
Eric A. Wohlstadter
December 2004

Computer Science

Aspect-Oriented Development of Distributed Object Applications

Abstract

It it is often useful to distinguish between the definition of a core software system

and features that may apply to it. A feature is an optional extension of the original

system. Systems need to be adapted in order to take on new features. Distributed

heterogeneous software is particularly hard to adapt for deployment in disparate exe-

cution environments. We introduce the concept of an adaptation service to coordinate

crosscutting modifications to standard program components, transparently. This is

achieved through Aspect-Oriented Programming. A service is made up of client-

and server-side components called adaptlets. At run-time a protocol, GlueQoS, can

be used to determine what adaptlets are activated. The goal is to reduce devel-

opment costs associated with middleware application maintenance and deployment.

Professor Premkumar Devanbu
Dissertation Committee Chair

Aspect-Oriented Development of Distributed Object Applications

By

ERIC A. WOHLSTADTER
B.S. (University of California at Davis) 1998

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in charge

2004

–i–

Aspect-Oriented Development of Distributed Object Applications

Copyright 2004
by

Eric A. Wohlstadter

–ii–

Contents

List of Figures vi

Abstract 1

1 Introduction 2
1.1 Crosscutting Features in Distributed Applications 4
1.2 Overview of Thesis Goals . 6

2 Background 8
2.1 Middleware Features . 8

2.1.1 Examples of Features . 9
2.1.2 Implementation of Features in Middleware 10

2.2 Security Example . 11
2.2.1 Composing CPP and Authentication 13

2.3 Aspect-Oriented Software Development 13
2.4 CORBA . 16

3 Dado 19
3.1 Dado Description Language . 22

3.1.1 Adaptlet Inheritance . 23
3.1.2 Adaptlet Operations . 24
3.1.3 DDL for Timing Example . 24
3.1.4 DDL Language Mapping . 25

3.2 Application Instrumentation . 27
3.2.1 IDL Interface Aspect . 28
3.2.2 AdviceProxy . 30
3.2.3 IDL Operation Advice . 31

3.3 Advice Operations . 32
3.4 Adaptlet Requests . 34
3.5 Transparent Late Service Binding . 37

3.5.1 Advice Factory . 38
3.6 Measurements . 40
3.7 Conclusion . 42

–iii–

4 Examples 44
4.1 Client Puzzle-Protocol . 44

4.1.1 CPP Adaptlets . 46
4.1.2 Context Operations . 47
4.1.3 CPP Implementations . 47
4.1.4 RCT Implementation . 50
4.1.5 CPP Measurements . 52

4.2 Client-Side Cache . 55
4.2.1 Cache Client Generated Code and Implementation 57
4.2.2 Cache Server Implementation 60
4.2.3 Client-Side Deployment . 61
4.2.4 Server-Side Deployment . 61
4.2.5 Cache Example Conclusion . 62

5 GlueQoS 64
5.1 Motivation and Informal Semantics 66

5.1.1 Propositional Interpretation 67
5.1.2 Linear Constraints . 69
5.1.3 Run-time Policy Adaptation 71

5.2 Policy Language . 72
5.2.1 Special Requirements . 75
5.2.2 Security Revisited . 75

5.3 Mixed Integer Programming Policy Matching 77
5.3.1 Transformation of Variables 78
5.3.2 Transformation of Atomic Statements 79
5.3.3 Transformation of Disjunction of Conjunctions 81
5.3.4 Transformation of Policies . 83
5.3.5 Proof of Transformation Correctness 83

5.4 Implementation . 85
5.4.1 Client/Server Interaction . 86
5.4.2 GlueQoS Prototype . 87

5.5 Conclusion . 89

6 Related Work 90
6.1 Middleware Based Adaptation . 90

6.1.1 Foundations . 90
6.1.2 Customizable Middleware . 91
6.1.3 Dynamic Customization . 91
6.1.4 Reflection . 92
6.1.5 Containers . 93
6.1.6 Aspect-Oriented Middleware 94

6.2 Other Areas . 95
6.2.1 Wrapper-Based Techniques . 95
6.2.2 Binary Editing . 96
6.2.3 Mobile and Pervasive Adaptation 96

–iv–

6.2.4 Software Architecture . 97
6.2.5 Programming Language Approaches 98
6.2.6 Advanced Separation of Concerns 99
6.2.7 Electronic Contracts and Service-Level Agreements 100
6.2.8 Requirements Engineering . 100

7 Conclusion 102
7.1 Discussion . 102
7.2 Dissemination . 103
7.3 Future Plans . 104

A Additional Source Code 106

Bibliography 109

–v–

List of Figures

2.1 Mini AspectJ EBNF : Bold font represents terminals, productions in
italic font are not shown and productions ending in the suffix “Name”
are simply identifiers. 15

3.1 Dado Development Process The left hand side (within the dotted lines)
indicates the conventional CORBA process. On the right, the Dado
service development begins (1) with modeling the interface of Dado
adaptlets using DDL; from this the DDL compiler generates (2) mar-
shaling code, and typing environments for adaptlet implementations.
The programmer writes (3) the adaptlet implementations and links to
get (4) the adaptlets. Now, the deployment expert extends adaptlets
using (5) pointcuts, and these are used to generate (6) a Factory
for obtaining AdviceProxy implementations at run-time (7). Applica-
tions are instrumented independently by the Dado IDL compiler. An
AspectJ aspect or TAO Proxy is generated (8) and used to modify
the existing application (9). 20

3.2 Dado Description Language (DDL) EBNF : Used by Service Architects
(item 1) and Deployment Experts (item 5) in Figure 3.1. Bold font
represents terminals; productions in italic font are not shown but follow
from Figure 2.1. 23

