
View-Based Maintenance of Graphical User Interfaces

Peng Li
Software Practices Lab

University of British Columbia
lipeng@cs.ubc.ca

Eric Wohlstadter
Software Practices Lab

University of British Columbia
wohlstad@cs.ubc.ca

Abstract
 One difficulty in software maintenance is that the relation-

ship between observed program behavior and source code is not
always clear. In this paper we are concerned specifically with the
maintenance of graphical user interfaces (GUIs). User interface
code can crosscut the decomposition of applications making GUIs
hard to maintain. A popular approach to develop and maintain
GUIs is to use “What you see is what you get” editors. They allow
developers to work directly with a graphical design view instead
of scattered source elements. Unfortunately GUI editors are li-
mited by their ability to statically reconstruct dynamic collabora-
tions between objects. In this paper we investigate the
combination of a hybrid dynamic and static approach to allow for
view-based maintenance of GUIs. Dynamic analysis reconstructs
object relationships, providing a concrete context in which main-
tenance can be performed. Static checking restricts that only
changes in the design view which can meaningfully be translated
back to source are allowed. We implemented a prototype IDE
plugin and evaluate our approach by applying it to five open
source projects.

1. Introduction
In this paper we investigate a hybrid dynamic analysis and

static checking approach for applying “What you see is what you
get” (WYSIWYG) graphical user interface (GUI) editors to a
dynamically rendered GUI view. We start by discussing the prob-
lem domain of GUI maintenance, existing tools for GUI develop-
ment, our research focus and proposed contribution.

One difficulty in software development is that the relationship
between observed program behavior and source code is not al-
ways clear [11, 36]. Typical software maintenance tasks require
that programmers verify program correctness by examining pro-
gram output (e.g. textual, graphical, message passing, etc..). Ex-
amination of output might be done manually or through the help
of automated test cases [22, 23, 27]. When some problem is de-
tected in the output, a typical strategy would be to start examining
the code at the point where the problematic output was generated.

In some cases it could be cumbersome for programmers to
map output back to the statements which generated the output.
This is because output generating statements can crosscut the
implementation of several source modules. For example, typical
logging frameworks and language pre-processors provide support
to include both the name of the class and a line number where a
logging statement was generated; so developers can avoid this
problem.

In this paper we are concerned specifically with maintenance
of GUIs. Our discussion focuses on one kind of program output,
the rendered on-screen interface itself. We refer to the dynamical-
ly rendered, runtime, user interface as a dynamic view. Graphical
user interfaces are pervasive in today’s software systems and can
constitute as much as half of the source code in typical projects,
according to a published study [26].

A dynamic view can be interpreted by the programmer as one
conceptual module (i.e. concern [33, 34]) from the perspective of
a software maintenance task. We say conceptual because the dy-
namic view may not map directly to one source code module.
Still, by looking at a dynamic view, the programmer may see a
cohesive set of elements (called widgets), with a clear set of rela-
tionships. Relationships are formed from a hierarchical (tree-
based), component-oriented model [6, 20, 32]. A dynamic view
provides a complete, dynamic context, from which to understand
specific containment relationships. Mapping all these widgets and
the relationships to source, however, requires understanding a
scattered set of source elements. Just as all logging output would
not be confined to be generated from a single module, neither is a
dynamic view confined to a single module. We seek to understand
possible solutions to this software maintenance problem. A possi-
ble solution might be found in existing tools for development of
GUIs.

1.1 GUI Editors

A popular approach to develop GUIs is to use WYSIWYG edi-
tors, henceforth called GUI editors [15, 30, 31, 35]. GUI editors
use a static view of the GUI, called a design view, to support a
developer in two ways. First, by selecting widgets in a design
view, the editor can display where in the source code the widget
was created or some property of the widget was modified. This is
useful when a developer wants to make some changes to the GUI
manually in the source code. This kind of hyper-linking between
output and source is conceptually similar to that of the simple
logging example. We call this practice view-based navigation.

Second, by manipulating widgets in the view, a developer can
affect changes on the GUI. We call this practice view-based edit-
ing. These changes are translated by an editor into changes on the
underlying source code. This allows the developer to reason vi-
sually about graphical changes. Changes which are made from a
design view are limited to “design-time” changes which are static
in nature; since the visual nature of the editor lends itself to
representing graphical relationships and not computations. To-
gether we refer to the use of view-navigation and view-editing
during software maintenance tasks as view-based maintenance.

Typical GUI editors provide a round-trip (re-) engineering [27]
process. A design view created in the editor, can be used to gener-

ate source. Later, the source code can statically be reverse-
engineered to recover the design view.

1.2 Research and Contributions

Unfortunately, the reverse-engineering capabilities of GUI edi-
tors are severely limited. This is because complete applications
consist of both the user interface design and dynamic collabora-
tions between objects which implement the behavior of the pro-
gram. These two parts of the program work together to provide a
complete system and can be tangled together in the program im-
plementation. Ensuring a complete separation of the user interface
design code and the program behavior would require significant
effort from developers. Developers may also have prioritized
decomposition decisions along other dimensions of concern which
conflict with this separation [35]. In 4 out of 5 open source appli-
cations that we looked at, there was not sufficient separation to
allow a commercial off-the-shelf editor (COTS editor) [31] to
understand the user interface. We quantify these results as part of
our evaluation.

 The intuition behind the approach is based on an observation
that much of the information in a dynamic view (as in Figure 1)
consists of component sub-tree clusters that are static in nature:
i.e. making heavy use of Singleton [38] classes and constant ex-
pressions. However, in practice, these sub-trees are often “glued”
together with small pieces of dynamic computation. The approach
used by traditional GUI editors cannot make sense of the dynamic
code enough to find relationships between the static sub-trees, i.e.
the analysis “gets stuck in the glue”. In the end, the entire tree-
based view becomes truncated (as in Figure 2). Sub-trees are no
longer visible in context because they are not reachable from the
root widget in a design view.

In this paper we investigate a hybrid dynamic and static ap-
proach for improving view-based maintenance. Rather than use a
static approach to recover the design, we use a dynamic approach.
This provides a complete, dynamic context, for making informed
maintenance decisions. However, this complicates translating
view-edits back to source, since part of the view is now the result
of dynamic computation. So, we provide constraints based on
static checking to limit what can be edited. Our contribution is to
describe this hybrid approach and show for a case study of five
open source applications that it can be used to:

- Provide view-based navigation on a complete dynamic
view.

