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Abstract

Recent advances in AI planning technology have drastically improved the capabilities of modern
planners. However, these advances have left research in domain specialization behind; many older
specialization techniques are no longer applicable to modern planners. This paper explores how to
automate domain specialization in a modern planning as constraint satisfaction engine using existing
analysis and reformulation techniques. In particular, the paper examines how TIM, PABLO, and
Crawford et al.’s symmetry-breaking predicates aid in automating the CPlan planning as constraint
satisfaction system.
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Figure 1: The standard structure of a planning as constraint satisfaction system. The system has
four stages. The user inputs the planning problem (domain and instance) in the precompilation
STRIPS stage. Then, the system compiles the problem into a series of constraint satisfaction
problems (CSPs) each instantiated for a different plan length. These CSPs are then solved by a
constraint solver. If the CSP is inconsistent, the compilation begins anew with a larger plan length;
otherwise, the decoding stage transforms the solution into a plan satisfying the original STRIPS
problem. This paper focuses on the first three stages.

1 Introduction

The traditional approach to solving planning problems has been to create special purpose algorithms for
reasoning about planning [Penberthy and Weld, 1992; Blum and Furst, 1995]; however, rapid advances in
algorithms for constraint satisfaction and its variants have now made it feasible and highly effective to solve
general planning problems by first compiling them into constraint satisfaction problems (CSPs) and then
solving them with an existing constraint solver. Figure 1 illustrates a planning as constraint satisfaction
system (CSP planner).

These planning as constraint satisfaction systems (CSP planner) take planning problems as input1 and
compile them at successively increasing plan lengths into constraint satisfaction problems (CSPs). The CSPs
produced by planning as constraint satisfaction systems have solutions if and only if the original planning
problem has a solution plan of the appropriate length. Such a solution can then be decoded into a plan
which solves the original problem.

Unfortunately, much of the extensive research into automatic discovery and exploitation of domain knowl-
edge in previous planners does not transfer well to these new constraint satisfaction planners. Without the
capacity to automatically analyze planning domains, current CSP planners rely on either expert human
knowledge or a handful of generally useful constraint satisfaction heuristics to exploit the special structure
of each domain.

The CPlan system is a CSP planner which relies on expert human knowledge [van Beek and Chen, 1999].
CPlan’s compilation and decoding processes are performed by hand using a highly expressive variant of
constraint satisfaction. The result is an extremely fast planner, but the price is painstaking expert scrutiny
of each new domain. Automating CPlan’s domain specialization process would result in a powerful and
convenient new planning system.

In this paper, I describe the domain knowledge that has proven useful in CPlan, and I explain how several

1In this paper, I restrict my attention to STRIPS planning problems [Fikes and Nilsson, 1971]. A STRIPS
planning problem is a domain — a set of actions which require certain preconditions and can add or delete facts,
called predicates, from the world state — and an instance component — the initial world state and the set of goal
facts. The solution to a STRIPS problem is a plan, a series of actions which lead from the initial state to the goal.



existing analysis and reformulation techniques can be used to automate the discovery and exploitation of this
knowledge. I focus on three systems which treat different stages of the planning as CSP solution process: the
TIM system [Fox and Long, 1998] works at the precompilation STRIPS stage, analyzing planning problems
for type and invariant information; the PABLO abstraction system [Christensen, 1990] suggests a new style
of compilation which may result in better focused search by initially ignoring unimportant details; and
Crawford et al.’s symmetry-breaking system [Crawford et al., 1996] works at the postcompilation CSP level,
detecting and breaking symmetries, interchangeable groups of variables or values, in the compiled problem.

Throughout the paper, I will use the logistics planning domain to illustrate examples. The logistics domain
consists of packages, trucks, and planes. The packages can be loaded into and unloaded from the trucks and
planes. Trucks can move between sites in a city, and planes can move between special sites (airports) in
different cities. The most important predicates are the at and in predicates. at(x, y) states that object x
inhabits site y. If a truck or plane y contains a package x, x is not at a site at all but in y: in(x, y). All
other predicates are unary type predicates (e.g., packages are small, sites are locations, and trucks and
planes are vehicles). The Load and Unload actions move packages into and out of vehicles, and the Drive
and Fly actions move trucks and planes, respectively, between sites.

The paper is organized as follows. Section 2 describes the CPlan methodology. Each of the three following
sections describes one of the analysis and reformulation techniques mentioned above and how it can be applied
to automating CPlan: Section 3 describes TIM, Section 4 describes PABLO, and Section 5 describes Crawford
et al.’s symmetry-breaking system. Section 6 mentions some related work, Section 7 draws conclusions about
the effort to automate CPlan, and finally Section 8 describes future research directions which stem from this
work.

2 CPLAN

CPlan is a methodology for solving planning problems [van Beek and Chen, 1999]. The CPlan architecture
describes a technique for hand-compiling planning problems into Constraint Satisfaction Problems (CSPs)2.
The resulting CSP is then solved using an existing constraint satisfaction algorithm [Prosser, 1993], and
the solution is transformed by hand into a plan which solves the original problem. CPlan is an extremely
fast planner but relies on expert knowledge; automating the discovery of this knowledge would produce a
powerful new planning system. This section describes the CPlan methodology then highlights the most
important uses of domain knowledge in CPlan.

The CSPs which CPlan produces are composed of variables and constraints. Each variable has a finite
domain, and a solution to the CSP assigns exactly one value to each variable from its domain. Each constraint
acts on a set of variables. When passed values for the set of variables it affects, a constraint returns either true
— the value assignment is consistent with the constraint — or false — the value assignment is inconsistent
with the constraint. The reasoning process by which the constraint decides whether a set of values is
consistent is described by a user-defined function. Therefore, the system cannot understand or reason with
the constraints themselves; rather, it invokes them and reasons with their return values. Such non-declarative
constraints are termed implicit constraints.

The CPlan methodology describes two classes of constraints which together comprise the CSP encoding.
Core constraints are the normal constraints produced by the compilation process illustrated in Figure 1 and
are required for soundness and completeness. The core constraints in the CPlan methodology are the action
constraints which ensure that changes in the state of the world are justifiable by action applications and the
state constraints which ensure consistency within a given state [Schubert, 1994; van Beek and Chen, 1999].

Heuristic constraints provide domain-specific information which facilitates the solution process, but they
prune no more invalid solutions than those already removed by the core constraints. Each CPlan encoding
uses a variety of highly domain specific and sometimes quite intricate heuristic constraints to improve its
performance; however, Van Beek and Chen identify the following handful of heuristic constraints as the most
important and effective:

Distance constraints provide upper and lower bounds on the number of steps to change a predicate’s
value. Lower bounds allow the planner to avoid overly optimistic planning choices. Upper bounds allow
the planner avoid ineffectual action sequences and actually terminate rather than endlessly searching
for longer plans.

Symmetric values constraints are described by Fox and Long as constraints which eliminate redundant
search over symmetric values for CPlan variables. Depending on the encoding style, however, similar
symmetries might arise between variables rather than between variable values. The fundamental quality

2For a review of CSPs, see [Meseguer, 1989].



of these symmetries is that they arise between interchangeable objects or sets of objects from the original
planning problem.

Action choice constraints eliminate redundant search over different action orderings. An action choice
constraint allows the planner to ignore all but one of a group of reordered action sequences, all of which
have the same eventual effect.

Capacity constraints are constraints which make effective use of CPlan’s capacity for numerical reasoning.
CPlan’s CSPs can contain numerical variables with finite domains such as integer variables with both
upper and lower bounds.

