = size (spectrum, 2); % the number of columns in the image

23 height = log2 (dim); % the "height" of the quad-tree based on this image

24 colors = size (spectrum, 3); % the number of colors in the image

25

26 % special factor for calculating spectrum

27 % discontinued

28 %factor = 4;

29

30 if dim ˜= cols
31 disp ’Error: The number of rows do not match the number of columns.’;
32 spectrum = 0;
33 return
34 elseif height ˜= floor (height)
35 disp ’Error: Each dimension of the image must be a power of 2.’;
36 spectrum = 0;
37 return
38 end
39

40 rspectrum = real (spectrum);
41 roriginal = zeros (dim, dim, colors);
42 rfft_values = zeros (4, 1);
43 rpixel_values = zeros (4, 1);
44 ispectrum = imag (spectrum);
45 ipixel_values = zeros (4, 1);
46 if (usesImaginary)
47 ioriginal = zeros (dim, dim, colors);
48 ifft_values = zeros (4, 1);
49 end
50

51 % % do the first quadrant! (the top 4 pixels).

52 % for color=1:colors
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53 % % pick out the pixel values for each color

54 % rpixel_values(1) = rspectrum(1, 1, color);

55 % rpixel_values(2) = rspectrum(1, 2, color);

56 % rpixel_values(3) = rspectrum(2, 2, color);

57 % rpixel_values(4) = rspectrum(2, 1, color);

58 %

59 % ipixel_values(1) = ispectrum(1, 1, color);

60 % ipixel_values(2) = ispectrum(1, 2, color);

61 % ipixel_values(3) = ispectrum(2, 2, color);

62 % ipixel_values(4) = ispectrum(2, 1, color);

63 %

64 % % calculate the dft by multiplying the matrix

65 % % do this for both the real and imaginary parts

66 % rfft_values = dr*rpixel_values*factor - di*ipixel_values*factor;

67 % % This line is unnecessary because the recovered image should only be

68 % % real, and the imaginary part should just be zero.

69 % % ifft_values = dr*ipixel_values*factor + di*rpixel_values*factor;

70 %

71 % % assign the resulting values

72 % roriginal(1, 1, color) = rfft_values(1); % 1st quadrant

73 % roriginal(1, 2, color) = rfft_values(2); % 2nd quadrant

74 % roriginal(2, 2, color) = rfft_values(3); % 3rd quadrant

75 % roriginal(2, 1, color) = rfft_values(4); % 4th quadrant

76 %

77 % % ioriginal(1, 1, color) = ifft_values(1); % 1st quadrant

78 % % ioriginal(1, 2, color) = ifft_values(2); % 2nd quadrant

79 % % ioriginal(2, 2, color) = ifft_values(3); % 3rd quadrant

80 % % ioriginal(2, 1, color) = ifft_values(4); % 4th quadrant

81 % end

82 %

83 % for color=1:colors

84 % rspectrum(1:2, 1:2, color) = roriginal(1:2, 1:2, color);

85 % %ispectrum(1:2, 1:2, color) = ioriginal(1:2, 1:2, color);

86 % ispectrum(1:2, 1:2, color) = zeros(2, 2);

87 % end

88

89 % quad ordering routine copied here.

90 for current_height= max(2,height-spectLevel):height
91

92 maxlevel = 1;
93 row = 1;
94 col = 1;
95 counter = 1;
96

97 while maxlevel <= (current_height-1)
98

99 % do stuff here

100 for color=1:colors
101 % pick out the pixel values for each color

102 rpixel_values(1) = rspectrum(row, col, color);
103 rpixel_values(2) = rspectrum(row, col + 2ˆ(current_height-1), color);
104 rpixel_values(3) = rspectrum(row + 2ˆ(current_height-1), col + 2ˆ(current_height

-1), color);
105 rpixel_values(4) = rspectrum(row + 2ˆ(current_height-1), col, color);
106

107 if (usesImaginary)
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108 ipixel_values(1) = ispectrum(row, col, color);
109 ipixel_values(2) = ispectrum(row, col + 2ˆ(current_height-1), color);
110 ipixel_values(3) = ispectrum(row + 2ˆ(current_height-1), col + 2ˆ(

current_height-1), color);
111 ipixel_values(4) = ispectrum(row + 2ˆ(current_height-1), col, color);
112 end
113

114 % calculate the dft by multiplying the matrix

115 % do this for both the real and imaginary parts

116 if (usesImaginary)
117 rfft_values = dr*rpixel_values - di*ipixel_values;
118 else
119 rfft_values = dr*rpixel_values;
120 end
121

122 % This line is unnecessary because the recovered image should only be

123 % real, and the imaginary part should just be zero.