- Increase the amount of static design information available
for WYSIWYG-based editing.

We describe a prototype tool which supports both view-based
navigation (Section 4) and view-based editing (Section 5) in a
dynamic context.

The rest of the paper is structured as follows: Section 2
presents a concrete motivating example, Section 3 presents back-
ground on GUI editors, Section 4 presents view-based navigation,
Section 5 presents view-based editing, Section 6 presents a quan-
titative evaluation, Section 7 presents a discussion and limitations,
Section 8 presents related work and we conclude in Section 9.

Figure 2: Screenshot from Swing Designer GUI editor for
Java-Chess class. Several widgets are missing from the re-
covered design view. Extra rulers and grid markers are the
effect of the editor tool in action.

2. Example with Java-Chess
Consider a scenario where a developer wants to perform main-

tenance on the user interface for a chess game, in particular the
open source Java-Chess [14]. A developer may first need to plan a
change they intended to make, by reasoning about some dynamic
view, as shown in Figure 1. Dynamic views are a product of pro-
gram execution so they are not directly available for editing by the
developer. So, when a programmer has an intended change in
mind, they would need to consider how to implement the change.
Two possibilities for implementation are to make changes to the
source directly or use the help of a GUI editor, we consider each
of these in turn.

First, to change the source directly, the developer would need
to know the method call source element which generated the wid-
get (or widget property) that they want to change. These calls
could take some time to find since the dynamic view may crosscut
the source. In Figure 1 there are 16 classes which contribute to the
visual appearance that include GUI code tangled with program
logic. A developer familiar with the code base would need to re-

Figure 1: Screenshot from Java-Chess program execution. 16
classes contribute to this particular dynamic view.

member how the statements of code in all these classes related to
the dynamic view or else reconstruct all these relationships.

A second option for the developer would be to use a GUI edi-
tor. It would seem reasonable that the developer should be able to
simply click on some part of the view and ask to be taken to the
source element where that part of the view was generated. Also,
for parts of the view that are static design, the developer should be
able to edit directly from the view. This is possible in very limited
cases with existing GUI editors as we discuss next.

Current GUI editors are crippled once the initial GUI design
code has been integrated with the main program logic. As an ex-
ample, consider the same view rendered by a COTS GUI editor in
Figure 2. We can see that several of the widgets are missing in-
cluding: two menubar menus, the entire chessboard, and the game

player information panel (in the upper right quadrant). The partic-
ular GUI editor to produce Figure 2, Swing Designer [25], was
rated as the most complete Eclipse-based editor by an online ar-
ticle [30]. This is unfortunate considering that much of the infor-
mation missing is part of the static design. As an example, the
missing menu items and associated drop-down menus never
change during the course of Java-Chess execution.

This scenario is used to demonstrate that mapping intended
changes from the dynamic view to the implementation is difficult
to do manually and not possible for complete programs using
existing editors.

We seek to address the problems by allowing developers to in-
teract directly with a dynamic view even for complete programs.
The developer executes the program they want to edit. A dynamic
analysis creates a mapping between the dynamic view and the
source code, and static checking prevents changes to elements
which are not part of the static design. Figure 3, shows the Java-
Chess view again, using the same COTS editor augmented with
our analysis. The view now provides a complete dynamic context
for design maintenance.

Figure 3: Screenshot from Swing Designer GUI editor for Java-
Chess augmented with our dynamic analysis. Sub-trees lost in
Figure 2 have been “glued” back on. Extra rulers and grid markers
compared to Figure 1 are the effect of the editor tool in action.

3. Background
Object-oriented GUIs make use of objects called widgets [1].
First, we describe the unique characteristics of these components
(Section 3.1). Then, we describe the process for engineering user
interfaces using a traditional GUI editor, as in Figure 4. The steps
for forward engineering an interface from a high-level design are
shown from left to right (Section 3.2). Then, from right to left we
see the steps for reverse engineering a design view from source
code (Section 3.3).

3.1 Widgets

A widget is an object created from a specific set of classes
provided by a GUI framework or a custom, application specific,
subclass of those classes. We call these classes widget classes.
GUI editors, much like component-based programming and dy-
namic languages (e.g. Smalltalk [36]), often blur the lines between
compile-time and runtime, so we are careful to use the word wid-
get referring to an object and widget class referring to a class.

The state of a widget consists of: widget properties and possi-
bly other child widgets. Throughout the paper we refer to both
design and dynamic models of widgets. A design model is one

Figure 4: Forward and reverse engineering process for graphical user interface editors.

which is constructed using only compile-time GUI design infor-
mation, whereas a dynamic model can only be observed at run-
time (i.e. a heap “snapshot”).

The distinction between objects constructed directly from
framework classes (e.g. Frame, Button, Window) and objects
constructed from custom classes is important. A GUI editor un-
derstands the semantics of framework widgets without any analy-
sis of framework code. Knowledge of framework widgets is hard-
wired into the editor itself. Essentially, during static design model
recovery, the editor is able to treat framework widgets as if they
were program constants (i.e. string literals, number literals, etc..).
This also includes the use of specific localization resources for
storing and retrieving strings in different languages. We refer to
the union of these framework widgets and actual program con-
stants as GUI constants. For example, a call to “new Frame()”
is considered a statically resolvable constant, so interpreting this
statement allows the editor to include a Frame widget in the static
design model.

3.2 Forward Engineering

Forward engineering begins with the developer who envisions
the design of the graphical user interface. A developer works di-
rectly with the design view of an editor by manipulating widgets
(a). As changes are made to the design view, the editor maintains
an internal hierarchical data-structure (i.e. object graph) of wid-
gets, the design model (b). Each change to the design model can
either: add a new widget somewhere in the hierarchical model,
remove a widget, or change a property of a widget. Finally, the
editor realizes the implementation of the GUI by generating code
from the corresponding design model (c).

3.3 Reverse Engineering

GUI editors provide reverse-engineering by allowing a user to
select a custom widget class (c) that they want to edit. For exam-
ple, to provide Figure 2, we chose the custom class named “Java-
Chess” from the Java-Chess project. The editor analyzes the
constructor of the class and recovers a design model (b) for an
instance of this root widget to display in the view (a).