Domain constraints are restrictions on the allowed values of variables. These can be viewed as super-
specializations of object types which restrict functionality according to the circumstances of a particular
instance or domain.

In addition, CPlan uses careful choices of variables and values in its encodings to exploit regularities in
domains (e.g., the in and at predicates in the logistics domain can be represented by encoding packages as
variables with domains that includes sites, trucks, and planes)3.

It is the domain specialized instantiation of heuristic constraints and the careful use of variables and
values which set CPlan apart from other CSP planners. CPlan’s methodology crosses the boundary between
Artificial Intelligence (AI) and Operations Research. CPlan’s carefully tuned, hand-crafted encodings are an
application to an AI problem of the meticulous investigation of individual scenarios common in Operations
Research. The result is a planning system which almost uniformly outperforms other planners in speed and
success rate.

Still, from an AI point of view, painstakingly encoding each domain and instance with expert knowledge
is unsatisfying as a solution to the problem of general planning. So, CPlan should not be seen as a new
contender among the state-of-the-art planning systems, rather it should be viewed as a guide for where best
to expend effort in automating the domain specialization process.

An automated version of CPlan must produce core constraints and heuristic constraints and make effec-
tive use of CPlan’s variant of constraint satisfaction. However, because every CSP planner must produce
core constraints, there is already a substantial body of literature on automating their compilation. One
style of encoding core constraints, the “state-based” encoding of Kautz and Selman [Kautz et al., 1996],
strongly resembles CPlan’s action and state constraints. However, two other substantial groups of encodings
exist: state-space encodings [Kautz et al., 1996], of which state-based encodings are a member, and causal
encodings [Mali and Kambhampati, 1999]. Many of the different encodings offer tradeoffs which make them
attractive as core constraints for automated CPlan. These tradeoffs are described in [Ernst et al., 1997]
and [Mali and Kambhampati, 1999]; thus, I will only mention in this paper those benefits and costs which
directly bear on automating CPlan. Most of these encodings have already been automated and could be
used as is to provide CPlan’s core constraints.

Therefore, the three main challenges in automating CPlan are: choosing an appropriate core constraint
encoding, automating the creation of CPlan’s heuristic constraints, and making effective representation
choices (variable identities and domains) in the final CSP. In the following sections, I focus on these issues
and how they can be automated and exploited in CPlan.

3 TIM

TIM, the Type Inference and analysis Module, performs a powerful analysis on STRIPS problems [Fox and
Long, 1998]. This analysis produces invariants which can be used to help automate the discovery of distance
constraints and to improve the choice of variable identities and domains in automated CPlan’s CSP encoding.

TIM works by examining a simplified version of an input planning domain. Its simplification process begins
by splitting actions into fragments, each of which describes the action from the point of view of one of its
parameters. In the process, TIM replaces full predicates with predicate fragments. For example, a predicate
which expresses that a package is in a truck, in(package, truck), would be replaced by two predicates: the
first denotes that the package has the property of being in something, and the second denotes that the truck
has the property of containing something. In general, an n-ary predicate P (x1, . . . , xn) will be split into n
predicates P1(x), . . . , Pn(x).

Figure 2 shows how TIM fragments the Load action from the logistics domain. The first fragment con-
structed from this action states that an object which is small and has the property of being at somewhere

3There are other issues which must be addressed in a CPlan encoding which are not relevant to the focus of this
paper: CPlan’s variables must be set as either visible or hidden (derivable from the visible variables), and CPlan’s
constraints have weightings that assist in choosing an order of evaluation for the constraints. I will briefly describe
related work which bears on these issues in Section 6.



Load (package, site, vehicle)
pre: small(package), location(site), vehicle(vehicle)

at(vehicle, site), at(package, site)
add: in(package, vehicle)
del: at(package, site)

Load1 Load2 Load3

pre: small1, pre: location1, pre: vehicle1,
at1 at2, at2 at1

add: in1 add: add: in2

del: at1 del: at2 del:

Figure 2: Top: the Load action from the logistics domain. Bottom: the fragments of Load con-
structed by TIM. Fragment Load1 refers only to the first argument to Load, fragment Load2 refers
only to the second, and fragment Load3 only to the third.

can give up its at property to gain the property of being in something. The other two are similarly object-
centered fragments of the original Load action focusing on the site and vehicle.

Action fragments can be used to knit together predicate fragments into groups which represent types, sets
of functionally similar objects4. This process is based on a a motivating idea which is unstated in Fox and
Long’s work: each predicate induces a type on each of its fields. This is clear for the unary predicates small,
location, and vehicle, but less clear for predicates like at. However, at(x, y) also intuitively induces a type
on each of its arguments: x is of a type that can have a location and y is a location. An object belongs to
the type defined by all the predicate fragments in which it can take part.

Since actions define the transition from one predicate to another, it is the structure of the actions which
defines the type hierarchy. For example, Load1 allows objects which have the properties at1 and small1 to
exchange these for the properties in1 and small1. Thus, every object which can be at1 and small1 can also
be in1 and small1, and the set of objects which can have the type {small1, at1} is a subset of the set of
objects which can have the type {small1, in1}. Therefore the type {small1, at1} is itself a subtype of the
type {small1, in1}.

In fact, an action fragment is more than just a type relationship; it is a schema of type relationships. For
example, by the same logic as above, Load1 also shows that the set of objects that can be small1, at1, and
blue1 is a subtype of the set of objects that can be small1, in1, and blue1. In general, the type defined by
the precondition predicate fragments is a subtype of the type defined by the effected preconditions — the
preconditions plus the add list minus the delete list. Moreover, this relationship holds for any subtype of
the precondition type and the analogous subtype of the effected precondition type.

Each of the other Load fragments also creates type constraints. Indeed, each fragment of every action
imposes constraints on the types of objects. These constraints together define a type hierarchy which,
in Fox and Long’s terms, is neither over-discriminating — distinguishing functionally identical objects —
nor under-discriminating — grouping functionally distinct objects. However, TIM does not reason using
this rule; instead, it uses a simplified version of this rule which is under-discriminating. TIM makes two
simplifications to the type hierarchy.

First, TIM assumes that action fragments define an equivalence rather than subtype relationship5. Al-
though not justified by Fox and Long, this seems a reasonable assumption for planning domains since they
usually allow the effects of a sequence of actions to be undone by further actions. If an action’s effects are
reversible, then the action’s preconditions are both subtypes of and supertypes of its effected preconditions.
In this case, the preconditions and the effected preconditions do define equivalent types.

TIM’s assumption of equivalence will certainly never cause it to over-discriminate, but it will cause under-
discrimination. For example, in a logistics domain with fuelled and unfuelled predicates for the vehicles

4For this description, types are sets of objects. One type is a subtype of another if and only if the first type’s set
of objects is a subset of the second type’s.

5TIM provides special treatment for action fragments which, like Load2, add or remove predicate fragments without
exchanging them for new fragments; for more details see [Fox and Long, 1998].



at1 in1

Load1

Unload1

Figure 3: An FSM for the at1 + in1 type space. Each state is a bag of predicate fragments which
objects in this space can achieve. The arcs represent action fragments which allow objects to move
between the states.

but no action for refueling, vehicles which are initially fuelled, and thus capable of moving, are clearly
functionally distinct from unfuelled vehicles. However, TIM will replace the actual subtype relationship
between fuelled1 and unfuelled1 with an equivalence, putting both fuelled and unfuelled vehicles into
the same type6.