124 % if (usesImaginary)

125 % ifft_values = dr*ipixel_values + di*rpixel_values;

126 % end

127

128 % assign the resulting values

129 roriginal(2*row - 1, 2*col - 1, color) = rfft_values(1); % 1st quadrant

130 roriginal(2*row - 1, 2*col, color) = rfft_values(2); % 2nd quadrant

131 roriginal(2*row, 2*col, color) = rfft_values(3); % 3rd quadrant

132 roriginal(2*row, 2*col - 1, color) = rfft_values(4); % 4th quadrant

133

134 % if (usesImaginary)

135 % ioriginal(2*row - 1, 2*col - 1, color) = ifft_values(1); % 1st quadrant

136 % ioriginal(2*row - 1, 2*col, color) = ifft_values(2); % 2nd quadrant

137 % ioriginal(2*row, 2*col, color) = ifft_values(3); % 3rd quadrant

138 % ioriginal(2*row, 2*col - 1, color) = ifft_values(4); % 4th quadrant

139 % end

140 end
141

142 % the rest of the counting program

143 if counter == 4ˆmaxlevel
144 row = 1;
145 col = 2ˆmaxlevel + 1;
146 maxlevel = maxlevel + 1;
147 else
148 % initial starting values

149 level = 0;
150 quad = mod(counter, 4);
151

152 while quad == 0
153 level = level + 1;
154 quad = mod(counter, 4ˆ(level+1));
155 end
156

157 if mod(counter, 4ˆlevel) == 0
158 quad = mod(counter / 4ˆlevel, 4);
159 end
160

161 row = row - (2ˆlevel - 1);
162
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163 switch quad
164 case 1
165 col = col + 2ˆlevel;
166 case 2
167 row = row + 2ˆlevel;
168 case 3
169 col = col - 2ˆlevel;
170 otherwise
171 % turns out that putting in debugging statments like this

172 % slows things down significantly

173 % disp([’Error: quad = ’ num2str(quad) ’ should have never happened...’]);

174 end
175 end
176

177 % increment pixel counter

178 counter = counter + 1;
179 end
180

181 % After we are done with this level, re-assign the spectrum so that we can analyze

182 % it in a recursive fashion

183 % In the classical DFT case, the top left quadrant will be real, so we

184 % only need to pass on the real values.

185 for color=1:colors
186 rspectrum(1:2ˆcurrent_height, 1:2ˆcurrent_height, color) = roriginal(1:2ˆ

current_height, 1:2ˆcurrent_height, color);
187 % if (usesImaginary)

188 % ispectrum(1:2ˆcurrent_height, 1:2ˆcurrent_height, color) = ioriginal(1:2ˆcurrent_height, 1:2ˆ

current_height, color);

189 % ispectrum(1:2ˆcurrent_height, 1:2ˆcurrent_height, color) = zeros(2ˆcurrent_height, 2ˆcurrent_height);

190 % end

191 end
192 end
193

194 % make it complex

195 % if (usesImaginary)

196 % result = complex(roriginal, ioriginal);

197 % end

198 result = roriginal;

B.11 quad ordering.m

Routine that handles the quad-tree scan. This routine is embedded in the decom-
position and inverse decomposition routines.

1 function matrix = quad_ordering(height)
2

3 % quad_ordering Returns a quad-tree like ordering of a matrix

4 %

5 % Usage: quad_ordering(height)

6 %

7 % For a given height, this function produces a matrix that traverses the

8 % image in a quad-tree like fashion. The algorithm is simply based on

9 % detecting when we have finished traversing the current quadrant and then

10 % moving our position to the next quadrant. It’s very fast, and I don’t
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11 % think it can get much faster.

12 %

13 % Written 11/16/03, Will Chang

14

15 dim = 2ˆheight;
16 matrix = zeros (dim, dim);
17

18 maxlevel = 1;
19 row = 1;
20 col = 1;
21 counter = 1;
22

23 % in this program, a "level" signifies the level in the quad tree. Unlike

24 % the quad_spectrum program, level 0 means that we are on the pixel level;

25 % level 1 on the quad-pixel level, level 2 on the 16-pixel level, and so on

26 % and so forth.

27

28 while maxlevel <= height
29 matrix(row, col) = counter;
30

31 % we know when we have hit the last pixel of the current level when our

32 % pixel counter has reached number 4ˆmaxlevel. Move to the first pixel

33 % in the next level, and increment our maxlevel counter.