3.3.1 Design Model Recovery

During this reverse-engineering process, design models are stati-
cally recovered using information in the constructors of widget
classes1. This is where a large part of the complexity of GUI edi-
tors lies, so we describe the details.

First, any statements which use variables that cannot statically
be determined to refer to a single GUI-constant, are removed from
consideration. This determination is limited to the analysis of the
constructor and any fields which include initializers2. Therefore
traditional compiler (intra-procedural) analysis is sufficient to
make a conservative approximation. Next, any statement nested in
loops and conditionals3 is removed from the consideration, in-
cluding the loop or conditional. Now, the only code left, is a se-

1 As well as private methods called during contructor execution.
2 This excludes public static fields which could have been set previous to
constructor execution.
3 This also includes any code which might execute after a return statement
controlled by a conditional, and recursive methods. We do not consider
exceptional control-flow or concurrency in our implementation.

quential list of statements only making use of GUI-constants. This
code can now be interpreted by the editor to build the statically
determined model.

3.3.2 Model Synchronization

The important result of this entire process is that a one-to-one
correspondence between source statements and the widgets in the
design model of a custom class is created. So changes to either
can be synchronized [27]. This is because only functions that are a
one-to-one correspondence have a well specified inverse [21].
Since the code of framework (library) widgets cannot be mod-
ified, editors translate changes on framework widgets to the
source of the closest custom class (least ancestor) to which they
are children. This custom class provides the scope for changes to
to framework widget. We call such a class, the change context.

Framework widgets from the same class, inside this context,
can be distinguished by the editor. For example, if a custom Panel
contains two Buttons, then changing the color of one Button will
not affect the color of the other Button. Contrary to this behavior,
all editors, to our knowledge, do not distinguish between different
instances of custom widgets based on their context. For example,
any changes to some GamePanel custom widget will change the
source of the GamePanel class and therefore affect all GamePanel
instances. For better or worse, we have not tried to improve that
particular property of GUI editors so we also inherit this restric-
tion (discussed further in Section 7).

Dependence on any dynamic information can result in only a
partial view being constructed (as in Figure 2). This can make it
hard for the developer to make any changes to design information
contained inside some particular dynamic view.

4. View-Based Navigation
View-based navigation provides hyper-linking between the

GUI editor and source code locations. First we explain this rela-
tively straightforward “read-only” support of our tool. Then in
Section 5, we build on these details to explain the more compli-
cated “read/write” editing support of our tool.

Our approach makes use of information derived from the dy-
namic analysis of program execution. Our Eclipse IDE plugin
creates a dynamic model of the GUI, effectively replacing the
design model normally used by the editor (as in Figure 4, b).

For our tool to create a dynamic model of some GUI, a devel-
oper is required to execute the program; making sure a dynamic
view the developer is interested in is rendered during that execu-
tion. After this analysis, the developer can navigate between wid-
gets in the dynamic view and source code elements using the
plugin. This provides a complete, dynamic context, for view-
based navigation.

During program execution, interception of method call join
points specific to the GUI concern is used to create a dynamic
model. We use AspectJ to collect this information about the GUI.
We created an aspect, GUIAspect, to monitor three important
kinds of events related to the user interface. For our prototype,
applications using the Java Swing API are supported. Below we
provide simplified pointcuts from our implementation to illustrate.

First, the creation of widget classes is intercepted according to
this construction pointcut:
 call(javax.swing.*+.new(..))

Second, we need information regarding any changes to the proper-
ties of a widget. This is done through the pointcut:
 call(void javax.swing.*.set*(..))

Finally, we need information regarding the containment relation-
ship between container widgets and their child widgets. This is
achieved through:
 call(* javax.swing.*.add(..))

In each of the advice, the reflective capabilities of AspectJ are
used to record information for argument values and corresponding
source locations (i.e. classes and line numbers). This information
is used to create a map between widgets and source code, for sup-
porting view-based navigation.

Once the user is satisfied that the view they are interested in
has been displayed during execution, the user can select an option
from our plugin, which will in turn provide the currently con-
structed dynamic model to a COTS GUI editor. The actual under-
lying data in the design model is now replaced with a dynamic
model. We used this approach simply to avoid making a custom
GUI editor. Now when the user selects widgets in the GUI design
view, they can choose to be hyper-linked to the source code
statement of the corresponding GUI joinpoint as captured by
GUIAspect.

In our evaluation (Section 6), we quantify the number of
classes that contribute to the generation of a typical dynamic view
for open source applications. Since source locations across all
these classes are now made available to a developer from a single
high-level conceptual module (the view), this metric helps provide
some measure of the reduction in information that must be rea-
soned about by the developer for navigation.
4.1 Custom Graphics
In many user interfaces, part of the dynamic view may consist of
custom animations or graphics generated dynamically using calls
to a 2D graphics package. These graphics do not consist of wid-
gets but rather are translated directly to a two-dimensional array
of pixel elements to be displayed on screen. In Swing, custom
graphics are implemented using objects that support a “callback”:

public void paint(Graphics g);

The implementation of the method makes use of the Graphics
object to draw custom graphics.

GUIAspect advises this method using an after advice and
captures the Graphics argument. After paint has executed,
the body of the method will have written information to the ob-
ject. We extract this information and save it on disk as a graphics
file. Then we place an Image widget in the model as a “proxy”
for the custom graphics object, so this image is displayed when
the dynamic model is rendered by the editor.

During view editing (Section 5), this provides the developer
with a “snapshot” of the animation or graphic. This is useful for
providing a dynamic context to inform maintenance decisions. For
example, in the Java-Chess application (Figure 1) the entire
chessboard is drawn using graphical rectangles. The chessboard
squares are not widgets; but the chess pieces are widgets. So the
chessboard cannot be edited from a design view but the chess
pieces could. However, without the dynamic context of the chess-

board, it would be difficult for a developer to make an informed
design decision about potential changes to the chess pieces. So we
see how even “read-only” information can be useful to provide a
dynamic context for view-editing, which we describe next.

5. View-Based Editing

First, we discuss the technical difficulties of view-based editing in
the context of a concrete code example to further explain why
some constraints are needed. Then we present our approach.

Figure 5 shows the Java-Chess source code for generating the
chessboard column labels seen on the bottom of the chess board in
Figure 1. These labels indicate the columns a-g. This example
demonstrates a situation where a one-to-one correspondence be-
tween source and a design model cannot be created. In this case
we must prevent editing from the design view.