TIM’s second simplification is to define types only in terms of single predicate fragments. For example, the
fragment Load1 from Figure 2 would cause TIM to make the types in1, at1, and small1 equivalent rather
than making the two types {small1, at1} and {small1, in1} equivalent.

TIM redresses these simplifications somewhat by ignoring predicate fragments which appear in both the
preconditions and the effected preconditions; these “unchanged” predicate fragments include those which
appear only in the precondition list and those which appear in both the add and delete lists. Such predicate
fragments can be safely ignored because they add no extra type information: the type defined by a single
predicate fragment is already equivalent to itself.

With these simplifications, any predicate fragment which appears in an add or delete list of an action
fragment is grouped into the same type as every other predicate fragment appearing in the action fragment’s
add or delete list. So, types are defined by the transitive closure of predicate fragments which share add
and del lists of an action fragment.

TIM now creates a new structure called a type space for each type. The type spaces describe the behavior
of all the objects of a given type. TIM fills out the type spaces by inserting each object into the spaces
representing each of its types. An object participates in each of the type spaces of its initial predicate
fragments’ types (the fragments true for the object in the initial conditions). An object’s initial state in each
type space is defined by the combination of predicate fragments from that type space which are true for the
object in the initial state. Each starting state is a bag of predicate fragments. Thus, the starting state of
an object in a given type space may include several predicate fragments from the initial conditions which
were all grouped into that type or even several copies of the same predicate fragment. Objects’ full types
are defined by the set of type spaces in which they take part.

In the final stage of its setup, TIM derives all states reachable in each type space from the states induced
by the initial conditions. Anywhere a state contains all the predicate fragments in the delete list of an
action fragment, TIM applies that action fragment to the state to derive a new state; the deleted predicate
fragments are replaced by the predicate fragments in the add list. This process continues until quiescence7.
The resulting graph of states together with the transitions which created them define a finite state machine
(FSM).

Each type has an associated FSM. Figure 3, for example, is an FSM for the type defined by at1 and
in1. These type spaces and their FSMs are the primary data structures in TIM. Using these spaces and the

6Even if the domain does have a reversing action (as with the Refuel action), there is still a subtle difference
between TIM’s assumption and the true type hierarchy; for example, it is not the types fuelled1 and unfuelled1

which are equivalent with a Refuel action, but the types {at1, fuelled1} and {at1,unfuelled1}.
7Again, TIM provides some special treatment. This time, it is for spaces with transitions that allow creating

copies of a predicate fragment without changing the state otherwise. Again, I will overlook this special treatment
since it has little bearing on invariants, but it is interesting to note that the type information derived by this process
is over-discriminating.



original STRIPS planning problem, TIM discovers the following invariants:

Identity invariants — Identity invariants derive from spaces in which no state contains more than one
instance of a given predicate fragment. For example, a package can only be in one place at a given
time. This can be discovered in the type space of Figure 3 because no state in the space contains more
than one copy of the in1 fragment. From this fact, TIM derives the invariant that if a package has the
in relationship with two objects, those objects must be equal. TIM also derives a similar invariant for
at1 in this space.

In general, an identity invariant for a space defining type T in which predicate fragment Pk appears at
most once in any given state would read that if an object of type T appears in predicate P in place k
with two different sets of other arguments to P , those other arguments’ values must be equal.

Fox and Long also describe an extension to identity invariants which applies them to spaces in which
an object can attain at most k instances of a given fragment.

State membership invariants — Since type spaces are closed — all transitions lead to another state
inside the type space — an object which starts in some state in a type space must always inhabit a
state in that type space. For example, each state in the type space from Figure 3 contains either the
at1 fragment or the in1 fragment; so, packages must always be either in something or at somewhere.

State membership invariants generalize this principle. TIM can construct a state membership invariant
for every object which is a member of a type space T containing predicate fragments P1 through Pn to
the effect that at any time, one of the predicates represented by the fragments P1, . . . , Pk holds for that
object; in other words, for one of those fragments, there exist other objects to fill out the predicate’s
arguments such that the predicate holds in the current state.

Uniqueness invariants — If, in a given type space, two predicate fragments never occur in the same state,
TIM can assert that an object of that type will never take part in both predicate fragments at once. In
the type space from Figure 3, for example, at1 and in1 never appear in the same state; therefore, TIM
can specify that a package can never be both at someplace and in something.

Uniqueness invariants implement this idea. TIM can construct a uniqueness invariant for any two
predicate fragments Pj and Qk which inhabit the same type space but never the same state. The
invariant states that no object can simultaneously take on both properties, Pj and Qk.

Fixed resource invariants — Consider a logistics domain with no packages, no Load action, and no
Unload action. In this simplified domain, an object can change the location it is at only by using the
Move action. Whenever an object Moves, it gives up the property of being at some location and takes
on the property of being at some other location. Therefore, an object is always at the same number of
locations.

Fixed resource invariants describe predicates which are always exchanged in balance such as at above.
The invariants state that the same number of true instances of a given fixed predicate occurs at every
step of the plan. TIM discovers fixed resource invariants at the level of the original STRIPS problem
description. For a given predicate, if, in every action which deletes it, it is also added in the same
quantity, that resource is fixed. In the original logistics problem, this means that TIM discovers that
small, location, truck, and all the other unary type predicates are fixed resources, but at is not fixed
because packages can exchange being at a location for being in a vehicle.

These four invariants provide a substantial amount of domain specific information, but they could all also
be improved. Identity, state membership, and uniqueness invariants could be strengthened by using the
precise construction of the type hierarchy described above. This would make TIM’s type distinctions finer.
For example, in a logistics domain with fuel but no refueling action, the type fuelled1 would be a subtype
of — rather than the same type as — the type unfuelled1. Finer typing would allow TIM to discover more
invariants and produce more restrictive type classifications.

Improving fixed resource invariants requires a new viewpoint. Although they are described separately by
Fox and Long, fixed resource invariants can be viewed as a combination of identity and state membership
invariants for predicates. A fixed resource invariant (of size one) states that there exists some set of arguments
for which a predicate is true (state membership) and that if two different sets of arguments make a predicate
true, those two sets must be equivalent (identity).

This connection to identity and state membership invariants suggests an extension to fixed resource in-
variants using reasoning similar to that used for uniqueness invariants. If two predicates do not co-exist
— in the sense that when one is added, the other is always deleted in equal number — and they are both
otherwise fixed resources, the two predicates together can be considered a fixed resource. These conditions
hold for the at and in predicates, for example. Neither one alone is a fixed resource, but the total number
of true at and in predicates is fixed.



Even as TIM’s invariants are, however, an automated version of CPlan can use them to discover a great
deal of domain knowledge and apply that knowledge in its CSP encoding. The identity, uniqueness, and
state membership invariants can improve the efficacy of CPlan’s encoding; a new analysis of the type spaces
can provide information for lower bound distance constraints; and fixed resource invariants can be used to
create capacity constraints.

Together, identity, uniqueness, and state membership invariants can help improve the effectiveness of an
automated CPlan encoding. These invariants capture exactly the information needed to decide to encode
a predicate in a CSP as a variable/value pair rather than a large set of Boolean variables. For example,
an identity invariant from Figure 3 states that a package in the logistics domain has at most one location.
Therefore, rather than creating one Boolean variable for each instance of at(x, y) (over packages and lo-
cations), the encoding can have one variable for each package. That variable’s value will be the package’s
location if it participates in an at predicate; otherwise, the variable will have a dummy value indicating that
no at predicate is true for that package. A separate variable for each package would track the in predicate.
Rewriting predicates in this manner can drastically reduce the size of the final encoding.