34 if counter == 4ˆmaxlevel
35 row = 1;
36 col = 2ˆmaxlevel + 1;
37 maxlevel = maxlevel + 1;
38 else
39 % initial starting values

40 level = 0;
41 quad = mod(counter, 4);
42

43 % find the local level, that is, find out if we’re on the pixel

44 % level, the 4-pixel level, the 16-pixel level, etc. by testing

45 % the divisibility of our pixel counter by powers of 4.

46 while quad == 0
47 level = level + 1;
48 quad = mod(counter, 4ˆ(level+1));
49 end
50

51 % given that we’re on some level, we want to find our the relative

52 % position of our quadrant, because we’ll have to find out a way to

53 % move to the next quadrant.

54 % This is a very cool trick.

55 if mod(counter, 4ˆlevel) == 0
56 quad = mod(counter / 4ˆlevel, 4);
57 end
58

59 % go back to position 1 in our local quadrant

60 % This is also a very cool trick.

61 row = row - (2ˆlevel - 1);
62

63 switch quad
64 case 1
65 col = col + 2ˆlevel;
66 case 2
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67 row = row + 2ˆlevel;
68 case 3
69 col = col - 2ˆlevel;
70 otherwise
71 % turns out that putting in debugging statments like this

72 % slows things down significantly

73 % disp([’Error: quad = ’ num2str(quad) ’ should have never happened...’]);

74 end
75 end
76

77 % increment pixel counter

78 counter = counter + 1;
79 end

B.12 quad spectrum2.m

Performs the decomposition.

1 function result = quad_spectrum2(M, userMaxLevel, basis)
2

3 % quad_spectrum2 quad-tree/DFT decomposition of an image

4 %

5 % Usage: quad_spectrum2(M)

6 %

7 % M is the image to be decomposed. This is a fast version of the

8 % recursive quad_spectrum program.

9 %

10 % The way I made it fast was to use the quick ordering method developed in

11 % quad_ordering so that I can march through the image and do a constant

12 % amount of work per pixel in the image.

13 % Since MATLAB hates dealing with complex numbers, I split up the

14 % decomposition into separate real and imaginary parts so that every line

15 % in the processing loop is "accelerated."

16

17 % get change of basis matrix

18 % w = -j;

19 % d = [1 1 1 1; 1 w wˆ2 wˆ3; 1 wˆ2 wˆ4 wˆ6; 1 wˆ3 wˆ6 wˆ9];

20 % d = [1 1 1 1; 1 -1 1 -1; 1 1 -1 -1; 1 -1 -1 1];

21 [d, usesImaginary] = getBasis(basis);
22

23

24 % split the change of basis matrix into real and imaginary parts

25 dr = real (d);
26 di = imag (d);
27

28 % calculate all the constants necessary

29 dim = size (M, 1); % the number of rows in the image

30 cols = size (M, 2); % the number of columns in the image

31 height = log2 (dim); % the "height" of the quad-tree based on this image

32 colors = size (M, 3); % the number of colors in the image

33

34 % special factor for calculating spectrum

35 % discontinued

36 %factor = 4;
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37

38 if dim ˜= cols
39 disp ’Error: The number of rows do not match the number of columns.’;
40 spectrum = 0;
41 return
42 elseif height ˜= floor (height)
43 disp ’Error: Each dimension of the image must be a power of 2.’;
44 spectrum = 0;
45 return
46 end
47

48 pixel_values = zeros (4, 1);
49 rspectrum = zeros (dim, dim, colors);
50 rfft_values = zeros (4, 1);
51 ifft_values = zeros (4, 1);
52 if (usesImaginary)
53 ispectrum = zeros (dim, dim, colors);
54 end
55

56 % quad ordering routine copied here.

57 for current_height=height:-1: max(2, height-userMaxLevel) % this needs to go up only to 2

because maxlevel starts at 1.