1. ...
2. for(int i = 0; i < 8; i++) {
3. char column = 'a' + i;
4. JLabel label = new JLabel();
5. label.setText(column+””);
6. this.add(label);
7. }

Figure 5: Java-Chess source code in the constructor of chess
board column panel. Code has been refactored to improve reada-
bility.

In the source code, we see that column labels are generated by a
loop (lines 2-7). The characters to be displayed are created using
the loop counter and adding it to the program constant ‘a’ using
arithmetic addition of character codes (line 3). Then each label
widget is created and its text property is set (line 4-5). Finally,
each label is added to the panel (i.e. this) on line 6.

It is very difficult (or even impossible) to translate a change in
one of the characters a-g from an editor design view to some
underlying change on the source, without completely disrupting
the sources structure.

Suppose a developer changed the label ‘g’ to the label ‘G’ in
the editor design view with our dynamic model installed. If the
editor naively translated line 5 to setText(“G”), we would
end up with eight labels all the same!

Recall that a design model is simply a tree data-structure of
widgets. Considering line 5, an editor could not create a one-to-
one correspondence between this statement and a design model
for two reasons. First, label refers to more than one object dur-
ing the constructor execution. Second, column does not refer to a
GUI constant. Even though our tool can display such computed
information, we still need to respect the limitations of graphical-
based editing.
5.1 Editing Constraints

We have seen that only changes on the design view which cor-
respond one-to-one with source code changes can be allowed.
However, since our tool has allowed the developer to view dy-

namic context, our tool needs to provide guidance to prevent edit-
ing of dynamic information. COTS GUI editors also must wrestle
with this fundamental problem. Their approach is to not to display
any dynamic information. They only display the information for
which a one-to-one correspondence has been created. We have
investigated the use of editing constraints.

We want to provide the same guarantees as traditional editors.
Recall from Section 3.3.1 that only the design of a single custom
class, the change context, is affected by edits. This allows devel-
opers to reason that the initial state of all widgets of that custom
class will be affected in the same way by a change.

For example, consider that all chess piece widgets in Java-
Chess are created from the same custom class. Assuming that
setting the size of a chess piece is part of its design, then changing
the size of one chess piece will predictably change the initial size
of all chess pieces. This is often what the developer would want,
but not always. We chose these particular constraints to provide
an equivalent behavior as existing GUI editors. Our implementa-
tion is an adaptation of the existing static design model recovery
technique used by GUI editors (Section 3.3.1). Perhaps other less
restrictive constraints could be applied, but we leave this to future
work.

5.1.1 Constraint Details

When a developer makes a change to the design view with our
plugin activated, that change is translated by the editor into a
change to a widget. This widget will be part of the dynamic model
collected by GUIAspect. A source code edit will be made by the
editor to realize the change, if it is not prevented by our constraint.

First, we determine the potential change context. We deter-
mine the least ancestor of the affected widget that is a custom
widget. In other words, starting from the widget in the component
tree, we walk up the tree until we encounter a custom widget.
Changes directly to custom widgets can be handled without this
first step. Second, we determine the located custom widget’s
class. This information is available because we have captured the
model at runtime.

Next, the located custom class is analyzed using the traditional
GUI editor static recovery technique. This gives us the static de-
sign model of the class. Finally, we can simply compare the sub-
tree of the dynamic model rooted at the change context and the
design model of its class. We need to determine if they “intersect”
at the widget where editing is considered. This intersection is
implemented using simple top-down tree-to-tree comparison [33].
If they do agree then the change is allowed, otherwise the change
is prevented and a warning is issued. In the future we could pro-
vide a visual cue such as a highlighting or overlay which points
out all of the static design information embedded in some dynam-
ic view.

When classes contain multiple constructors, our implementa-
tion uses the intersection of static models recovered from all class
constructors. This is implemented with top-down comparison as
above. This is useful because we noticed that often multiple con-
structors are declared, which simply delegate construction of the
GUI to a single private helper method.

5.2 Dynamic Context Improves View-Editing

A developer using our tool now sees both static design infor-
mation and dynamic information in the editor view. Editing the
design information will affect the initial state of all widgets from

one custom class in the same way. Editing the dynamic informa-
tion from the editor is not supported, although view-based naviga-
tion is still enabled. We saw in the previous section why some
restrictions on editing dynamic information make sense.

Editing static design information is also supported by tradi-
tional GUI editors. So it may seem at first glance that the only
thing we have contributed is view-based navigation for dynamic
information. This is not the case, here we explain how our tool
can help provide more context for editing design information.

To make this clear we provide a simple abstract example as
shown in Figure 6. Here there are four widgets: frame, panel,
label, and button. The edges which are solid are relationships
derivable from a design model. The edge which is dotted are dy-
namic relationships, derivable only from a dynamic model. Source
code creating these relationship in shown in Figure 7.

This scenario corresponds to the source code in Figure 7.
When the frame is created in Main, it is passed a MyPanel as an
actual argument. However since the JPanel formal argument of
the MyFrame constructor could refer to any custom subclass of
JPanel, a traditional editor would only display a single frame and
a label (no panel would be displayed). Programs include many
sources of information that can only be determined at runtime,
here we just use the dynamic type of an object as one example.

Using a traditional GUI editor, the frame could be viewed for
editing because it is a custom widget. Although no panel or button
design would ever be shown as contained inside the frame. A
developer interested in maintaining a particular view of the user
interface may find it frustrating that they are unable to edit see-
mingly static design portions of MyPanel in the visual context of
the frame.

This demonstrates an important point from an aspect-oriented
software development perspective. Hierarchal structures, such as
the widget hierarchy, provide a disciplined way to organize mod-

Figure 6: High level illustration of a dynamic model (object
graph) including design (solid) and dynamic (dotted line) infor-
mation. Numeric labels refer to “add” relationships between
widgets in Figure 7. Design model will appear to the user as
truncated version of dynamic model.

frame

(1) (2)
label panel

(3)

button

ules so they easier to navigate. However, as we showed, the hie-
rarchy displayed in existing editors can become truncated, leaving
the user with a “flat” set of modules through which no relation-
ships are provided.