In general, if a predicate fragment Pk participates in an identity relationship (of size one), the kth argument
of P can be transformed into a variable with one value for each possible set of values of the other arguments.
If the predicate is binary, the values will be each instance of the type induced on the other argument;
otherwise, the values will be each instance of the cross-product of the types induced on all other arguments.

State membership invariants and uniqueness invariants can be used to refine the CSP encodings. For
example, since in1 and at1 from Figure 3 are unique predicate fragments (with respect to each other), it
is unnecessary to use two variables to represent them; a single variable can stand for both. If a packages
variable’s value comes from the at predicate, no in predicate is true for that package and vice versa. In
general, a special dummy value would represent the case when none of the predicates is true. In this case,
however, the state membership invariant for packages indicates that this dummy value is unnecessary. The
invariant states that a package must be either in or at something; so, the dummy value will never be used.

In general, if two CSP variables represent predicates which are unique with respect to each other, they
can be merged into a single variable with the combined domains of the original two variables (but only one
dummy value). If the predicate fragments represented by a CSP variable represent a whole state membership
group, the dummy value in the variable’s domain can be eliminated.

It would even be possible to split a variable in order to merge it with two other variables with which it is
unique but which are not unique with respect to each other. In order to accomplish this, automated CPlan
would have to constrain the two variables’ values to be equal whenever either of their values falls into the
domain of the split variable.

While it is not clear that making all possible merges of variables would be profitable, it is likely that merging
entire type spaces into a single variable is valuable when it is possible. As in the case of the at1 + in1 space
from Figure 3, such a merge will produce a very compact representation of a type space. Thus, identity,
uniqueness, and state membership invariants offer a powerful method for capturing regularities in the domain.

The structure of the state spaces can also be used to help automate CPlan. The state transitions in each
space can be used to help define distance constraints. The transitions produce a lower bound for the number
of steps to achieve some new property for an object from the current state. Because the transitions ignore
preconditions and object interactions, the number of steps to a goal predicate in a TIM property space will
be at most the minimum number of steps necessary to actually achieve that predicate. In fact, for its lower
bound to achieve any particular goal predicate from a current state, TIM can use the maximum lower bound
in any state space in which a predicate fragment of the goal predicate participates.

These lower bounds can be added at each step of the CSP encoding conditionally limiting a variable’s
value at succeeding steps based on its current value. In a state-based encoding, this amounts to actually
reducing the domain of the variable instantiated at different steps. If the variable cannot achieve some value
y if its current value is x in fewer than k steps, then the implement lower bound constraint would disallow
the value y for the variable at the next k steps if its current value is x. In a causal encoding, the same effect
can be accomplished by constraining steps that add the new value y not to occur until after k steps have
passed.

3.1 Related Work

There are a variety of other reformulation and analysis systems which also act at the precompilation level.
The DISCOPLAN system acts at the precompilation level and discovers some of the same invariants as
TIM [Gerevini and Schubert, 1998]. Moreover, DISCOPLAN’s method of discovering reachable tuples of
predicate arguments might augment TIM’s type inference mechanism and CPlan’s exploitation of TIM.

For predicates with a small number of values for one argument, TIM could relax its single object centered
view to include both the predicate name and the identity of that argument. This might help in discovering



domain constraints; for example, in the logistics domain, TIM might deduce that trucks that are at Phoenix
are actually of a different type than those that are at Atlanta. As a result, TIM would not need to instantiate
any clauses describing movement between cities for trucks.

Also, TIM can limit the domain of the variables it creates because of identity invariants using DISCOPLAN.
Rather than making the domain equal to the cross-product of the types of all the other arguments in a
predicate, TIM can set the domain to just that set of argument values which is reachable according to
DISCOPLAN.

Fox and Long describe a technique for symmetry detection based on TIM’s type system which also applies
to the precompilation phase [Fox and Long, 1999]. The symmetries detected by this technique can be broken
by the symmetry-breaking techniques described in Section 5.

Finally, the PABLO abstraction system [Christensen, 1990] (described in the next section) and some other
abstraction systems can produce a new, abstracted version of the planning domain during compilation. The
abstract domains lack some unimportant details that clutter the original. These abstract domains can be
fed back into the precompilation stage where they may reveal regularities to TIM that are masked in the
original domain.

4 PABLO

PABLO is an abstraction system which focuses on ignoring “details” in planning domains in order to expend
initial effort on their more complex facets [Christensen, 1990]. PABLO offers a new way to compile planning
problems into CSPs by moving between abstraction levels rather than just by changing plan lengths. More-
over, the analysis PABLO performs to construct its abstraction hierarchy suggests a method for automating
lower bounds on distance constraints.

Korf formalizes abstraction as the process of moving between different levels of detail (information quan-
tity) and types of representation (information structure) [Korf, 1980]. This paper concentrates on systems
which change the level of detail, particularly on abstraction systems in the style of the ABSTRIPS planner.
ABSTRIPS moves through a hierarchy of abstraction spaces [Sacerdoti, 1974]. “Higher” levels in the hierar-
chy are less detailed; “lower” levels are more detailed. The lowest level is the original or “ground” planning
domain.

An abstraction planner searches down through the abstraction hierarchy, creating partial solutions at high
levels which are expanded to more and more complete solutions at lower levels. If a solution is found at the
ground level, it is an actual solution plan. On the other hand, if at some level no solution can be found, the
planner must backtrack up one or more levels in the hierarchy until it can change the partial plan that led
to the dead end.

PABLO acts on a STRIPS problem specification; it relaxes the conditions under which all goal predicates
— actual goals and action preconditions — hold. At abstraction level k, each predicate holds anytime there is
a plan to make the predicate true in k steps or less which could be inserted at that point. Note, however, that
these plans might disturb other predicates’ truth values; so, PABLO’s relaxation ignores some interactions
between subgoals. The result of the relaxation process is that goals which appear not take much planning
to establish are assumed to be true, and the planner concentrates on establishing those goals which require
greater effort.

Formally, a predicate relaxed to level 0 P 0 is equal to the ground predicate P , and a predicate relaxed to
level 1 P 1 is equal to the disjunction of the ground predicate and the preconditions of all actions which add
the ground predicate. In general, P n = P n−1 ∨

∨m

i Reg(Opi, P
n−1) where Reg(Op, P ) is the regression of

P through action Op — the set of all preconditions of the action if it adds P and false otherwise.
Using these formulas, PABLO can determine whether a relaxed predicate P at abstraction level k holds

initially based on whether P k holds in the initial conditions. PABLO reasons about whether a relaxed
predicate holds at intermediate stages of a plan using modal truth as described in [Chapman, 1987] and
[Kambhampati and Nau, 1994]. This reasoning is unnecessary in standard (non-lifted) plan encodings. It
can be replaced in causal encodings by constraints describing the relaxed preconditions of an action and in
state-space encodings by modified frame axioms which account for changes in predicate truth values based
on their relaxed formulas.

PABLO relaxes all the goal predicates until only one is initially false, plans for this predicate using
actions with relaxed preconditions, and then successively lowers the abstraction level, planning to resupport
predicates which become untrue at lower relaxation levels and patch threats which occur in the replanning
process.