3.3 Timing service : client and server adaptlets. Written by Service
Architect as in item 1, Figure 3.1. 25

3.4 Timing Implementation. Written by Service Programmer as in item 3,
Figure 3.1. 26

3.5 Stock Interface : Written by Application Architect in item A, Figure
3.1. 28

3.6 Aspect for instrumenting application. Generated by Dado IDL com-
piler as in item 7, Figure 3.1. 28

3.7 Abstract AdviceProxy class and the AdviceContext data structure.
Dado framework classes. 30

3.8 Instrumention for a specific interface operation. Generated by Dado
IDL compiler as in item 7, Figure 3.1. 31

3.9 Timing deploy. Written by Deployment Expert as in item 5, Figure 3.1. 33

–vi–

3.10 TimeStockServer implementation. Written by Service Programmer as
in item 3, Figure 3.1. 34

3.11 Timing Client Stub. Generated by DDL Compiler as in item 2, Figure
3.1. 36

3.12 Late-binding service adaptations (1) Server object, with Security and
Transaction adaptlets, named “b1” of type “Bill” is registered with
a Naming service. The identifiers “Transaction” and “Security” are
tagged to the external object reference. When client looks up object
named “b1”, the returned object reference (2) is intercepted by Dado
component. Dado attempts (3) to find client-side adaptlets for ”Trans-
action” and ”Authentication” from client-side factory. Factory creates
and binds transactions (T) and security (S) adaptlets to client appli-
cation object. 38

3.13 TimeStockServer Factory. Generated by DDL compiler as in item 6,
Figure 3.1. 39

3.14 Template for initializing advice lists. Generated by Dado IDL Compiler
as in item 2, Figure 3.1. 39

3.15 Test Adaptlets . 41

4.1 Client-Puzzle Protocol Messages . 45
4.2 Generic Cache Adaptlets . 46
4.3 CPP ClientImpl : Declaration of that and initialize not shown. . 48
4.4 CPP ServerImpl : Declaration of that and initialize not shown. . 49
4.5 CPP RCT . 51
4.6 Traditional Application Measurements 53
4.7 CPP Adaptlet Measurements . 54
4.8 Generic Cache Adaplets . 57
4.9 Cache Client Interface and Cache Server Stub 58
4.10 Cache ClientImpl . 59
4.11 Cache ServerImpl . 60
4.12 Deploying the cache for the StockServer client 61
4.13 Instantiation of concrete class for client Cache adaptlet 61
4.14 Deploying the cache for the Stock server 62
4.15 Instantiation of concrete class for server Cache adaptlet 62

5.1 Policy Hierarchy : Policies consists of a set of Disjunctions repre-
senting the policy requirements. Each requirement is built from the
Conjunction of some Atomic statements. 73

5.2 GlueQoS Language EBNF . 74
5.3 Security Example . 76
5.4 Transformation of Atomic Statements 79
5.5 “Big-M” Transformation . 82
5.6 Linear Relaxation . 82
5.7 Overall Policy → MIP translation 83

–vii–

5.8 The overall flow of the GlueQoS run-time, including client stub, server
stub, and the Mixed Integer Programming (MIP) run-time component 85

–viii–

1

Abstract

It it is often useful to distinguish between the definition of a core software system

and features that may apply to it. A feature is an optional extension of the original

system. Systems need to be adapted in order to take on new features. Distributed

heterogeneous software is particularly hard to adapt for deployment in disparate exe-

cution environments. We introduce the concept of an adaptation service to coordinate

crosscutting modifications to standard program components, transparently. This is

achieved through Aspect-Oriented Programming. A service is made up of client-

and server-side components called adaptlets. At run-time a protocol, GlueQoS, can

be used to determine what adaptlets are activated. The goal is to reduce devel-

opment costs associated with middleware application maintenance and deployment.

Professor Premkumar Devanbu
Dissertation Committee Chair

2

Chapter 1

Introduction

Both business and military scenarios demand custom distributed applications to

meet specific software requirements [1, 64]. Designers of these applications develop

software to coordinate the activities of participating network hosts. Often business

pressures force the need for cooperation between heterogeneous network hosts. Hetero-

geneity arises when software must be written in different programming languages, for

different operating systems, or for different hardware architectures. Since languages,

operating systems, and architectures all provide a platform for building applications

we can view heterogeneity as arising from platform variability. Integration of legacy

assets, contractual obligations, resource constraints, and performance requirements

are also examples of pressures that cause heterogeneity. These distributed heteroge-

neous (DH) systems are now embedded in the crucial infrastructure of our society.

They are pervasive as a part of the telecommunications industry, financial sector, and

military complex. A process of software development based on middleware is often

used to ease the burden of building and maintaining these large DH systems.

Middleware The National Science Foundation of the U.S. defines middleware [61]

as:

Middleware is software that connects two or more otherwise separate ap-

3

plications across the Internet or local area networks. More specifically,
the term refers to an evolving layer of services that resides between the
network and more traditional applications for managing security, access
and information exchange.

We see that the purpose of middleware is connection between applications in a

distributed setting. This is a challenge because we need to connect applications built

on heterogeneous platforms. So, middleware must translate between platform specific

details to common standards of communication.

Software developers need only be concerned with developing the separate appli-

cation software without regard for how an application will be integrated into a larger

DH system. Viewed in this light, building systems becomes a matter of developing

or purchasing application pieces and architecting the appropriate topology of connec-

tions. To support the exchange and reuse of application pieces between third parties,

standards-based middleware may support a well defined component model [88]. A

component model defines the interface between application pieces (the component)

and the middleware (the connector) [21].

For reuse to be cost-effective it must be possible to use a component in many

systems. This is problematic since the original component developer cannot predict

all of the requirements induced by the environment in which components are deployed.

This problem can be remedied in many cases by adding features to components at

deployment time.

Adding Features at Deployment Time Sometimes distribution forces appli-

cations to manage more details than are present in local computations. Information

about security [62], distributed transactions [63], or real-time scheduling [75] must be

shared between components deployed across the network. Modifying the components

to handle many concerns decreases cohesiveness by forcing the component implemen-

tation to handle several types of functionality. Current middleware solutions only

4

offer a fixed set of features [87, 62]. However, hand tailoring features that are not of-

fered directly by middleware tangles the implementation of several requirements and

destroys program modularity (see Chapter 4 for examples). Furthermore, compo-

nents are no longer usable when environmental conditions (such as security policies)

change. So, hand-tailoring to different operating conditions increases production costs

and requires repeated program modification which may decrease reliability.

As we demonstrate in this thesis, distributed heterogeneous software is particularly

hard to adapt for deployment in disparate execution environments. We introduce the

concept of an adaptation service to coordinate cross-host modifications to standard

program components, transparently. A service is made up of client- and server-

side components called adaptlets. At run-time a protocol, GlueQoS, can be used to

determine what services are activated.