A developer using our tool could execute the program under
their control until some dynamic view was rendered that they
needed to maintain. They might even control the program in such
a way as to create relationships that would be helpful for them
during the maintenance process. For example, if more than one
kind of panel could be placed in the frame of Figure 7, they could
choose to place the one they were interested in. They could per-
form view-editing or view-navigation in this visual context of
their choosing. Certain dynamic information could not be edited
from the design view. In Figure 7, this would be statements in-
volving the relationship between panel and the frame. We provide
some initial quantification of these potential advantages for spe-
cific applications and use-cases in the next section.

6. Quantitative Evaluation
 /****Main.java****/
public static void main(String[] args) {
 MyFrame frame = new MyFrame(new MyPanel());
 ...
}

/****MyFrame.java****/
class MyFrame extends JFrame {
 MyFrame(JPanel panel) {
 add(panel); //(1)
 add(new JLabel(..)); //(2)
 }
}

/****MyPanel.java****/
class MyPanel extends JPanel {
 MyPanel() {
 ...
 add(new MyButton()); //(3)
 }
}

/****MyButton.java****/
class MyButton extends JButton {
 //Details elided
}

Figure 7: Three custom widgets classes used to demonstrate how
dynamic context improves view-editing (an illustration is shown in
Figure 6). Notice that since the argument in the MyFrame con-
structor requires knowledge of the dynamic type, it cannot be dis-
played in a traditional design view.

Application
Name

NCLOC

CrosswordSage 3,093

Java-Chess 5,616

jMSN 7,335

GanttProject 43,338

FreeMind 65,420

Table 1: Application subjects and their sizes in terms of non
commented lines of code.

Here we provide a quantitative evaluation of our approach using
five open source applications. First, for some specific program
views, we want to measure how many classes contribute informa-
tion to the view. This metric could support our claim that main-
taining GUIs can be difficult and that view-based navigation is
useful. Second, we wanted to measure how much of some view
for each program could be reverse-engineered using a COTS GUI
editor. This could support our claim that design code and program
logic are often tangled, making design model recovery difficult.
Third, we wanted to compare the amount of static design informa-
tion available in a particular use-case, using the original and our
proposed approach. This could support our claim that dynamic
context provides more opportunities for design view-editing.

We initially looked at three existing Eclipse-based GUI editors
for comparison with our approach: Swing Designer [31], Visual
Editor [35], and Jigloo [15]. We chose Swing Designer to extend
and compare against our approach. The extension is based on a
standardized JavaBeans Customization API so we did not require
any source code. We discovered from their documentation that all
the editors use the same overall approach for static model recov-
ery, described in Section 3.3.1.

Swing Designer and Jigloo performed consistently better than
Visual Editor. They are both mature commercial products whereas
Visual Editor is an emerging open source project. Swing Designer
out-performed Jigloo so we only present metrics from Swing De-
signer. Our measurements from Jigloo are available online4. We
have also found an online article that rates Swing Designer very
highly [30] against other editors. These reasons make us confident
that the tool we are comparing against is a fair representative of
existing tools.

For the evaluation subjects, we selected five open source ap-
plications which are built on the standard Java Swing libraries.
Our first subject, Java-Chess, was selected before our prototype
was developed and was used to inform the creation of our ap-
proach. Four other subjects were selected after our prototype was
developed. These programs were selected because they were used
as subjects in a recent paper about testing GUI programs [15]. By

4 http://www.cs.ubc.ca/~lipeng/guiaspect/gui.htm

using subjects selected by a third-party we hoped to provide ob-
jectivity in our results. Table 1 lists the names (column 1) and
sizes (column 2) of each subject in terms of non-commented lines
of code (NCLOC).

Since our approach is dynamic we needed to choose some time
in the execution of each program for which to take measurements.
We wanted this choice to be as unbiased as possible and to be as
uniform as possible across all the programs. We noticed it was
very common for Java applications with a GUI to include a de-
fault “main window” with a variety of panels, menubar, and tool-
bars. This main window and the widgets it contains are often
loaded immediately upon execution of the program. Then, after
the main window is rendered, the application becomes idle, wait-
ing for user input. We felt this point in time where the application
becomes idle made a good choice of time because it was easy to
objectively determine this point in the execution of many different
programs. We call the execution of a program up to this point, the
“main window scenario”.
6.1 Decomposition of main window view

Application
Name

Classes
Used

CrosswordSage 2

Java-Chess 16

jMSN 11

GanttProject 45

FreeMind 12

Table 2: Metric measures the number of classes containing GUI
joinpoints captured by GUIAspect for rendering of the main

window view.

This metric measures the number of classes containing method

call joinpoints captured by GUIAspect for rendering the window
of the main window scenario. This provides us with an indicator
of the reduction of source classes that a developer must manually
navigate when performing maintenance on this particular view of
the program. Since classes are the primary unit of modularity in
OO design, we believe a larger number of classes indicates more
difficulty performing maintenance on the view without proper tool
support. These results are displayed in Table 2. We believe that in
at least 4 out of the 5 cases (where over 10 classes were used)
there is evidence that view-based navigation would be useful.
6.2 View-Navigation

Application
Name

Size of dynamic
main window

model

Size of original
design model
relative to

dynamic model

CrosswordSage 143 100%

Java-Chess 291 45%

jMSN 149 34%

GanttProject 491 8%

FreeMind 109 10%

Table 3: Size metric is determined by the number of widgets, and
set widget properties used in the dynamic model and the static

design model.

Here we first measure the “size” of the dynamic model col-

lected by GUIAspect and the size of the static design model
recovered by the original GUI editor, for the main window view.
This size metric was determined by the number of widgets and
number of set widget properties used to render the view. In each
case, it is the size of some tree data-structure in terms o

al elements.
f these

logic
The actual dynamic model was determined by using GUIAs‐

pect and counting the size of the actual main window component
graph through a traversal of objects. The models can seem quite
large upon observation. We note that in addition to the informa-
tion seen directly in the main window, the models include infor-
mation about all menu items (and sub-menu items) in all drop-
down menus of the window. Also, GanttProject is almost twice
the size of the second largest model because the main window
contains two “tabbed panes” with different user interfaces.

To record results for the COTS editor we needed to know the
custom class which represented the top most window for the main
window scenario. This was easy to determine for all cases and
was usually the class containing main. We input this class to the
original COTS editor and recorded the numbers. These numbers
are available from the tool itself. It is useful to note that all of the
information displayed by standard editors is statically editable
because they only display information recovered using static rea-
soning.