In the terminology defined in [Allen et al., 1991], PABLO is a theorem increasing abstraction system with
the upwards solution property. That PABLO is theorem increasing means that PABLO’s abstraction process
can only increase the number of solutions to a problem. PABLO is theorem increasing because the relaxed



Action A Action B
add:P add:Q
del:Q del:P

Figure 4: An example STRIPS domain. The one step ground plan < A > makes predicate P true;
similarly, the ground plan < B > makes Q true. Therefore, P ’s and Q’s relaxed predicates are
both true at abstraction level 1. Also, the null plan satisfies the goal P ∧ Q at abstraction level 1.
However, no ground plan can ever make P and Q simultaneously true (unless both are true in the
initial state).
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Figure 5: Planning as constraint satisfaction with abstraction. The box labeled CPlan Solution
Engine represents the Compiler and Solver from Figure 1 including the plan length loop. Ab-
straction adds a second loop moving between abstraction levels. If an abstract solution is found, the
abstraction level is lowered and the new level’s encoding is changed to reflect the abstract solution.
If no solution is found, the abstraction level is raised (and previous solutions from the raised level
are disallowed). If a ground solution is found, it is decoded into a plan and returned.

predicates it creates are always true when a lower level (tighter) predicate is true. So, there will be at least
as many plans at higher abstraction levels as there are at the ground level. Indeed, it is possible for a plan
to appear to exist at a higher abstraction level when no such plan exists at the ground level as in Figure 4.

That PABLO has the upwards solution property means that if a solution plan exists at lower level in the
abstraction hierarchy, a solution which can be refined to that lower level plan exists in each higher abstraction
level. This property follows directly from the fact that PABLO’s abstraction process is theorem increasing.
The upwards solution property guarantees that it is not possible for a plan to exist at the ground level unless
a corresponding plan exists at each higher level. With this property, PABLO can search from the top of
the abstraction hierarchy down and guarantee completeness, reasoning in PABLO can always start in higher
(and hopefully simpler) abstraction spaces before proceeding to lower spaces.

PABLO offers two techniques to assist in automating CPlan, the first acts on the compilation process and
the second acts on the compiled representation. First, restructuring the standard compilation process used
in CPlan (compiling to successively longer plan lengths) to work with an abstraction hierarchy offers a way
to break up the usual compilation process into a series of more focused planning stages. Second, Christensen
describes PABLO’s relaxed predicates as providing “upper bounds” for the number of steps to achieve the
strict predicate. These “upper bounds” are actually of use in developing lower bounds for CPlan’s distance
constraints.



PABLO, along with other ABSTRIPS-style abstraction systems, introduces a new way to sequence com-
pilation of planning domains: compiling into successively more detailed abstraction spaces as shown in
Figure 5. Within each space, it is still necessary to compile to successively longer plans8, but much of the
plan may already be fixed, committed at previous levels of the abstraction hierarchy.

The potential benefits of this style of compilation are great. Planning in the abstract levels can proceed
quickly and produce quality partial plans. These plans feed back into the next lower level of abstraction,
and lower compilation levels in the hierarchy can begin planning with the abstract plans (whereas currently
planning begins from scratch at each new plan length).

Ideally, an abstraction system for CPlan would have the downward solution property [Allen et al., 1991]
and the ordered monotonicity property [Knoblock et al., 1991]. Having the downward solution property
means that if a solution is found in an abstract space, that solution can be refined to a solution in each lower
level space. An abstraction system with this property would avoid backtracking through abstraction spaces;
so, if a planning problem had no solution, that would be guaranteed to be found at the highest abstraction
level. Having the ordered monotonicity property ensures that the refinements necessary to change a high
level plan into a lower level plan will not change the truth value of predicates at already committed steps.
In other words, the refinement process can proceed completely independently between each step of the high
level plan. Such an abstraction system would allow the equivalent of divide-and-conquer planning.

Unfortunately, the PABLO system has neither the downward solution property nor the ordered mono-
tonicity property9. The result is that in order to use the unaltered PABLO abstraction system, automated
CPlan will need to be able to report unsolveability of planning problems and non-locally repair partially
instantiated plans.

Because abstract plans in PABLO are not guaranteed to refine into successful lower level plans, the PABLO
system may need to backtrack out of dead-end partial plans to higher abstraction levels. Unfortunately,
planning as constraint satisfaction systems cannot report failure without the advantage of upper bound
distance constraints. At best, CSP planners can report that no solution exists up to some fixed plan length
(and local-search based systems cannot even reliably report this much [Kautz and Selman, 1996]). Therefore,
in order to use a backtracking abstraction system, CPlan either needs to detect upper bounds on plan length
or arbitrarily select such bounds.

On the other hand, CPlan can avoid backtracking altogether. In order to do this, it must avoid absolutely
committing to high level plans at lower abstraction levels. Instead of committing to these plans, CPlan can
use them as heuristics to speed solution.

In a depth-first search constraint solver such as the backtracking solver CPlan currently uses, the high
level plan can be used to determine the initial variable and value choices in the search tree, directing search
toward the subtree which previous levels indicate as most valuable; however, if that subtree proves to contain
no solution, search can backtrack into regions of the space which alter the high level plan.

Adding dynamic backtracking techniques [Ginsberg and McAllester, 1994] to CPlan’s constraint solver
would allow the system to maintain as much of the partial plan as possible during backtracks. Dynamic
backtracking allows a systematic search engine to change the value of the variables causing an inconsistency
without altering unrelated values, even if the responsible variables are higher in the search tree than some
of the unchanged variables.

In a local search constraint solver, the partial plan produced by a higher abstraction level can be used to
define the initial neighborhood of the search. If the partial plan is useful, this will seed the search in the
appropriate area; otherwise, the search can eventually work its way out of that neighborhood and find a
solution elsewhere.

CPlan can also tolerate PABLO’s lack of the ordered monotonicity property. The standard state-space
encodings of planning as constraint satisfaction are inefficient for the non-local plan repair necessitated by
this lack, but causal encodings can be quite effective for planning from a partially instantiated plan [Mali
and Kambhampati, 1999]. The problem with state-space encodings stems from the fact that non-local repair
requires examining an entire plan and inserting steps between existing steps. Unfortunately, state-space
encodings require that steps be contiguously ordered; so, a partial plan must commit to both an ordering
of steps and the number (though not the identity) of steps intervening between the committed steps. Mali
and Kambhampati point out that causal encodings provide a solution to this problem. Although causal

8It seems unlikely that step-by-step compilation can be avoided. This compilation process is forced by the fact
that the general planning problem is PSPACE-complete [Erol et al., 1992]. In order to compile to the NP-complete
problem of constraint satisfaction, a planning problem must be constrained somehow to become an NP-complete
problem [Kautz et al., 1996]. Restricting solution length is the only technique currently used to achieve this reduction
and the only one of which the author is aware.

9There are practical abstraction systems that have the ordered monotonicity property. There are also practical
systems with the downward solution property. Systems of both sorts will be discussed as related work in Section 4.1.



encodings are, in general, less efficient than state-space based encodings, causal encodings allow a partial
plan to assert a non-contiguous ordering and allow unfettered insertion of new steps between existing ones.

Using causal encodings, CPlan can search using the partial plans produced at each level of PABLO’s
abstraction hierarchy. It can encode an appropriate length plan and then build the higher level partial plan
into the encoding. However, CPlan will still need to compile to successive lengths at each level in order to
determine how many extra steps are needed to fill out the partial plan.