1.1 Crosscutting Features in Distributed Applica-

tions

Crosscutting features1 [45] are those whose implementations stubbornly resist con-

finement within the bounds of modules. Features such as logging, transactions, secu-

rity and fault-tolerance typically have implementations that straddle module bound-

aries even within the most sensible decompositions of systems. This issue has been

discussed widely in the literature (see, for example, References [90, 45, 57, 17]; the

sample security policy in the next chapter illustrates this issue). The scattered imple-

mentation of such features makes them difficult to develop, understand, and maintain.

To worsen matters, the requirements of such features are often late bound. They are

locality dependent, discovered late, and change often—security policies again being a

1We use the term “feature” and “concern” interchangeably although there are subtle differences
in their connotation. Whereas a feature is perceived as an added value to the user, a concern is
more likely to be associated with a software development task.

5

prime example. Programmers may be confronted with the difficult challenge of mak-

ing a scattered set of changes to a broad set of modules, often late in the development

process.

Software engineers must also consider non-functional [58] requirements, such as

security, performance, reliability, and quality of service (QoS) requirements when de-

signing component connections. These requirements may require support by software

on both the client and server in order to operate properly. For example, software

that checks passwords on the server side should be complemented by software that

provides passwords for the client. Security requirements, however, may vary with

deployment context and even at run-time. We must ensure that components have

compatible non-functional features.

This thesis describes middleware services and development tools for the design,

development, and deployment of new features for distributed heterogeneous software

components. The overall designs are general enough to be applicable for a wide

range of implementation languages/platforms. Additionally, we provide support for

cooperation between features on heterogeneous systems. Thus, it must be ensured

that features to manage concerns that span hosts are coordinated. This is especially

important in cases where features interact. At run-time a protocol is used to ensure

that composed layers do not conflict with one another. We show that this approach

adds some performance overhead but is relatively small when used as part of typical

distributed applications.

The services and tools presented in this thesis depend on two key representations

about the features added to the system. First, a description of the feature’s interface

is required so that a feature can be integrated at deployment time with an existing

application. This description requires changes to traditional interface description

languages (IDLs).

Second, policies are used to describe allowable combinations of features so that

6

agreement of feature usage can be made between network hosts at run-time. We seek

to understand whether providing these representations to the middleware reduces the

difficulty of adding features to middleware applications at deployment time. This is

demonstrated through several example use-cases.

Middleware has often been used as a vehicle for adding features, however, pre-

viously no platform has existed for supporting programming and administration of

cross-host features. In the next chapter we describe these types of features in more

detail.

1.2 Overview of Thesis Goals

As we have discussed, late-bound, crosscutting features such as security require

extra functional elements (which can be implemented as adaptlets) to be located

together with distributed application software components. A client-server pair of

adaptlets constitutes an adaptation service. Here we present a discussion of the main

goals of the thesis.

Heterogeneity and Communication Adaptlets may need to exchange information

and coordinate with each other, and/or with the application components. The adap-

tation mechanisms may depend on the platform; even so, heterogeneous adaptlets

should co-exist and inter-operate correctly.

Binding and Deployment It is desirable to support late binding and flexible deploy-

ment of features. Consider that industry standards such as Java Enterprise Edition

allow a fixed set of features to be customized for specific applications at deploy-

ment time. Likewise, we would like to allow vendors to build features consisting of

adaptlets, independently of application builders, and then allow deployment experts

to combine features and applications to suit their needs.

Flexible Communication and Coordination The interaction between a matched

7

pair of client and server adaptlets may not be simple and contained. Under different

circumstances, the client adaptlet may require and request different functions (with

different parameters) that are supported by a server adaptlet (just as a distributed

object can support several distinct methods). Likewise, the server adaptlet may

request different post-processing functions on the client side.

Dynamic Service Recognition Several adaptlets, supporting different features,

may be associated with an application component; clients and servers must deploy

matching sets of adaptlets. In a dynamic, widely distributed context, clients may

become aware only at run-time of the adaptlets associated with a server object. Thus

adaptlets may need to be deployed at runtime.

Thesis Overview The rest of the thesis proceeds as follows: Chapter 2 presents

fundamental material for an understanding of our research, Chapter 3 presents the

programming model for developing new features, Chapter 4 presents two examples,

Chapter 5 defines the protocol for deploying features at run-time, Chapter 6 discusses

related work, and Chapter 7 ends with conclusions.

8

Chapter 2

Background

2.1 Middleware Features

It is often useful to distinguish between the definition of a core software system and

features that may apply to it [102, 5, 45]. A feature is an “optional and incremental

unit of functionality” [102]. This is analogous to features in other areas of engineering.

For example, it may be more cost effective to engineer an automobile assembly plant

in terms of a base product and optional features. An area of software engineering

known as product-line architectures [5] is founded on this principle. Other areas such

as aspect-oriented software development (AOSD) focus on creating new languages [45]

and tools [71] to integrate features into products or identify concerns in existing

programs.

We use the term adaptation to refer to the addition or removal of software code to

extend or modify an existing system. Thus, features are an artifact of requirements,

such as security or fault tolerance; adaptations are an artifact of implementation such

as code transformations or software wrappers. Systems need to be adapted in order

to take on new features. When software is adaptated by tools (statically) we often

say that it has been “instrumented”.

9

In distributed software development, it is popular to use middleware as a mecha-

nism where features are added to the connection between distributed components [83].

2.1.1 Examples of Features

The kinds of features supported by middleware naturally reflect the concerns

relevant to software in a distributed setting. Here we preview two types of features,

security and fault-tolerance, as they have been used in existing industry and research

middleware platforms.

Distributed components often need to be protected from attacks launched by mali-

cious users of the system. Thus, security in its many forms, including authentication

and privacy, is a valuable feature to support in the middleware. Sterne et al. [85]

introduced fine-grained access control as a means of applying discretionary controls

to individual distributed object method definitions. Intrusion detection can be used

to detect attacks launched by so-called “insiders” and was applied to object-oriented

middleware [86]. Privacy can be maintained through encryption and most platforms

now provide support for standard mechanisms such as transport layer security [26].