58 maxlevel = 1;
59 row = 1;
60 col = 1;
61 counter = 1;
62

63 while maxlevel <= (current_height-1)
64

65 % do stuff here

66 for color=1:colors
67 % pick out the pixel values for each color

68 pixel_values(1) = M(2*row - 1, 2*col - 1, color);
69 pixel_values(2) = M(2*row - 1, 2*col, color);
70 pixel_values(3) = M(2*row, 2*col, color);
71 pixel_values(4) = M(2*row, 2*col - 1, color);
72

73 % calculate the dft by multiplying the matrix

74 % do this for both the real and imaginary parts

75 rfft_values = dr*pixel_values;
76 if (usesImaginary)
77 ifft_values = di*pixel_values;
78 end
79

80 % assign the resulting values

81 % rspectrum(row, col, color) = counter; % 1st quadrant

82 % rspectrum(row, col + 2ˆ(current_height-1), color) = counter; % 2nd quadrant

83 % rspectrum(row + 2ˆ(current_height-1), col + 2ˆ(current_height-1), color) = counter; % 3rd quadrant

84 % rspectrum(row + 2ˆ(current_height-1), col, color) = counter; % 4th quadrant

85

86 rspectrum(row, col, color) = rfft_values(1); % 1st quadrant

87 rspectrum(row, col + 2ˆ(current_height-1), color) = rfft_values(2);
% 2nd quadrant

88 rspectrum(row + 2ˆ(current_height-1), col + 2ˆ(current_height-1), color) =
rfft_values(3); % 3rd quadrant
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89 rspectrum(row + 2ˆ(current_height-1), col, color) = rfft_values(4);
% 4th quadrant

90

91 if (usesImaginary)
92 ispectrum(row, col, color) = ifft_values(1); % 1st

quadrant

93 ispectrum(row, col + 2ˆ(current_height-1), color) = ifft_values(2);
% 2nd quadrant

94 ispectrum(row + 2ˆ(current_height-1), col + 2ˆ(current_height-1), color) =
ifft_values(3); % 3rd quadrant

95 ispectrum(row + 2ˆ(current_height-1), col, color) = ifft_values(4);
% 4th quadrant

96 end
97 end
98

99 % the rest of the counting program

100 if counter == 4ˆmaxlevel
101 row = 1;
102 col = 2ˆmaxlevel + 1;
103 maxlevel = maxlevel + 1;
104 else
105 % initial starting values

106 level = 0;
107 quad = mod(counter, 4);
108

109 while quad == 0
110 level = level + 1;
111 quad = mod(counter, 4ˆ(level+1));
112 end
113

114 if mod(counter, 4ˆlevel) == 0
115 quad = mod(counter / 4ˆlevel, 4);
116 end
117

118 row = row - (2ˆlevel - 1);
119

120 switch quad
121 case 1
122 col = col + 2ˆlevel;
123 case 2
124 row = row + 2ˆlevel;
125 case 3
126 col = col - 2ˆlevel;
127 otherwise
128 % turns out that putting in debugging statments like this

129 % slows things down significantly

130 % disp([’Error: quad = ’ num2str(quad) ’ should have never happened...’]);

131 end
132 end
133

134 % increment pixel counter

135 counter = counter + 1;
136 end
137

138 % After we are done with this level, re-assign M so that we can analyze

139 % it in a recursive fashion
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140 % In the classical DFT case, the top left quadrant will be real, so we

141 % only need to pass on the real values.

142 M = rspectrum;
143 end
144

145

146 % do the last quadrant! (the remaining top 4 pixels are not done yet).

147 % for color=1:colors

148 % % pick out the pixel values for each color

149 % pixel_values = [M(1, 1, color); M(1, 2, color); M(2, 2, color); M(2, 1, color)];

150 %

151 % % calculate the dft by multiplying the matrix

152 % % do this for both the real and imaginary parts

153 % rfft_values = dr*pixel_values/factor;

154 % ifft_values = di*pixel_values/factor;

155 %

156 % % assign the resulting values

157 % rspectrum(1, 1, color) = rfft_values(1); % 1st quadrant

158 % rspectrum(1, 2, color) = rfft_values(2); % 2nd quadrant

159 % rspectrum(2, 2, color) = rfft_values(3); % 3rd quadrant

160 % rspectrum(2, 1, color) = rfft_values(4); % 4th quadrant

161 %

162 % ispectrum(1, 1, color) = ifft_values(1); % 1st quadrant

163 % ispectrum(1, 2, color) = ifft_values(2); % 2nd quadrant

164 % ispectrum(2, 2, color) = ifft_values(3); % 3rd quadrant

165 % ispectrum(2, 1, color) = ifft_values(4); % 4th quadrant

166 % end

167

168 % make it complex

169 if (usesImaginary)
170 result = complex(rspectrum, ispectrum);
171 else
172 result = rspectrum;
173 end

B.13 read.m

Reads the image file.
1 % % read.m reads a file using imread

2 original = imread(imagefile);
3

4 original = double(original)/255;
5 % R = original(:, :, 1);

6 % G = original(:, :, 2);

7 % B = original(:, :, 3);

8 % original = B;

9

10 % figure; imagesc(R); colormap(gray); axis square;

11 % figure; imagesc(G); colormap(gray); axis square;

12 % figure; imagesc(B); colormap(gray); axis square;

13

14 % autocrop the image

15 original = autocrop(original);



replacement.m 79

B.14 replacement.m

Replaces a quadrant with zeros.