PABLO’s relaxed predicates can also be used to produce lower bound distance constraints. Although
Christensen describes PABLO’s relaxed predicates as providing upper bounds on subgoal plan lengths, for
the purposes of CPlan, they actually provide lower bounds. The reason is that the CPlan upper bounds are
global and firm: if an upper bound states that a package in Boston will be in Pittsburgh in at most k steps,
it means that the plan must put the package in Pittsburgh before k steps pass. PABLO’s relaxed predicates
describe whether the planner could get the package to its destination in k steps or less. Therefore the lowest
level relaxed predicate which is true in a given state provides a lower bound on the number of steps needed
to make that predicate true from the given state.

The lower bounds can be implemented as described in Section 3. If a lower bound is activated, it would
either restrict the possible values of its variable over the succeeding steps (in a state-space encoding) or apply
a restriction on the number of steps before an action can assert a new value for the variable (in a causal
encoding).

4.1 Related Work

There are a variety of other systems for creating and exploiting abstraction hierarchies [Sacerdoti, 1974;
Knoblock, 1990; Allen et al., 1991]. ALPINE in particular has the ordered monotonicity property [Knoblock,
1990]. So, ALPINE’s lower level plans will not disturb any predicates at steps committed at higher abstrac-
tion levels. Although this property restricts the abstraction steps ALPINE can take, using a system with
this property in CPlan would have a substantial benefit. With the ordered monotonicity property, CPlan
could establish a partial plan and then treat each separate pair of contiguous steps in the partial plan as
a subproblem. Since CPlan could plan from scratch for each subproblem, causal encodings would not be
necessary and CPlan could use state-space encodings freely.

Tenenberg’s abstraction system [Allen et al., 1991] has the downward solution property. So, using this
system, CPlan could fully commit to partial plans at each abstraction level. However, in order to achieve
the downward solution property, Tenenberg’s system accepts severe restrictions which limit the type of
abstractions it can perform.

[Mali and Kambhampati, 1998] formulates HTN planning as constraint satisfaction. Work in case-based
planning also suggests novel compilation methods for planning as constraint satisfaction systems [Hanks and
Weld, 1995].

5 Symmetry-breaking Predicates

Crawford et al.’s symmetry-breaking predicates system [Crawford et al., 1996] detects and exploits symme-
tries in Boolean satisfiability (SAT) problems, a restricted class of constraint satisfaction problems. Their
system finds symmetric (interchangeable) variables in a problem and then inserts new constraints which
remove the symmetries by invalidating all but one of the symmetric variable arrangements. The equivalent
process in a CSP would be to find interchangeable variables (or values) and insert new constraints to disallow
all but one of the rearrangements of the equivalent variables (or values). Symmetry detection can be used
to find CPlan symmetry constraints and can also find some CPlan action choice constraints.

The CSP variant Crawford et al. study, Boolean satisfiability, is a particularly simple one. A Boolean
satisfiability problem is a CSP in which the variables’ domains are restricted to the two values true and
false; each variable has a negated version which is constrained to have the opposite value of the variable.
Constraints are sets of variables, either negated or non-negated, of which at least one must be true. Listed
below is a small SAT problem from [Crawford et al., 1996]. The variables are a, b, and c and their negations
a, b, and c. The “at-least-one” constraints are represented as sets; at least one variable in each set must
have the value true.

{a, c}, {b, c}, {a, b, c}, {a, b}

There are two solutions to this problem: {a = true, b = false, c = false} and {a = false, b = true, c = false}.

In each solution, the value of a is the opposite of a’s value and similarly for b/b and c/c. Both solutions
make one variable true in each constraint. Moreover, a and b are symmetric in this problem. Rewriting the
problem by exchanging a for b and a for b shows the symmetry:

{b, c}, {a, c}, {b, a, c}, {b, a}
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Figure 6: A graph representation of the SAT problem {a, c}, {b, c}, {a, b, c}, {a, b}. Each positive
and negative variable is represented by a vertex. Corresponding positive and negative variables are
linked. Constraints with more than two variables are also represented by a vertex; in this case,
vertex 1 represents the only such constraint {a, b, c}. Constraints with two variables are represented
by an edge between the variables’ vertices. Each style of circle (single ring, double ring, and wide
ring) represents a different graph color. Notice that swapping the labels of vertices a and b as well

as vertices a and b produces an identical graph.

Although the order of the constraints and the order of the variables within the constraints has changed,
this new problem nonetheless contains precisely the same constraints as the previous one. Therefore, a and b
are symmetric variables. In general, a symmetry in SAT is a relabelling of the variables in a problem which
leaves the set of constraints unaltered except for order.

Symmetries are detected by constructing a graph from the SAT problem such that each automorphism
of the graph — a relabelling of the nodes in the graph which produces an equivalent graph — represents
a symmetry in the SAT problem. While the problem of detecting automorphisms is not known to be easy
(i.e., not known to take only polynomial time), there are several packages for detecting automorphisms in
graphs which are quite efficient.

Each variable in the SAT problem is represented in the symmetry finding system’s graph, G, by a vertex.
Negated variables are given one color while non-negated variables receive a second color. Each pair of
variable vertices is connected by an edge. Each constraint in the SAT problem is a vertex of a third color.
The different colors ensure that constraint and variable vertices are not swapped in an automorphism since
no automorphism is allowed to swap two variables of different colors. Initially, there is an edge between
variable vertex x and constraint vertex y in G if and only if the variable x appears in the constraint y
in the original SAT problem. For efficiency however, binary constraint vertices are removed, and the two
vertices of the variables participating in the constraint are connected directly. In the resulting graph, any
automorphism represents a symmetry in the SAT problem, and existing algorithms can be used to detect
automorphisms. Finally, the relabellings of variable vertices in an automorphism can be translated directly
into a relabelling of variables in the SAT problem. Figure 6 shows the graph for the example SAT problem
described above.

Having detected a set of symmetries, Crawford et al.’s system eliminates them by breaking each symmetry.
It accomplishes this by viewing solutions as numbers and insisting that only the numerically least of a set
of symmetric solutions be investigated.

If the domain elements false and true had numerical values (0 and 1, respectively), an ordering of the
variables in a problem along with the value assignments in a solution would define a number. For example,
the variable ordering < a, b, c > and solution {a = true, b = false, c = false} from above defines the number
100.

Using this numerical interpretation of solutions, Crawford et al.’s system constructs an inequality con-
straint for each symmetry which breaks it. The inequality states that every acceptable solution value for the
canonical ordering < x1, . . . , xn > is less than or equal to the solution value for the symmetrical reordering
< xs1

, . . . , xsn
>. For any two different symmetric solutions, this inequality will be true of only one of the

solutions (the numerically least).
For example, the symmetry in the problem from Figure 6 can be described by reordering a canonical

variable ordering < a, b, c > to < b, a, c > (in the first position, b replaces a; in the second position, a
replaces b; in the third, c stays the same). The predicate breaking this symmetry states that acceptable
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Figure 7: A graph representation of the SAT problem {a, c}, {b, c}, {a, b, c}, {a, b}, the same problem
as in Figure 6. However, in this problem, the “exactly-one” constraint between each variable’s values
is explicitly represented by the small, black nodes.

solution numbers with digits ordered < a, b, c > are less than or equal to solution numbers with digits ordered
< b, a, c >. This inequality can be expressed by comparing the numbers digit by digit and insisting that at
the first discrepancy, the number ordered by < a, b, c > is less than the number ordered by < b, a, c >. In
other words, the first digit of < a, b, c > must be less than or equal to the first digit of < b, a, c > (a ≤ b),
if the first digits are the same, the second digit of < a, b, c > must be less than or equal to the second digit
of < b, a, c > (if a = b, then b ≤ a), and so forth. Translated into SAT and optimized to remove vacuously
consistent constraints, this predicate takes the form {a, b} (a ≤ b or, equivalently, a → b). Of the two
symmetric solutions mentioned above, {a = true, b = false, c = false} (100) and {a = false, b = true, c = false}
(010), only the lesser of the two {a = false, b = true, c = false} is consistent with the symmetry-breaking
constraint {a, b}.