Systems can fail for many reasons including hostile users. Next is a description of

features used for fault-tolerance.

Several approaches exist to adapt distributed applications for fault-tolerance. The

Immune system [59] makes use of a group multicast protocol in order to maintain repli-

cas of application state. However, since application state is captured as uninterpreted

streams, Immune does not support heterogeneity. ITDOS [73] builds on the approach

and provides support for replication of typed data values to support heterogeneity.

The ITUA [69] project builds on intrusion detection technology to provide more effi-

cient recovery. ITUA assumes that replicas will fail according to a particular attack

profile and not arbitrarily.

From this small set of examples we can already begin to see that the set of features

10

(and choices of feature implementations) useful to developers is much larger than

one can expect to be supported in a monolithic middleware product. Therefore,

researchers have relied on other means for extending middleware implementations

with new features.

2.1.2 Implementation of Features in Middleware

Layered composition is a popular way to provide new middleware features, when

layers can be implemented as separate components. Many language extensions sup-

port layered composition, including abstract subclasses [96], mixin layers [81], inter-

ceptors [60], and aspects [45].

It is useful to distinguish layered composition from a layered architecture [77], for

example, the OSI seven layer model [84]. In a layered architecture, each layer provides

one set of interfaces, and relies on a (usually) different set of interfaces from the layer

below it. The goal is to provide an increasing level of abstraction, and hide details

from higher layers. In the case of features presented in the previous section, all layers

essentially provide a similar interface; layers that add new features are architecturally

orthogonal, although semantic interactions may occur. Now we describe how features

have been added to middleware using both the Decorator [35] design pattern and

middleware interceptors.

A decorator layer, also called a wrapper, exposes the same interface to layers

above as the interface onto which it is composed. This allows client code (the above

layers) to remain unaffected by layer composition. A decorator approach is used in

Lasange [94] to provide client customizable remote method invocations. Examples are

given for client specific security and business rules. Quality of Objects [65] (QuO) uses

decorators that are dynamically chosen based on runtime conditions. This allows QuO

to provide services relating to intrusion detection, network bandwidth management,

and fault-tolerance.

11

Interceptors also provide layered composition, but they are completely generic,

relying on run-time type information [25]. Information about other layers (including

the original application components) is gained dynamically via reflection, and used

to monitor and modify application behavior. This provides flexibility at the expense

of static type-checking. Many CORBA-based QoS features are implemented using

interceptors including security, fault-tolerance, transactions, and real-time features.

This thesis describes an Aspect-Oriented approach to add incremental features.

This approach provides the benefits of both decorator and interceptor based ap-

proaches because composition with an application can be checked for static type-

safety. Additionally crosscutting deployment is simplified, as motivated in the follow-

ing scenario.

2.2 Security Example

This example illustrates the issues of development and deployment of features in a

setting where clients and servers may have different policies with regards to features.

The Remote Collaboration Tool [4] (RCT) is a distributed multi-user interactive

environment for academic and research settings. The architecture is based on client-

server remote procedure-call (RPC) through the CORBA object-oriented middleware.

Users on the RCT can self-organize into different groups to engage in private chat-

room sessions or file-sharing. Groups can be used to support classroom settings

where each student is a member of a group for each registered class. Multimedia

functionality such as real-time voice and collaborative workspaces are supported.

Consider deployment of the RCT in an environment where two security features

are required. The first feature is authentication. The RCT must protect certain

services from unauthorized access; so client requests must be preceded or accompanied

by an authentication step involving the presentation of credentials in order to gain

12

group membership for those services. Credentials can be based on a password, or on

public-key signatures [40] In this case, a feature on the server side is responsible for

checking credentials, and the corresponding feature on the client-side is required to

present the appropriate credentials.

The second feature, the client-puzzle protocol (CPP) [24], defends against denial-

of-service (DoS) attacks. A DoS attack occurs when a malicious client (or set of

malicious clients) overloads a service with requests, hindering timely response to

legitimate clients. Certain components of the RCT are prone to DoS attack because of

the amount of computation required by the components. CPP protects a component

by intercepting client requests and refusing service until the client provides a solution

to a small mathematical problem. We discuss the details in Chapter 4.

Adding these two features requires changes to many different components in the

RCT implementation. Clients now have to authenticate themselves for certain group

related services. Authentication must be added to these client-service requests. Ad-

ditionally, the CPP protocol must be enabled to protect the DoS prone RCT compo-

nents.

The changes are crosscutting: programs running on different platforms and in dif-

ferent languages might need changing. Since some platforms may have performance

or battery limitations (e.g., PDAs or laptops) or be remotely located, different evolu-

tion strategies should be allowed and allowed to inter-operate. Changes to different

elements must be made consistently to ensure correct interaction. Changes must be

properly deployed in the different elements, otherwise versioning errors may result.

Since the functions for Authentication and CPP may apply to other applications,

it would be desirable to reuse the same implementations, should the platforms be

compatible.

13

2.2.1 Composing CPP and Authentication

CPP and Authentication interact in interesting ways. For example, suppose the

server’s only requirement is to prevent DoS attacks. If we trust authenticated clients

not to mount DoS attacks, then the authentication and client-puzzle features are

equivalent and one can be substituted for the other; it would be redundant to use

both. However, sometimes authentication may not imply a decreased risk of DoS

attacks, so these features would be viewed as orthogonal. In other situations, we may

require both authentication and DoS defense.

Client-side preferences must also be considered when selecting the features that

govern a client-server interaction. A client may consider CPP and Authentication to

be equivalent, and express a policy that it can use either. A client with a performance

requirement, however, would naturally prefer to employ authentication to avoid com-

puting puzzle solutions. A client who values its privacy would prefer to expend CPU

cycles in order to not have to reveal their identity; this client may prefer to use CPP

rather than provide identity-revealing credentials.

To appreciate our approach to address this type of scenario an understanding

of both aspect-oriented software development and distributed object computing is

necessary. We provide this background next.

2.3 Aspect-Oriented Software Development

AOSD is a general technique for effecting crosscutting program changes. This is

most often achieved by encapsulating the changes to the programs within the lexical

confines of a module called an aspect.