1 function result = replacement(spect, levels, replaces, basis, mymap)
2 % replacement scheme - I’m experimenting with replacing certain

3 % decomposition levels with lower-resolution equivalents.

4

5 height = size (spect, 1);
6 width = size (spect, 2);
7 colors = size (spect, 3);
8

9 % height and width should be the same

10 dim = height;
11 counter = 0;
12

13 result = spect;
14

15 for level=levels
16 counter = counter + 1;
17 lo = dim / (2ˆ(level+1));
18 hi = dim / (2ˆ(level));
19

20 % quad_a = spect(1:lo, lo+1:2*lo, :);

21 % quad_b = spect(lo+1:2*lo, lo+1:2*lo, :);

22 % quad_c = spect(lo+1:2*lo, 1:lo, :);

23 quad_0 = ones(lo, lo, colors);
24 quad_a = zeros (lo, lo, colors);
25 quad_b = zeros (lo, lo, colors);
26 quad_c = zeros (lo, lo, colors);
27

28 for replace=replaces{counter}
29 switch (replace)
30 case 1
31 result(1:hi, 1:hi, :) = blowup(quad_0, 2);
32 case 2
33 result(1:hi, hi+1:2*hi, :) = blowup(quad_a, 2);
34 case 3
35 result(hi+1:2*hi, hi+1:2*hi, :) = blowup(quad_b, 2);
36 case 4
37 result(hi+1:2*hi, 1:hi, :) = blowup(quad_c, 2);
38 end
39 end
40 end
41

42 figure ; imagesc (normalize(result)); axis square; colormap (mymap);
43

44 recovered = quad_inverse(result, 3, basis);
45 test = double(recovered >= 0); recovered = recovered.*test; % cast all values

less than 0 as 0

46 test = double(recovered <= 1); recovered = recovered.*test + (1-test); % cast all values

greater than 1 as 1

47 figure ; imagesc (recovered); axis square; colormap (mymap);
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B.15 run.m

Script that runs the decomposition and inverse decomposition.

1 % run.m - calculation and display script

2 % My Examples

3 imagefile = ’cat.bmp’;
4 % imagefile = ’strange6-256.bmp’;

5 % imagefile = ’oh_my-256.bmp’;

6 % imagefile = ’mountain-lake.tif’;

7

8 % Examples from the wavelet toolbox

9 % imagefile = ’geometry.bmp’;

10 % imagefile = ’sinsin.bmp’;

11 % imagefile = ’tartan.bmp’;

12 % imagefile = ’woman.bmp’;

13 % imagefile = ’noisewom.bmp’;

14 % imagefile = ’tire.bmp’;

15 % imagefile = ’finger.bmp’;

16 % imagefile = ’finger256.bmp’;

17 % imagefile = ’chess.bmp’;

18 % imagefile = ’facets.bmp’;

19 read;
20

21 % global options

22 spectSelected = ’fourier’; % choose the basis

23 decompLevel = 2; % maximum spectral decomposition level

24 [basis, usesImaginary] = getBasis(spectSelected); % get the basis

25 invertMagnitude = false; % invert magnitude colors

26 invertPhase = false; % invert phase colors

27 brightness = 0.3; % defines the brightness of the colormap

28 myColormap = brighten ( pink , brightness); % assign the colormap with a certain brightness

29

30 % Display Options

31 displayRun = true; % displays the decomposition / inverse decomposition

32 displayCompress = true; % displays all the information about the compression

33

34 % compression options

35 compressionRestoreHiLevel = false; % restores the avg pixel values at the highest level

36 % ... (smallest remaining upper left quadrant)

37 % ... after the compression step.