These results are displayed in Table 3. For one application,
CrosswordSage, the complete main window view was recovered
statically. However, we can see that the design model was less
than 50% of the dynamic model in 4 out of 5 cases. So we can see
that the opportunities for view-based navigation are limited in the
current approach. Our approach captures the complete dynamic
model; additional screen shots like the ones shown for Java-Chess
are made available online5. This is to be expected since a dynamic
analysis has complete runtime information. The only problem that
would arise is if somehow the GUI was manipulated without be-
ing intercepted by GUIAspect. This was not a large problem in
our case since Swing libraries strictly follow the conventions set

5 http://www.cs.ubc.ca/~lipeng/guiaspect/gui.htm

out by a standardized component model (JavaBeans). We have
carefully inspected the visual appearance for all cases. In each
case there is less than three small visual differences which are
caused by the fact that we have not yet implemented a pointcut for
catching when widgets are disabled (i.e. “grayed out”).

It is important to note that the COTS builder was not designed
to work on arbitrarily tangled code bases. So the percentages in
the table really tell us more about the structure of those code bases
than about the tool itself. We feel the numbers provide some evi-
dence that larger code bases tend to introduce more complexities.
This could make the GUI hard to maintain without good tool sup-
port.

In some software development situations, smaller models
might actually be better because they provide a useful abstraction.
So, we clarify that in all these cases the design model is simply a
truncated version of the dynamic model, cut off at some levels in
the tree. The results in the table describe how much truncation
occurs. The truncation is apparent visually for Java-Chess in Fig-
ure 2 and truncation is illustrated in Figure 6.

These measurements provide a basis for judging the useful-
nesss of view-navigation on a dynamic view. They do not provide
a good comparison for judging the view-editing capabilities of our
approach, since much of the information in the dynamic model is
not static design, so we explore this next.
6.3 View-Editing Comparison

Application
Name

Original
editor

Augmented
Editor

Additional
Information

CrosswordSage 100% 100% -

Java-Chess 45% 56% 1.2x

jMSN 34% 80% 2.4x

GanttProject 8% 21% 2.6x

FreeMind 10% 53% 5.3x

Table 4: Size of design information displayed by original and
augmented GUI editor compared to total amount of information in

the dynamic view.

Finally, our last metric measures the ratio of design informa-

tion that is statically editable using the original editor versus the
same editor augmented with our analysis (Augmented Editor).
These results are displayed in Table 4.

In the second column we see the amount of statically editable
information for the original COTS editor. This is the same data as
shown in Table 3 because all of the information displayed by
standard editors is statically editable. The third column measures
the amount of statically editable information using the augmented
editor. This was determined by intersection of static and dynamic
models as described in Section 5 by following our editing con-
straints.

In the third column we see the ratio of editable design informa-
tion using our approach versus the standard approach. The addi-
tional information appears because the dynamic analysis has “re-

attached” truncated sub-trees so they are reachable from the root
main window. Our approach didn’t “create” this new design in-
formation, we simply have a way of locating it and placing it in
context.

The important consideration here is to judge whether the im-
provement we have made in these cases is of practical signific-
ance. For the experiment we have done, 3 out of 5 of the
applications show at least 2x more design information editable in
the context of the main window. Essentially, if a developer would
like to change any of this additional information it can now be
from a single conceptual module. Furthermore, the two larger
applications appear to benefit the most. We believe this gives
some initial evidence that our approach might help improve view-
based editing even as application sizes scale and complexities are
introduced.

7. Discussion, Future Work
A common question to ask about this approach is, “What if the

developer wants to edit only a single custom widget instance
without affecting other widget instances of the same class?”. We
have not supported this in our current implementation and it
would not be compatible with current GUI editor methodology.
Although as explained in Section 3.3.2, edits to framework wid-
gets can be applied to the code of a custom class which created
them, so that framework widgets are distinguished. Here we
summarize four common situations when view-editing a custom
widget in a dynamic context is and is not useful, to make sense of
this question.

First, in the case that the custom widget to be edited is a Sin-
gleton [8], our approach could allow the developer to edit the
design. However, using existing editors, this singleton object
might not be displayed.

Second, in the case that the developer wants to edit design in-
formation and also the developer would like all widget instances
of the class to be changed in the same way, then this is supported
by our approach (such as in the example of changing chess piece
sizes uniformly). In the traditional approach, there might be no
widgets of that class displayed at all.

Third, in the case the developer wants to edit dynamic infor-
mation (such as in the column label example), this would not be
supported by either approach. Also there are fundamental reasons
why this could not always be possible [5, 21].

The final case is one where the developer would like to change
some widget’s design information without affecting some other
widget’s from the same class, and this is not a singleton. In this
case, all widgets of the class currently share this design informa-
tion, because otherwise it would not have been resolved statically.
However, now the developer has decided to partition the set of
instances created by the class into two sets: one with the previous
design and one with the new design. This requires some way to
disambiguate which instances will belong to which set. This can’t
always be provided from the editor view, since editors do not
support any kind of conditionals. In some (but not all) cases, these
sets of widgets could be distinguished based on what “new”
statement was used to create them, rather than which class. We
leave this “context-sensitive” editing of custom classes to future
work.

Although we have not quantified how often each of these sit-
uations arise, we feel that adding support for only the first two
situations is a significant contribution.

8. Related Work
8.1 Software Engineering for GUI

Creating good graphical user interfaces requires considering the
appearance, careful design for usability, and providing for the
concrete implementation. Our proposed contribution is to make an
improvement at the implementation level so we limit our discus-
sion of related work to projects with similar goals.

 Atif and IsHan et al. discuss “GUI Ripping” [22], a dynamic
process in which the software’s GUI is automatically “traversed”
by opening all its windows and reverse engineering all widgets in
a GUI forest. This information can be used as feedback for auto-
matically generated GUI test cases [23]. Compared to our re-
search, this other research is not concerned with view-based
maintenance of GUIs. In general, maintenance tasks could require
both human guided code inspection and automated test cases.
View-based navigation addresses the first whereas their research
addresses the second. Their research also does not address tool
support for improving WYSIWYG view-based editing.