Aspect-Oriented Programming [45] (AOP) provides an abstraction of the execution

of a program and techniques for altering its control and data flow. Although there are

many methods for program transformation, AOP is particularly suitable for adapta-

14

tions on distributed object software. Program execution as defined in AOP matches

closely with the notion of interfaces, functions, and objects in distributed object

computing (DOC). Thus, we choose to incorporate the terminology and techniques of

AOP in our framework. The following definitions help to clarify how program events

are used in AOP.

1. Joinpoint

In AOP the execution of distinguished parts of a program is viewed to gener-

ate a meta-program event known as a joinpoint. As an example, a “method

call joinpoint” includes information such as method name, argument types, or

argument values.

2. Pointcut

A pointcut is a query written to select some number of joinpoints out of the

execution of a program. A pointcut selects a subset of joinpoints by matching

against the information available in the joinpoint events.

3. Advice

Advice are functions associated with some pointcut and executed at the join-

points matched by the pointcut. Advice implementations can adapt program

behavior by making decisions based on information available at the joinpoints

or recorded by previous advice executions.

4. Introduction

An introduction allows new fields (or methods) to be added to existing classes

for use by the advice. For our purposes, adding new fields is useful when an

advice must associate some state with application objects.

5. Aspect

15

An aspect is a program module used to encapsulate closely related advice and

aspect specific statements (such as introductions). The aspect scope is used

by advice to store information that should be saved between advice triggering.

(1) Aspect :: aspect AspectName {(AspectDef | JavaDef)* }

(2) AspectDef :: Pointcut | Advice | Introduce

(3) Pointcut :: pointcut PointcutName (ParamList) : PCExpr ;

(4) PCExpr :: PCD | PCD and PCD | !PCD | PCD or PCD

(5) PCD :: CallPCD | PCApp

(6) CallPCD :: call (TypeQuery ClassQuery .(MethodName | Wildcard)

(7) (PCDParam*))

(8) PCDParam:: .. | Wildcard | Type | ParameterName

(9) PCApp :: PointcutName (ParameterName*)

(10) Advice :: (before | after | around) (ParamList) : PCExpr { JavaCode }

(11) Introduce :: Type ClassName . FieldName ;

Figure 2.1: Mini AspectJ EBNF : Bold font represents terminals, productions in italic
font are not shown and productions ending in the suffix “Name” are simply identifiers.

Figure 2.1 shows the syntax for a simplified version of the AspectJ language. An

aspect can be declared (line 1) much like a class in Java. It may contain standard

Java definitions or specialized aspect definitions. An aspect definition (line 2) is a

pointcut, an advice, or an introduction.

A pointcut (line 3) is a named query over joinpoints. The pointcut has a formal

argument list that is used to capture information from a pointcut expression (line

4). This expression may combine primitive queries using standard logical operators.

A primitive query is known as a pointcut designator (line 5). We show only two

designators.

16

The first, CallPCD (line 6), identifies calls to particular methods. Methods can be

chosen based on (in the order given): the return type, enclosing class, method name,

or parameter list.

The second, PCApp (line 9), is the application of a named pointcut. Here free

variable names are used in place of the actual arguments. This is used to bind the

information expressed in the pointcut designator to the arguments of an advice (line

10).

An advice (line 10) is a pairing of a pointcut expression and the Java code to be

executed when the pointcut is matched. Advice may be declared to execute before,

after, or around (in place of) the original joinpoint. The body of the distinguished

around advice can use a special keyword, proceed, to allow execution to flow to the

original joinpoint.

The last production in the figure is an introduction (line 11).

AOP is a general technique for encapsulating crosscutting concerns. Our research

goals have applied these abstractions for coordinated adaptations of distributed object

applications.

2.4 CORBA

A popular form of distributed software design has come to be known as Distributed

Object Computing. Many different DOC standards are in existence and DOC soft-

ware is being used for applications in both business and military applications. DOC

extends the traditional RPC primitive by managing a dynamic number of stateful pro-

gram entities at one traditional application endpoint (IP Address/Port). Because our

research has focused on this type of middleware we present in detail some definitions

and concepts from this area.

1. Interface

17

An interface is a named collection of procedure signatures (RPC signatures) in-

cluding procedure return values, formal parameters, and exception conditions.

An application component is said to implement an interface by creating a map-

ping from all the procedures in some interface to programming language proce-

dures.

2. Application Component

We have used the term application component thus far without defining it. An

application component is a set of programming language procedures that share

the same static data scope. Different application component implementations

can be used to implement the same interface.

3. Distributed Object

An application component that implements an interface can be registered with

a local middleware daemon server (called an ORB, for Object Request Broker)

to become a distributed object. Any number of application components can be

registered at run-time. Each registration creates a new instance with its own

globally unique name and memory storage scope.

4. External Reference

The external reference is a globally unique name that can be used by client

programs to initiate communication with distributed objects.

5. Server Stub

A server stub is a component in some programming language that exports the

same interface as a server object. Client side middleware can convert an external

reference into a stub to give the client access to the server’s services. The stub

contains generated code to handle marshaling.

18

Marshaling (also known as serialization) is the process of converting data types

from a programming language to a stream of bytes for network transmission.

This process is inherently not statically type-checkable. Therefore it is advan-

tageous to prevent programmers from explicitly writing marshaling code.

6. Server Skeleton

In DOC a server side RPC stub is known as a skeleton. When application com-

ponents implement an interface, the skeleton is used to connect programming

language procedures for dispatch by the middleware.

DOC middleware only offer a fixed set of features with limited customizability of

feature semantics. The next chapter presents our approach to address this limitation

by incorporating AOP.

19

Chapter 3

Dado

This chapter describes Dado, an approach to developing features in distributed

systems that require code changes, in a heterogeneous setting, to both client- and

server-side of a distributed interaction.

Currently, the process of building DH systems using middleware such as CORBA

begins by describing the high-level interfaces using IDL. IDL specifications are then

implemented by developers on different platforms and perhaps in different languages.

When implementation is complete, the users of the distributed system can run ORBs

on a network as suited to the application and organizational needs, and deploy the

constituent application objects.

Dado brings three new roles into this process (see Figure 3.1): a service architect,

service programmer, and a service deployment expert.