38 % selectedThreshold = ’balance’; %

39 selectedThreshold = ’sqrtBalance’; % thresholding method selection

40 % selectedThreshold = ’nearZero’; %

41

42

43 % Now, run through the decomposition and inverse decomposition

44

45 % do the decomposition

46 spect = quad_spectrum2(original, decompLevel, spectSelected);
47

48 %figure; imagesc(normalize(spect)); axis square; colormap(myColormap);

49

50

51 if (displayRun)
52 % display the original
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53 title ([’Results of ’ spectSelected ’ transform’]);
54 subplot (2, 2, 1); imagesc (original); title (’Original Image’); axis square; colormap (

myColormap);
55

56 % display the decomposition

57 subplot (2, 2, 3);
58 if (invertMagnitude) imagesc (1-normalize(spect)); title (’Spectrum Magnitude (

Inverted)’);
59 else imagesc (normalize(spect)); title (’Spectrum Magnitude’); end
60 axis square; colormap (myColormap);
61

62 % display phase information if we have imaginary numbers

63 subplot (2, 2, 4);
64 if (usesImaginary)
65 if (invertPhase) imagesc (1-normalize( angle (spect))); title (’Spectrum Phase (

Inverted)’);
66 else imagesc (normalize( angle (spect))); title (’Spectrum Phase’); end
67 else imagesc ( zeros ( size (original))); title (’Spectrum Phase’); end
68 axis square; colormap (myColormap);
69

70 % do the inverse decomposition

71 recovered = quad_inverse(spect, decompLevel, spectSelected);
72

73 % fix numerical errors

74 test = double(recovered >= 0); recovered = recovered.*test; % cast all values

less than 0 as 0

75 test = double(recovered <= 1); recovered = recovered.*test + (1-test); % cast all

values greater than 1 as 1

76

77 % display recovered image

78 subplot (2, 2, 2); imagesc (recovered); title (’Recovered Image’); axis square;
colormap (myColormap);

79

80 % find error between original and recovered image

81 error = original-recovered;
82 disp ([’Maximum Error: ’ num2str ( max( max( max( error ))))]);
83 disp ([’Maximum Recovered Value: ’ num2str ( max( max( max(recovered))))]);
84 disp ([’Minimum Recovered Value: ’ num2str ( min ( min ( min (recovered))))]);
85 end

B.16 runall.m

Script that runs many different decompositions for many images.

1 % runall.m -- script to execute all of the different types of decompositions

2 % My Examples

3 % imagefile = ’cat.bmp’;

4 % imagefile = ’strange6-256.bmp’;

5 % imagefile = ’oh_my-256.bmp’;

6

7 % Examples from the wavelet toolbox

8 % imagefile = ’geometry.bmp’;

9 % imagefile = ’sinsin.bmp’;

10 % imagefile = ’tartan.bmp’;
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11 % imagefile = ’woman.bmp’;

12 % imagefile = ’tire.bmp’;

13 % imagefile = ’finger.bmp’;

14 % imagefile = ’finger256.bmp’;

15 % imagefile = ’chess.bmp’;

16 % imagefile = ’facets.bmp’;

17

18 imagefiles = {’oh_my-256’};
19 % imagefiles = {’geometry’, ’sinsin’, ’tartan’};

20 % spectra = {’alternating’, ’symmetric’};

21

22 numFiles = size (imagefiles, 2);
23 % numSpectra = size(spectra, 2);

24

25

26 % global options

27 spectSelected = ’fourier’;
28 % decompLevel = 9; % maximum spectral decomposition level

29 invertMagnitude = true; % invert magnitude colors

30 invertPhase = false; % invert phase colors

31 brightness = 0.3; % defines the brightness of the colormap

32 myColormap = brighten ( pink , brightness); % assign the colormap with a certain brightness

33

34 % compression options

35 compressionRestoreHiLevel = true; % restores the avg pixel values at the highest level

36 % ... (smallest remaining upper left quadrant)

37 % ... after the compression step.

38 selectedThreshold = ’balance’; %

39 % selectedThreshold = ’sqrtBalance’; % thresholding method selection

40 % selectedThreshold = ’nearZero’; %

41

42 % Now, run through the decomposition and inverse decomposition

43 % display the original

44 % figure;

45 % subplot(2, numSpectra, 1); imagesc(original); title(’Original Image’); axis square; colormap(myColormap);

46

47 for i=1:numFiles
48 % for j=1:numSpectra

49 for j=0:6;
50 imagefile = [imagefiles{i} ’.bmp’];
51 read;
52 % spectSelected = spectra{j}; % choose the basis

53 [basis, usesImaginary] = getBasis(spectSelected); % get the basis

54 decompLevel = j;
55

56 % do the decomposition

57 spect = quad_spectrum2(original, decompLevel, spectSelected);
58

59 % display the decomposition

60 % subplot(2, numSpectra, i+numSpectra);