Several papers address reverse-engineering of systems in order
to evolve legacy systems to more modern user interfaces. In [24],
Merlo, Girard et al. discusses a method for reverse engineering
user interfaces to turn console-based text interfaces into GUIs.
Bodhuin et al. [2] have a similar approach for migrating systems
to the web. In contrast, our research has investigated understand-
ing and making changes to an interface and not porting an inter-
face to another platform.

Staiger et al. [29] use static whole-program analysis for reverse-
engineering GUIs but these results have not been used as input to
a WYSIWYG-based tool and they do not describe how the stati-
cally recovered information would be mapped back to source code
changes. Dynamic and static analysis both provide different tra-
deoffs. Whereas dynamic analysis is precise for a particular pro-
gram execution, static analysis can explore many of the potential
program paths in a program. We have researched an approach
where one particular dynamic view can be selected under the de-
velopers control.

Another use of reverse-engineering for GUIs is for program
comprehension and documentation. In [25], Michail introduced a
tool to provide GUI-guided browsing of source. Their objective
was to allow developers to find where in the code a feature was
implemented, based on how code was related to the GUI. For
example, to find “spell checking” code, they could locate the code
which executed when the spell checking menu was selected.
Compared to our research, this research does not deal with use of
a WYSIWYG methodology and does not consider editing of code.
8.2 Aspects and Separation of Concerns
We make use of AspectJ to monitor a particular crosscutting con-
cern, the GUI, at runtime. Several papers use the example of “dis-
play updating” as a crosscutting concern for which AOP can be of
use [19]. Our approach is different in that we don’t propose to
remodularize the existing code but rather provide a crosscutting
view of the code for navigation and constrained editing..

Source views can be provided by code query languages [10,
12, 13]. These languages are static in nature and thus would not be
able to provide view-based navigation from dynamic views. Their
use applies to a wider range of concerns than our approach and we
believe our approach to be more domain-specific.

In their research on “mixin”-style languages for component-
based software development, Eide et al. [6], point out that al-
though OO design patterns are implemented through dynamic
collaborations of objects, these collaborations are often statically
determined. In these cases, the flexibility of dynamism can get in
the way of program comprehension and potential optimizations.
Similarly, we have noticed that although large parts of GUI de-
signs are static, they can be hard to recover using existing tools.

Task-centric IDEs [18] and Concern Graphs [33] provide a
projection of software development artifacts which are relevant
for a particular programmer task or program feature. We see the
dynamic views of a GUI as natural conceptual modules for GUI
maintenance tasks. Since the conceptual modules don’t always
align with source modules, tool support such as we proposed
might be helpful.
8.3 Software Maintenance
One difficulty in software development is that the relationship
between observed program behavior and source code is not al-
ways clear. To recover the relationships between program state-
ments for aiding maintenance tasks, both static [11, 36] and
dynamic slicing [1] have been used. These approaches provide a
link between a source statement (the criterion), and other state-
ments it may depend on (static), or did depend on for some partic-
ular execution (dynamic). In contrast to our approach, we provide
a link between the GUI view and the source. We do not provide
links between source statements, so either static or dynamic slic-
ing could be useful for GUI maintenance tasks in conjunction with
our proposed tool support.
 Other work in the area of round-trip engineering for object-
oriented models (e.g. UML) [27] also must tackle with the issues
of synchronizing source code other software artifacts. Although
there are similar problems, we think the problem domain of GUI
maintenance has required research into distinct solutions.
9. Conclusion

We have discussed view-based maintenance for graphical user
interfaces. One difficulty in maintaining GUIs is that the relation-
ship between the view and source code is not always clear. We
showed that one reason is because user interface code is spread
across the decomposition of applications. In a case study we saw
only 1 out of 5 dynamic views was built out of less than 10
classes. A popular approach to develop and maintain GUIs is to
use “What you see is what you get” editors. They allow develop-
ers to work directly with user interface views instead of the scat-
tered source elements. However, in our study a typical design less
than 50% of the dynamic view in 4 out of 5 cases. In this paper we
investigated the combination of a hybrid dynamic and static ap-
proach to allow for view-based maintenance of GUIs. Dynamic
analysis provides a concrete context in which maintenance can be
performed, while static checking ensures that changes propagated
from the view to the source are predictable. Our approach enabled
at least 50% of the dynamic view to be editable in 4 out of 5 cas-
es. We showed an addition of between 1.2x and 5.3x more design
information in 4 of the 5 cases we looked at. Furthermore, the two
larger applications appeared to benefit the most.

References

http://portal.acm.org/results.cfm?query=author%3AT%2E%20Bodhuin&querydisp=author%3AT%2E%20Bodhuin&coll=GUIDE&dl=GUIDE&CFID=2259811&CFTOKEN=61568766

[1] Agrawal, H. and Horgan, J. R. Dynamic program slicing. In
Proc. of the Conference on Programming Language Design
and Implementation, 1990.

[2] Bodhuin, T., Guardabascio, E. and Tortorella, M. Migrating
COBOL Systems to the WEB by Using the MVC Design
Pattern. In Proc. of the Working Conference on Reverse En-
gineering, 2002.

[3] Boldyreff, Cornelia and Kewish, Richard. Reverse Engineer-
ing to Achieve Maintainable WWW Sites. In Proc. of the
Working Conference on Reverse Engineering, 2001.

[4] CrosswordSage V0.3.5,
http://crosswordsage.sourceforge.net/, Visited 10/6/2007.

[5] Dayal, U. and Bernstein, P.A. On the correct translation of
update operations on relational views. 1982, Transactions on
Database Systems, Vol. 7, pp. 381-416.

[6] Eric Eide and Alastair Reid and John Regehr and Jay Le-
preau, Static and Dynamic Structure in Design Patterns, In
Proc. of the International Conference on Software Engineer-
ing, 2002.

[7] FreeMind
V0.8.0,http://freemind.sourceforge.net/wiki/index.php/Main_
Page, Visited 10/6/2007.

[8] Gamma, Erich; Richard Helm, Ralph Johnson, and John
Vlissides (1995). Design Patterns: Elements of Reusable
Object-Oriented Software, hardcover, 395 pages, Addison-
Wesley.

[9] GanttProject V2.0.1,
http://sourceforge.net/projects/ganttproject/, Visited
10/6/2007.

[10] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Code-
Quest: Scalable source code queries with DataLog. In Procs.
of the European Conference on Object-Oriented Program-
ming, 2006.