This service architect can design a DH service that implements a crosscutting

feature. The process begins with the description of a Dado service in an enhanced

IDL (known as DDL). A service is a pair of client/server adaptlet interface descrip-

tions, which consist of several operations, just like an IDL interface. These interfaces

are then compiled using DDL compilers for a target implementation language (e.g.,

Java or C++), producing marshaling routines and typing environments. The imple-

20

IDL
Specs

IDL
Compiler

Application
Skeletons &

Stubs

Header
Files

Application
Programmer

Application

Implementation

DDL
SpecsDDL

Compiler

Application
Architect

Adaptlet
Skeletons &

Stubs

Adaptlet
Header

Files

Adaptlet
Implementations

Service
Architect

Service
Programmer

Service
Deployment

Expert

Objects

Base
Adaptlets

Dado IDL
Compiler

DDL
Specs

DDL
Compiler

IDL
Aspect

Factory
Interface

Factory
Impl

AdviceProxy
Impl

4

6

89

7

1

2

3

5

A

Sub
Adaptletsextends

implements

Figure 3.1: Dado Development Process The left hand side (within the dotted lines)
indicates the conventional CORBA process. On the right, the Dado service develop-
ment begins (1) with modeling the interface of Dado adaptlets using DDL; from this
the DDL compiler generates (2) marshaling code, and typing environments for adapt-
let implementations. The programmer writes (3) the adaptlet implementations and
links to get (4) the adaptlets. Now, the deployment expert extends adaptlets using (5)
pointcuts, and these are used to generate (6) a Factory for obtaining AdviceProxy

implementations at run-time (7). Applications are instrumented independently by
the Dado IDL compiler. An AspectJ aspect or TAO Proxy is generated (8) and
used to modify the existing application (9).

21

mentation then proceeds by service programmers.

The deployment expert binds an implemented service to a given application by

specifying bindings using a pointcut language. The deployment expert will need to

understand both the application and the service, and select the bindings based on

the specific installation. Applications are instrumented by modifying the application

stubs and skeletons. A specialized CORBA IDL compiler (the Dado IDL compiler)

is provided for this purpose.

This chapter presents the details of the Dado features outlined in the Introduction

chapter. The current Dado experimental implementation is based on the CORBA

standard. It includes the DDL language for adaptlets, a DDL compiler for C++ and

Java, and the Dado IDL compiler to modify applications for two different open-source

ORBs (JacORB [8] and the TAO [74] ORB).

Timing Example This chapter uses the running example of a remote invocation

timing monitor. This simple example is used to ground the discussion of newly

introduced concepts. Here we discuss the high-level requirements for the timing im-

plementation.

One could write code (e.g., using interceptors [60, 62] or aspects) to attach to

the client that will record the time each invocation leaves and each response arrives.

However, the client may also want the invocation arrival-time at the server, and the

reply sending-time in order to compute the actual processing time. This scenario

demands more coordination between interacting client and server adaptations.

This chapter, through the example, demonstrates how Dado provides four critical

elements. First, clients must be able to ask the server for timing statistics; only

some clients will request this feature. Second, servers may return data through a

type-checked interface. Third, clients need some way to modify existing software to

add logic for requesting timing statistics; different means should be allowed. Finally,

22

client and server adaptations should be coordinated; clients will not request timing

statistics from servers unable to provide them.

Note on presentation syntax Throughout this chapter fragments of our Java

and AspectJ based implementation are presented. The pseudo code is written in

Java 1.5 and AspectJ syntax. Many details have been elided to showcase the relevant

design choices in our implementation. Also, we do not show try/catch blocks, default

constructor calls, exception handling code, visibility modifiers, or packages.

The chapter begins with a summary of the DDL language. Section 3.2 describes

the instrumentation of CORBA applications. Section 3.3 describes adaptlet advice.

Section 3.4 describes adaptlet communication. Section 3.5 describes deployment of

adaptlets. Section 3.6 presents measurements. Finally, Section 3.7 concludes with an

overall view of the work.

3.1 Dado Description Language

Dado adopts the philosophy that IDL-level models provide an excellent software

engineering methodology for distributed systems. In addition to promoting better

conceptualization of the design, one can construct tools to generate useful marshaling

code and typing environments for static type-checking.

To gain an understanding of how a service architect works with DDL, it is useful to

examine the elements of the DDL language presented in Figure 3.2. DDL introduces

the notion of a service (line 1) that refers to a crosscutting feature. A service comprises

a client and/or server adaptlet (lines 3 and 4).

A client and server adaptlet can be described together in a shared scope by declar-

ing both inside the service element. The service can be viewed as a collaboration [82]

of client and server adaptlets. The client and server adaptlets described in this way

share a common name, used to coordinate run-time deployment. The scope also pro-

23

(1) Adaptlets :: service Name Inherits? { Client? Server? };

(2) Inherits :: : Name*

(3) Client :: client { Element* };

(4) Server :: server { Element* };

(5) Element :: AdviceOp | Request | Pointcut | Advice

(6) AdviceOp :: Around | Operation

(7) Around :: around Type Operation

(8) Request :: request Operation

(9) Operation :: Name (Parameter*);

(10) Name :: String

Figure 3.2: Dado Description Language (DDL) EBNF : Used by Service Architects
(item 1) and Deployment Experts (item 5) in Figure 3.1. Bold font represents termi-
nals; productions in italic font are not shown but follow from Figure 2.1.

vides a way to coordinate client and server adaptlets at the interface level. This may

be needed at deployment time, through shared pointcuts, and at run-time, through

request messages.

3.1.1 Adaptlet Inheritance

Adaptlet interfaces can be extended through object-oriented multiple interface

inheritance (line 2). Client adaptlets in a sub-service1 implicitly inherit from the

client adaptlets in the super-services; server adaptlets are similarly extended.

Inheritance provides for the description of generic services that are subsequently

tailored for specific applications. The service-architect will write interfaces for client

and server adaptlets, which are then implemented by service-programmers. A de-

1We use the terms sub-,super-, and base-service/adaptlet in analogy to sub, super, and base
classes.