61 figure ;
62 if (invertMagnitude) imagesc (1-normalize(spect));
63 else imagesc (normalize(spect)); end
64 axis square; colormap (myColormap);
65 print ( gcf , ’-depsc2’, ’-r150’, [imagefiles{i} ’-’ spectSelected ’.eps’]);
66
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67 % display phase information if we have imaginary numbers

68 % subplot(2, 2, 4);

69 % if (usesImaginary)

70 % if (invertPhase) imagesc(1-normalize(angle(spect))); title(’Spectrum Phase (Inverted)’);

71 % else imagesc(normalize(angle(spect))); title(’Spectrum Phase’); end

72 % else imagesc(zeros(size(original))); title(’Spectrum Phase’); end

73 % axis square; colormap(myColormap);

74 end
75 end

B.17 sparsityNorm.m

Function that calculates sparsity-norm balancing.

1 function [finalThreshold, finalEnergy] = sparsityNorm(spectrum, threshold)
2

3 thresholdMethod = {’balance’, ’sqrtBalance’, ’nearZero’};
4 sqrtFactor = 128;
5 index = 1;
6 numThresholds = 200;
7 normSpect = normalize(spectrum);
8 zerosExceed = 0;
9

10 % size information

11 rows = size (spectrum, 1); % the number of rows in the image

12 cols = size (spectrum, 2); % the number of columns in the image

13 colors = size (spectrum, 3); % the number of colors in the image

14

15 numElements = rows * cols;
16 if (colors > 0) numElements = numElements * colors; end
17 % totalEnergy = norm(spectrum, 2);

18 totalEnergy = sum( sum( sum(spectrum.* conj (spectrum))));
19

20 comparison = zeros ( size (spectrum));
21 thresholds = zeros (1, numThresholds + 1);
22 percentZeros = zeros (1, numThresholds + 1);
23 percentEnergy = zeros (1, numThresholds + 1);
24

25 for currentThreshold = 0:1/numThresholds:1
26 comparison = double(normSpect > currentThreshold);
27 numZeros = sum( sum( sum(comparison)));
28

29 % apply the threshold

30 spectrum = spectrum .* comparison;
31 % energy = norm(spectrum, 2);

32 energy = sum( sum( sum(spectrum.* conj (spectrum))));
33

34 thresholds(index) = currentThreshold;
35 percentZeros(index) = (numElements - numZeros) / numElements * 100;
36 % percentEnergy(index) = (energy / totalEnergy) * 100;

37 percentEnergy(index) = sqrt (energy / totalEnergy) * 100;
38 if ((percentZeros(index) >= percentEnergy(index)) && (zerosExceed == 0))
39 zerosExceed = index;
40 end
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41 index = index + 1;
42 end
43

44 % compute final threshold by linear interpolation

45 a = thresholds(zerosExceed - 1); b = thresholds(zerosExceed);
46 e1 = percentEnergy(zerosExceed - 1); e2 = percentEnergy(zerosExceed);
47 z1 = percentZeros(zerosExceed - 1); z2 = percentZeros(zerosExceed);
48

49 % assume that e1, e2 and z1, z2 each define a line, and that the two lines

50 % cross between a and b. If lines don’t cross, then it might give a funky result.

51

52 balanceThreshold = (e1-z1)*(b-a)/((z2-z1)-(e2-e1)) + a;
53 balanceEnergy = (z2-z1)/(b-a)*(balanceThreshold-a) + z1;
54

55 sqrtBalanceThreshold = sqrt (balanceThreshold*sqrtFactor)/sqrtFactor;
56 nearZeroThreshold = 0.01;
57

58 % find these values by linear interpolation

59 nearZeroIndex = 1;
60 sqrtBalanceIndex = 1;
61 for i=1:numThresholds+1
62 if (thresholds(i) < nearZeroThreshold)
63 nearZeroIndex = nearZeroIndex + 1;
64 end
65 if (thresholds(i) < sqrtBalanceThreshold)
66 sqrtBalanceIndex = sqrtBalanceIndex + 1;
67 end
68 if ((thresholds(i) >= nearZeroThreshold) && (thresholds(i) >= sqrtBalanceThreshold))
69 break ;
70 end
71 end
72

73 % now we know that the thresholds in the indices are greater than the given thresholds