With a few changes to the graph transformation, Crawford et al.’s symmetry detection techniques can
be extended to deal with more general CSPs such as those used by CPlan. The key change is to represent
explicitly the relationship which binds variables to their negations.

Crawford et al.’s graph form makes variables and their negations two different colors of vertices in which
certain pairs (variables and their negations) bear a special relationship. This relationship can be thought
of as a special constraint, one that ensures that exactly one of its variables has the value true rather than
at least one as with normal SAT constraints. This new constraint type, “exactly-one” constraints, can be
represented in the graph in the same way that at-least-one constraints are represented but with a new color
for the constraint vertex10. The example from Figure 6 is rewritten in this style in Figure 7. In this new
style of graph, the exactly-one constraint can be thought of as representing the variable and the positive and
negated vertices as representing the values true and false for the variable. The constraint then states that
the variable can take on exactly one of these values.

This explicit representation of the exactly-one constraint has an important advantage. There is no reason
such a constraint need hold between only two values for a given variable. As many values as needed — each
value with its own vertex color — can be connected to the constraint/variable vertex, and all will be forced
to participate together in an exactly-one constraint in all automorphisms of the graph. This means that the
graph reformulation can be used on variables with domains of any finite size rather than simply true or false.

In fact, the same technique of introducing a new color for new constraint types can be used for many differ-
ent types of constraints11. As long as each of the new constraint types uses a distinct color, automorphisms
of the graph will be forced to maintain the distinctions between constraint types. It is not even necessary
to know how a constraint works to encode it in the graph. As long as each different type of constraint is
encoded with a different color, automorphisms in the graph will represent symmetries in the CSP.

These typed constraints can be used to encode CPlan’s implicit constraints (as long as the implicit con-
straints are grouped into distinct types). Unfortunately, the different types can mask symmetries that would
be found with a CSP containing just a single constraint type. Figure 8 shows an example of this problem
using SAT-style constraints along with an exclusive-or constraint.

10However, the optimizing technique of removing binary constraints can be used for at most one type of constraint.
11“Types” of constraints are defined in terms of functionality. If two constraints always allow the same set of value

assignments when applied to a particular set of variables (or variable values), they are of the same type.
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Figure 8: Left : a mixed constraint CSP in graphical form. Right : the SAT equivalent.

The left-hand graph represents the CSP (a XOR c), (b OR c), (b OR c). The two OR ver-
tices have been optimized away and replaced with edges. The XOR constraint is represented
with a new color node (the large node labelled XOR). Note that the graph has no nontrivial
automorphisms. The right-hand graph is an equivalent CSP as a Boolean satisfiability problem,
(a OR c), (a OR c), (b OR c), (b OR c) or equivalently {a, c}, {a, c}, {b, c}, {b, c}. However, this
graph has an automorphism which swaps a and b (and their values). The left graph hides an
underlying symmetry.

Once a symmetry is detected in a CPlan-style CSP, the same technique used in Crawford et al.’s system
can be used to break it. CSP solutions can be represented as numbers by ordering both the variables and
the domains of each variable (keeping the orderings of identical domains consistent). The result is a number
in which each digit may have a different base depending on the domain size of the variable it represents,
but there is nonetheless a total ordering on the numbers. CSP solution numbers are compared from left to
right and the first discrepancy defines their ordering, just as with the binary numbers resulting from SAT
solutions. The symmetry-breaking predicates for CSPs also impose an ordering on symmetrical variable
arrangements just as in the SAT problem.

Finally, by making all domain values in the graph representation of a CSP the same color, automorphisms
which map values into other values can be discovered rather than just those that map variables into other
variables. Because of the structure of the exactly-one vertex which connects each variable’s values together,
an automorphism which relabels a variable into some other variable must still relabel all the variable’s values.
However, two values can now be exchanged in a relabelling. This type of symmetry can capture symmetric
variable values which would otherwise be disallowed by the color distinctions between objects. For example,
two different trucks in the logistics domain with exactly the same start locations both of which are the value
(location) of a package node are symmetric objects, but their symmetry appears in the graph as two value
nodes which are interchangeable. If all value nodes have the same color, this exchange of value nodes will
be allowed, and the symmetry detected. Such symmetries can be broken by considering each value of each
variable to be a different Boolean “digit” in the solution. A digit is 1 if the variable it represents takes on
the value it represents and 0 otherwise. At this point, the same sort of inequality predicates described above
can be applied to the symmetries.

Symmetry detection and symmetry breaking help primarily to automate CPlan’s symmetric object con-
straints. These constraints keep the system from investigating plans which differ only in the choice between
a set of symmetric objects. Symmetry detection will find these symmetric objects, as either variables or
values which participate in the same set of constraints, and symmetry breaking will force the planner to
consider only one alternative at any point in a plan where both of the two symmetric objects can play the
same role.

Symmetry breaking at the CSP level can also prevent more complex symmetries which are classified as
symmetrical action choices in CPlan. These are alternate action sequences all of which have the same end
result. Joslin and Roy describe an example of a logistics problem with an action choice symmetry which
the symmetry breaking system can detect and remove from a planning CSP [Joslin and Roy, 1997]. The
problem is from the logistics domain and has two packages, three cities, and one airplane. Initially, package1
is at city1, package2 is at city2, and airplane1 is at city3; all cities are connected. The goal is to have
package1 reach city2 and package2 reach city1. Although there are two different action sequences which



are reasonable to try (flying first to city1 or first to city2), the action sequences are symmetrical. If a plan
cannot be constructed which first routes the airplane to city1, neither can any plan be constructed which
first routes the airplane to city2. As described in [Joslin and Roy, 1997], this and similar action choice
symmetries will show up as symmetries in the CSP and can be broken by the techniques described above.

5.1 Related Work

There are a variety of systems for detecting symmetries in CSPs. Joslin and Roy describe a system based on
Crawford et al.’s symmetry-breaking system for analyzing CSPs produced from planning problems [Joslin and
Roy, 1997]. Their system improves performance by analyzing only the initial conditions and goal description
in the CSP. Freuder [Freuder, 1991] describes a system which discovers symmetric object constraints in the
strict sense that CPlan describes them. That is, Freuder’s technique discovers symmetries between values in
a variable’s domain. Wiegel and Faltings describe several CSP simplification techniques based on eliminating
local symmetries [Wiegel and Faltings, 1997].

Some other systems also act at the level of constraint satisfaction problems to discover regularities in plan-
ning (and other) problems. Wiegel and Bliek describe a method of compiling CSPs to Boolean satisfiability
and a number of reformulation techniques which can then be applied to the satisfiability problems [Wiegel
and Bliek, 1998]. Most planning as satisfiability systems take advantage of the “unit propagation” and “pure
literal constraints” from the DPLL algorithm [Davis et al., 1962]. Brafman takes these further, using reso-
lution techniques and higher level versions of unit propagation to perform greater simplification on Boolean
satisfiability problems [Brafman, 1999]. Although these techniques apply to satisfiability, they can also be
useful in more general CSPs. Either the CSPs can be compiled down to Boolean satisfiability problems — as
in Wiegel and Bliek’s work — or similar polynomial time simplification techniques can be used in the CSPs
themselves. All of these techniques require explicit constraints.