24

ployment expert can then add an adaptlet to an application by extending either the

adaptlet interfaces (through DDL multiple inheritance), adaptlet implementations

(through Java single inheritance or C++ multiple inheritance), or both. The in-

heritance model expands the notion of AspectJ’s aspect inheritance to client/server

adaptlet collaborations.

3.1.2 Adaptlet Operations

Each adaptlet may support several operations, which may be of two different kinds.

Advice operations (line 5) are specified as standard operations or optionally tagged

as around (line 6). Advice operations provide only the signature of an advice; the

body is implemented in a specific programming language. Advice operations may be

bound via pointcut patterns (like AspectJ advice) to application interfaces. They

basically provide additional code that is run every time certain operations defined

in an IDL interface are invoked. Code in the distinguished around advice have full

access to modify intercepted application information, whereas other advice do not (as

in AspectJ).

In addition to advice operations, DDL services can also include request opera-

tions (line 7). These are a form of asynchronous messages that may be triggered by

any adaptlet advice. Advice and request are explained in more detail in Sections

3.3 and 3.4.

3.1.3 DDL for Timing Example

In Figure 3.3, we see the base-service for the client and server Timing adaptlets.

Each adaptlet includes one request operation.

When timeRequest is invoked by the client adaptlet, a request message is added

to the application invocation and dispatched to the server-side adaptlet. The server

adaptlet can respond to a timeRequest by taking two timing measurements to deter-

25

(1) service Timing {
(2) client {
(3) request timeResult(long received, long sent);
(4) };
(5)
(6) server {
(7) request timeRequest();
(8) };
(9)};

Figure 3.3: Timing service : client and server adaptlets. Written by Service
Architect as in item 1, Figure 3.1.

mine the actual execution time for that application method invocation. It can then

report the results back to the client, using the client request timeResult.

In order to trigger this exchange of request messages some advice must be added

to the client side. Later Section 3.3 shows how a deployment expert can extend the

client adaptlet to include the advice.

3.1.4 DDL Language Mapping

The DDL compiler generates typing environments, as well as stub and skeleton

functions. The generated typing environments (C++ header files or Java interfaces)

ensure that the pieces of a service can safely inter-operate. Adaptlets can currently

be implemented in either C++ or Java but must be written in the same language as

the application. This is primarily for performance reasons; if adaptlets are in a differ-

ent language, it would be necessary to endure an expensive traversal of middleware

to get from an application object to an adaptlet.

Each adaptlet interface in a service is used to generate the appropriate program-

ming language interfaces and communication code. These are then used by service

programmers to build the adaptlet implementations. Figure 3.4 shows the Java im-

plementation code for the client base-adaptlet.

26

(1) class Timing Client Impl implements Timing Client {
(2)
(3) void initialize(Timing Server Stub that) {
(4) }
(5) void timeResult(long received, long sent) {
(6) System.out.println(recevied + " " + sent);
(7) }
(8)}

Figure 3.4: Timing Implementation. Written by Service Programmer as in item 3,
Figure 3.1.

From the service in Figure 3.3, the DDL compiler can generate the interface

Timing Client2 which is referenced in Figure 3.4, line 1. The declaration of the

interface (not shown, however implied by the implementation) includes two meth-

ods.

The first, initialize, allows the implementation to obtain a reference to the

server side stub. The reference could be used to communicate through request

operations declared on the server side, such as timeRequest (Figure 3.3, line 7). In

the implementation code (lines 3 and 4) the reference is simply discarded. In the next

section, we will see that for the Timing service, the reference is only relevant to a

client sub-class.

The second method defined in the interface is timeResult (lines 5 and 6). This

method will be invoked whenever the server-side adaptlet adds a timeResult request

by using a client adaptlet stub. Here, the implementation simply prints out the re-

sults.

In this section we provided an introduction to the adaptlet interface language

called DDL. We saw how the DDL is used to generate interfaces implemented by

service programmers. The implementation could make use of stubs that refer to the

matched client or server adaptlet (described in more detail in Section 3.4). The

2The suffix Client is appended for a client adaptlet and Server for a server adaptlet.

27

details presented were motivated by three concepts: that adaptlet implementation

should be provided a statically typed-environment for communication, that commu-

nication details would be automatically generated, and that generic and application

specific components could be separated through inheritance.

3.2 Application Instrumentation

In order to trigger adaptlet behavior at runtime, application code must somehow

be modified, or execution intercepted to capture the right events. A wide range of

binary and source-code, static and dynamic instrumentation mechanisms have been

reported [14, 91, 45, 72]. Middleware, also, can support highly dynamic reflective

mechanisms [6, 28]. In keeping with the DH philosophy, we have explored hetero-

geneity in the implementation of the triggering mechanism. Thus, while the pointcut

specifies the high-level design of the binding, different implementation strategies are

possible.

Applications are prepared statically, for adaptation by adaptlets at run-time. This

is done in a generic fashion. The preparation steps do not depend on the adaptlets

that will be added. Instrumentation takes place on the client and server CORBA

stubs and skeletons. Each interface in an application has a corresponding stub and

skeleton. Consider the simple interface StockServer in Figure 3.5. It provides an

operation, getQuote, for retrieving a stock price for a given ticker symbol. The other

operation, setQuotes, sets the current price for multiple stock quotes.

Now we present some details of the AspectJ code generated by the Dado IDL

compiler. Our C++ implementation will be explained in terms of its differences from

what we have already presented.

28

struct Quote {
float price;
string symbol;

};
interface StockServer {

float getQuote(in string symbol);
void setQuotes(in sequence<Quote> list);

};

Figure 3.5: Stock Interface : Written by Application Architect in item A, Figure 3.1.

(1) aspect StockServer Client Aspect {
(2) AdviceProxy StockServer Client. getQuotes;
(3) AdviceProxy StockServer Client. setQuotes;
(4)
(5) //Invocation interception advice (see Figure 3.8)
(6)
(7) //Constructor introduction (see Figure 3.14)
(8)}

Figure 3.6: Aspect for instrumenting application. Generated by Dado IDL compiler
as in item 7, Figure 3.1.