74 if (sqrtBalanceIndex > 1)
75 sqrtBalanceEnergy = percentEnergy(sqrtBalanceIndex-1) +...
76 (percentEnergy(sqrtBalanceIndex)-percentEnergy(sqrtBalanceIndex-1)) *...
77 (sqrtBalanceThreshold-thresholds(sqrtBalanceIndex-1)) /...
78 (thresholds(sqrtBalanceIndex)-thresholds(sqrtBalanceIndex-1));
79 else
80 sqrtBalanceEnergy = percentEnergy(sqrtBalanceIndex);
81 end
82

83 if (nearZeroIndex > 1)
84 nearZeroEnergy = percentEnergy(nearZeroIndex-1) +...
85 (percentEnergy(nearZeroIndex)-percentEnergy(nearZeroIndex-1)) *...
86 (nearZeroThreshold-thresholds(nearZeroIndex-1)) /...
87 (thresholds(nearZeroIndex)-thresholds(nearZeroIndex-1));
88 else
89 nearZeroEnergy = percentEnergy(nearZeroIndex);
90 end
91

92 % select the threshold

93 select = strcmp (threshold, thresholdMethod);
94

95 if (select(1))
96 finalThreshold = balanceThreshold;
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97 finalEnergy = balanceEnergy;
98 elseif (select(2))
99 finalThreshold = sqrtBalanceThreshold;

100 finalEnergy = sqrtBalanceEnergy;
101 elseif (select(3))
102 finalThreshold = nearZeroThreshold;
103 finalEnergy = nearZeroEnergy;
104 else
105 disp ([’Specified Threshold ’ threshold ’ not found. Defaulting to balance sparsity-

norm.’]);
106 finalThreshold = balanceThreshold;
107 finalEnergy = balanceEnergy;
108 end
109

110 % display result

111 % this is meant to display in the compression script.

112 figure ; subplot (2, 2, 4);
113 plot (thresholds, percentZeros, thresholds, percentEnergy);
114 line ([finalThreshold, finalThreshold], [0.0, 100.0], ’LineStyle’, ’:’, ’Color’, [0.8,

0.1, 0.1]);
115 title ([’Sparsity-Norm Analysis (threshold = ’ num2str (finalThreshold) ’, retained

energy = ’ num2str (finalEnergy) ’ percent)’]);
116 xlabel (’Threshold’); ylabel (’Number of Zeros / Percent Energy Retained’);
117 legend (’Percent Number of Zeros’, ’Percent Energy Retained’, ’Calculated Threshold’,

3);





Bibliography

[1] Ulrich Baum and Michael Clausen. Computing Irreducible Representations
of Supersolvable Groups.Mathematics of Computation, 63(207):351–359,
July 1994.

[2] Michael Clausen and Ulrich Baum.Fast Fourier Transforms. BI-Wissen-
schaftsverlag, Mannheim, 1993.

[3] Michael Clausen and Ulrich Baum. Fast Fourier Transforms for Symmet-
ric Groups: Theory and Implementation.Mathematics of Computation,
61(204):833–847, October 1993.

[4] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calcu-
lation of Complex Fourier Series.Mathematics of Computation, 19:297–301,
April 1965.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, second edition, 2001.

[6] David S. Dummit and Richard M. Foote.Abstract Algebra. Upper Saddle
River, N.J., Prentice Hall, second edition, 1999.

[7] Nathaniel Eldredge. An Eigenspace Approach to Isotypic Projections for
Data on Binary Trees. Undergraduate Thesis, Harvey Mudd College, 2003.

[8] R. Foote, G. Mirchandani, D. Rockmore, D. Healy, and T. Olson. A Wreath
Product Group Approach to Signal and Image Processing. I. Multiresolution
Analysis. IEEE Transactions on Signal Processing, 48(1):102–132, January
2000.

[9] David M. Goldschmidt. Group Characters, Symmetric Functions, and the
Hecke Algebra. American Mathematical Society, University Lecture Series,
1993.



88 Bibliography

[10] D. Healy, G. Mirchandani, T. Olson, and D. Rockmore. Wreath Products for
Image Processing.Proceedings of the ICASSP, 6:3582–3586, 1996.

[11] Gordon James and Martin Liebeck.Representations and Characters of
Groups. Cambridge University Press, second edition, 2001.

[12] Adalbert Kerber. Representations of Permutation Groups I, volume 240 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1971.

[13] Adalbert Kerber.Representations of Permutation Groups II, volume 495 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1975.

[14] Peter D. Lax.Linear Algebra. John Wiley & Sons, New York, 1997.

[15] Haeyoung Lee, Mathieu Desbrun, and Peter Schröder. Progressive Encoding
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