Levy’s abstraction by relevance reasoning system abstracts a knowledge base to fit a specific query or set
of queries [Levy, 1994]. The system creates an abstraction with both the downward and upward solution
properties and which is guaranteed to be at least as efficient, computationally, as the original knowledge base.
Abstraction according to relevance might be applicable to a compiled planning problem with the action and
axiom schemas acting as the knowledge base and the initial conditions and goal as the query.

Selman and Kautz’s technique for approximating propositional logic theories with Horn theories [Selman
and Kautz, 1991] is also, in a sense, an abstraction system which works at the encoded CSP level. It provides
two levels of abstraction, one of which has the downward solution property and the other the upward solution
property. Moreover, the abstracted problems have a form that is guaranteed to be easy to solve compared
to the general problem of finding a model for a propositional logic theory. This technique provides quick but
incomplete abstraction spaces that can be checked for satisfiability and inconsistency, respectively. Although
this technique applies to propositional logic and not more general CSPs, there are similar variations in the
tractability of different types of CSPs to those exhibited by certain types of logical theories (like Horn
clauses). However, Selman and Kautz’s technique requires explicit constraints, and it is not designed to
produce partial solutions which can be refined into total solutions.

6 Related Work

Much of the work relating to the reformulation and analysis tools has been discussed in the Related Work
sections of each system (Sections 3.1, 4.1, and 5.1). However, there are several systems which resemble
CPlan. ILPPlan [Kautz and Walser, 1999] and Vossen et al.’s planning system [Vossen et al., 1999] are CSP
planners both of which use hand crafted encodings in Integer Linear Programming (ILP), their constraint
satisfaction variant. Ernst et al. automatically construct core constraints, but then incorporate expert
knowledge as extra clauses [Ernst et al., 1997]. Kautz and Selman follow this work with a thorough analysis
of hand encoded domain specific knowledge in planning as satisfiability systems [Kautz and Selman, 1998].
A careful analysis of the advantages, disadvantages, and logical foundations of the expert knowledge used in
these systems would provide more domain specialization targets for automation.

The Heuristic Search Planner [Bonet and Geffner, 1999] (HSP) is not a planning as constraint satisfaction
system. Rather, HSP plans using state-space search. However, it benefits from a (surprisingly simple)
heuristic in its search. The heuristic somewhat resembles PABLO’s relaxation formula and might be useful
in defining a new type of abstraction hierarchy. It would also be interesting to see how domain specialization
techniques can benefit HSP’s state-space search.

LPSAT [Wolfman and Weld, 1999] is the only fully automated planning as constraint satisfaction system
which handles metric values. Along with metric IPP [Koehler, 1998], upon which its compilation process is
based, it might provide insight in how to exploit capacity constraints.

Long and Fox examine TIM’s applicability in the specific domain of transportation planning [Long and
Fox, 1999]. Their work is interesting in that it reverses the direction of this paper’s analysis, taking a



domain independent analysis tool and studying specializations of the tool to particular types of domains.
Conversely, the results of their work supply new insight which can be used to improve domain independent
analysis techniques.

Alongside the CPlan expert knowledge discussed in this paper were a few topics this paper did not
address. The two most important in CPlan are selecting variables as hidden or visible and choosing weights
for heuristic constraints. Kautz and Selman’s work in state-based and action-based encodings suggests
some plausible choices of hidden variables [Kautz et al., 1996]. Machine learning methods can help with
tuning weights for heuristic constraints. Dietterich provides an excellent overview of recent work in machine
learning [Dietterich, 1997]. Machine learning techniques might also be helpful in paring down the huge
number of potential heuristic constraints which automated techniques can provide to only the most useful.

7 Conclusions

The technology to automatically discover many of the invariants and heuristics used in CPlan exists. This
paper describes methods to use and extend existing reformulation and analysis techniques in order to auto-
mate CPlan. The techniques are used to discover several of CPlan’s most important heuristic constraints,
to streamline CPlan’s CSP encoding, and even to allow domain specialization of the planning as constraint
satisfaction compilation process through abstraction techniques.

However, merging all of these techniques into a single, automated system whose effectiveness rivals the
hand-coded CPlan methodology seems a daunting task. Beyond the difficulties of balancing resource allo-
cation to various analyses and exploiting their results in a single encoding, simply using the full expressive
power of constraint satisfaction poses a substantial challenge. Moreover, some of these reformulation systems
have contradictory demands on the representational scheme used by CPlan. For example, PABLO demands
highly compact implicit constraints to represent its relaxed predicates, but this type of constraint degrades
the performance of the symmetry detection system.

Fortunately, it may not be necessary to match CPlan’s power with a fully automated system immediately
in order to produce a powerful new planning tool. The TIM system provides enough information to automat-
ically construct efficiently encoded core constraints. Along with these core constraints, the other techniques
described in this paper can be used to produce a fully automated CSP planning system with a substantial
amount of domain specialization already built in. The resulting planning system can be improved further by
hand addition of expert human knowledge which cannot yet be automated. Over time, just as the compilers
community has slowly automated and finally made mundane the process of compilation, the AI community
can automate these heuristics in an orderly fashion.

8 Future Directions

The primary future direction of this work is actually implementing an automated CPlan system. This
process can be broken down into a series of steps, each of which will produce a more effective, completely
automated CSP planner. The vital first step is to construct a system which can automatically transform
STRIPS planning domains and instances into CSP core constraints and make effective use of variables and
their domains. This will require choosing a core constraint style and automatically deciding which identity
invariants to use in the process of streamlining the encoding.

Once a system exists for the core constraints, it can be extended without altering its internals to support
a STRIPS level abstraction system (i.e., an abstraction system which produces new, simplified, STRIPS
planning domains). This step also poses representational and algorithmic challenges. The system can be
used to explore the tradeoffs between different abstraction styles and encoding styles (e.g., causal versus
state-space). Finally, the various heuristic constraint construction techniques and manipulations of the
compiled CSP can be applied to the system.

In the process of constructing and optimizing these intermediate systems, it will be necessary to address
one aspect of these analysis and reformulation systems which was not carefully discussed in this paper: time
and space requirements. Each of [Fox and Long, 1998], [Christensen, 1990], and [Crawford et al., 1996]
provides details relating to the asymptotic time and space requirements of the main techniques considered
in this paper, but two issues remain for future research. First, expressing the results of these techniques in a
CSP framework may allow more efficient representations or enforce less efficient representations. Asymptotic
analyses of the space requirements of applying these techniques in an expressive CPlan-style CSP will resolve
this issue. Second, regardless of the asymptotic performance of these techniques, a practical planning system
could benefit from managing the amount of resources allocated to these analyses on a problem by problem
basis. This issue can be studied by experimenting with manual or automatic adjustments to resource
allocations in automated CPlan-style planners.



This paper also presents various extensions to the existing reformulation and analysis systems. The most
extensive involve TIM: strengthening its type hierarchy, unifying its analysis of fixed resource invariants
with the other invariant analyses, and relaxing its object centered approach by using reachability analy-
ses [Gerevini and Schubert, 1998].
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