[11] Susan Horwitz and Thomas W. Reps, The Use of Program
Dependence Graphs in Software Engineering. In Proc. of the
International Conference on Software Engineering, 1992.

[12] Janzen, D. and De Volder, K. Navigating and Querying Code
Without Getting Lost, In Proc. of the International Aspect-
Oriented Software Development Conference, 2003.

[13] Janzen, D. and De Volder, K. Programming with Crosscut-
ting Effective Views. In Proc. of the European Conference
on Object-Oriented Programming, 2004.

[14] Java Chess (JChess) V1.01a3, Harald Faber, Andreas Rueck-
ert, Thomas Dalichow, http://www.java-chess.de/, Visited
10/6/2007.

[15] Jigloo SWT/Swing GUI Editor for Eclipse and WebSphere,
CloudGarden V4.0.2, http://www.cloudgarden.com/jigloo/,
Visited 10/6/2007.

[16] JMSN V0.9.9b2, http://sourceforge.net/projects/jmsn/, Vi-
sited 10/6/2007.

[17] Alan C. Kay. The early history of Smalltalk, In HOPL-II:
The second ACM SIGPLAN conference on History of pro-
gramming languages, 1993.

[18] Mik Kersten and Gail Murphy. Mylar: a degree-of-interest
model for IDEs. In Proc. of the International Conference on
Aspect-oriented Software Development, 2005.

[19] Kiczales, G and Mezini, M. Aspect-oriented programming
and modular reasoning. In Proc. of the International Confe-
rence on Software Engineering, 2005.

[20] Lorenz, D., Vlissides, J. Designing Components versus Ob-
jects: A Transformational Approach In Proceedings of the
International Conference on Software Engineering, 2001.

[21] McCarthy, J. Automata Studies. Princeton University Press,
1956, pp. 177-181.

[22] Memon, A., Banerjee, I. and Nagarajan, A. GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Test-
ing. In Proc. of the Working Conference on Reverse Engi-
neering, 2003.

[23] Memon, A. and Soffa, M. Regression testing of GUIs. In
Proc. of the Symposium on Foundations of Software Engi-
neering, 2003.

[24] Merlo, Ettor. Reengineering User Interfaces. IEEE Software,
Vol. 12, pp. 64–73.

[25] Michail, A. Browsing and searching source code of applica-
tions written using a GUI framework. In Proc. of the Interna-
tional Conference on Software Engineering, 2002.

[26] Myers, Brad A. User interface software tools. ACM Transac-
tions on Computer Human Interaction, 1995. pp. 64–103.

[27] E. V. Paesschen, W. D. Meuter, and M. D’Hondt. Selfsync: a
dynamic roundtrip engineering environment. In Proc. Inter-
national Conference on Model-Driven Engineering Lan-
guages and Systems , 2005.

[28] S. M. Selkow. The tree-to-tree editing problem. Inform.
Process.Lett., 6(6):184–186, 1977

[29] Staiger, S. Static Analysis of Programs with Graphical User
Interface. In Proc. of the European Conference on Software
Maintenance and Reuse, 2007. pp. 252–264.

[30] M. Stuart. Java GUI Builders.
http://www.fullspan.com/articles/java-gui-builders.html, Vi-
sited 10/6/2007.

[31] Swing Designer V6.4.1, Instantiations,
http://www.instantiations.com/swing-
designer/home_content.html, Visited 10/6/2007.

[32] Szyperski, C., “Component Software: Beyond Object-
Oriented Programming”, Addison Wesley, 1998.

[33] Martin P. Robillard and Gail C. Murphy. Concern Graphs:
Finding and Describing Concerns Using Structural Program
Dependencies. In Proc. of the International Conference on
Software Engineering, 2002.

[34] Tarr, P., Ossher, H., Harrison, W. and Sutton, Stanley Jr. N
Degrees of Separation: Multi-Dimensional Separation of
Concerns, In Proc. of the International Conference on Soft-
ware Engineering, 1999.

[35] Visual Editor V1.2, IBM,
http://www.eclipse.org/vep/WebContent/main.php, Visited
10/6/2007.

[36] M. Weiser. Program slicing. IEEE Transactions on Software
Engingeering, 10(4):352--357, July 1984.

[37] Yuan, Xun and Memon, Atif M. Using GUI Run-Time State
as Feedback to Generate Test Cases. In Proc. of the Interna-
tional Conference on Software Engineering, 2007.

http://crosswordsage.sourceforge.net/
http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/wiki/Richard_Helm
http://en.wikipedia.org/wiki/Ralph_Johnson
http://en.wikipedia.org/wiki/John_Vlissides
http://en.wikipedia.org/wiki/John_Vlissides
http://en.wikipedia.org/wiki/Design_Patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://sourceforge.net/projects/ganttproject/
http://jquery.cs.ubc.ca/jquery.pdf
http://jquery.cs.ubc.ca/jquery.pdf
http://www.aosd.net/conference.html
http://www.aosd.net/conference.html
http://www.java-chess.de/
http://www.cloudgarden.com/jigloo/
http://sourceforge.net/projects/jmsn/
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kiczales:Gregor.html
http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse2005.html#KiczalesM05
http://www.instantiations.com/swing-designer/home_content.html
http://www.instantiations.com/swing-designer/home_content.html
http://www.cs.ubc.ca/labs/spl/papers/2002/icse02-feat.html
http://www.cs.ubc.ca/labs/spl/papers/2002/icse02-feat.html
http://www.cs.ubc.ca/labs/spl/papers/2002/icse02-feat.html
http://www.eclipse.org/vep/WebContent/main.php

	1. Introduction
	1.1 GUI Editors
	1.2 Research and Contributions

	2. Example with Java-Chess
	3. Background
	3.1 Widgets
	3.2 Forward Engineering
	3.3 Reverse Engineering
	3.3.1 Design Model Recovery
	3.3.2 Model Synchronization

	4. View-Based Navigation
	4.1 Custom Graphics
	5.1 Editing Constraints
	5.1.1 Constraint Details

	5.2 Dynamic Context Improves View-Editing

	Quantitative Evaluation
	6.1 Decomposition of main window view
	6.2 View-Navigation
	6.3 View-Editing Comparison

	7. Discussion, Future Work
	8. Related Work
	8.1 Software Engineering for GUI
	8.2 Aspects and Separation of Concerns
	8.3 Software Maintenance

	9. Conclusion