3.2.1 IDL Interface Aspect

In Figure 3.6, the aspect StockServer Client Aspect (line 1) facilitates trans-

formation (item 8, Figure 3.1) of a generated client stub. The code is generated by the

Dado IDL compiler (item 7, Figure 3.1), directly from the CORBA IDL. An aspect is

also used for transformation of server side skeletons. The code is symmetric, involving

only changes to naming conventions, so the details are not presented.

On lines 2 and 3 a field introduction is generated for each operation in the

interface. This field can be bound to a list of AdviceProxys by the Dado run-

time. An AdviceProxy manages the interception of an application operation for a

particular adaptlet advice.

Next, an AspectJ advice is generated for each operation in the interface (com-

ment on line 5, presented in Figure 3.8). This advice will intercept operation invoca-

tions and pass control to the AdviceProxy that is the head of the appropriate adaptlet

29

advice list. This indirection is necessary so that advice may be installed dynamically.

This is necessary because AspectJ does not support dynamic installation of advice.

We return to the AdviceProxy in Section 3.3.

Finally, line 7 provides an AspectJ introduction to intercept stub creation. The

body of an introduced constructor binds relevant AdviceProxy lists (i.e., the head of

the list) to each of the generated AdviceProxy fields as specified by any DDL point-

cuts. In this way, our dynamic Dado advices are bootstrapped into the application

by the static AspectJ advice.

Before describing more details of our implementation we present an example flow

of client to server communication for the getQuote operation where two adaptlet

advices are in use. Each advice is represented by an AdviceProxy.

First, the client application would make an invocation by calling a method on

a local stub. Assume that the stub has been instrumented by our Dado tools with

an AspectJ aspect such as that shown in Figure 3.6. An advice in this aspect would

delegate control to the head of the AdviceProxy list represented by the field in Figure

3.6, line 2. Next, the proxy will call an advice operation on the adaptlet that it stands

in for. The code in the advice, implemented by a Service Programmer, can queue

request messages to be delivered at the server. After the advice has executed, the

AdviceProxy delegates to the next AdviceProxy in the list. Finally, at the end of

each list is a special AdviceProxy that delegates to the actual CORBA operation

invocation.

On the server side, the designated advice adaptlet operations for each adaptlet

get executed, as are the queued requests. The server side adaptlets may also queue

requests to be executed by the client side. This feature can be used to pass infor-

mation back to client-side adaptlets; we illustrate this in the monitoring example

where server-side time-stamps are passed back to the client via a request adaptlet

operation.

30

3.2.2 AdviceProxy

(1)abstract class AdviceProxy {
(2) AdviceProxy next;
(3) Object instance;
(4) abstract void run(AdviceContext context);
(5)}
(6)class AdviceContext {
(7) Object[] arguments;
(8) Object returnValue;
(9)}

Figure 3.7: Abstract AdviceProxy class and the AdviceContext data structure. Dado
framework classes.

At run-time, each pairing of adaptlet advice to interface operation, matched

by DDL pointcut bindings, is represented as an instance of an AdviceProxy class,

shown in Figure 3.7.

AdviceProxys are linked through the next field (as in line 2) into AdviceProxy

lists. Each AdviceProxy is responsible for dispatching to the appropriate advice op-

eration of the adaptlet instance (line 3) to which it is associated, and then delegating

to the next AdviceProxy on the list. This allows multiple advices to affect a single

joinpoint.

The implementation of run (line 4) accepts an AdviceContext and adapts its con-

tents for the invocation of an adaptlet advice. The AdviceContext (line 6) carries the

arguments of the application operation invocation to replace the formal arguments of

an advice. The implementation of run (in a generated subclass) is responsible for the

mapping. The mapping is determined by matching the adaptlet provided pointcuts

with the application interfaces. Likewise, the returnValue is made available by gen-

erated type casts.

By generating a specific AdviceProxy for each advice/joinpoint pairing we ensure

that the AdviceContext is typed according to the DDL pointcut bindings.

31

3.2.3 IDL Operation Advice

(1) Object around(StockServer Client thiz) :
(2) execution(* StockServer Client.getQuotes(..)) && this(thiz)
(3){
(4) AdviceContext context;
(5) context.args = thisJoinPoint.getArgs();
(6) CDROutputStream buffer;
(7) RequestStack.push(buffer);
(8) getQuotes.run(context);
(9) RequestStack.pop();
(10) return context.returnValue;
(11)}

Figure 3.8: Instrumention for a specific interface operation. Generated by Dado IDL
compiler as in item 7, Figure 3.1.

In order to begin dispatch to the adaptlet advice list, the operations in the gener-

ated IDL stubs must be modified. This modification is enabled by a generated AspectJ

advice as shown in Figure 3.8. On line 2, a pointcut is generated to intercept a spe-

cific operation in the particular IDL stub class. The arguments of the operation are fed

to the AdviceContext structure in line 5. The call to thisJoinPoint.getArgs() is

a reflective means, available in AspectJ, of obtaining all the arguments to the method

as an array of Objects. This was not available for our C++ implementation so these

details are accounted for through additional generation of code. In either implemen-

tation, the array is mapped to adaptlet advice operations in a statically type safe

manner by means of the generated AdviceProxys.

Now, a new request message buffer is created and pushed onto a stack of request

buffers (line 7). The buffer is of the type CDROutputStream. The CDROutputStream

stores request messages encoded in the CORBA Common Data Representation (CDR).

A RequestStack is required for pushing multiple outstanding request buffers, since

adaptlet advice may themselves invoke remote operations. When adaptlet advice

makes remote invocations, it may recursively trigger other request messages only

relevant for the new invocation. The buffers are popped and attached to invocation

32

messages as they are sent out. The stack references are ThreadLocal; the Java run-

time associates an instance to each thread, so concurrent threads only see a stack

relevant to the request messages triggered on that thread.

In line 8, the dispatch is made to the head of the AdviceProxy list for this oper-

ation. Finally, the used buffer is popped from the stack and a final value is returned

to the application after possible modification by intervening adaptlet advice.

For C++, we make use of two mechanisms available in the TAO ORB: the TAO

smart proxies [98] and the Object Reference Factory [62]. Similar mechanisms do not

exist in JacORB, so AspectJ was a natural alternative.

Both the smart proxy and the Object Reference Factory essentially provide the

same functionality for our purpose; details vary in the implementation. The smart

proxy acts on the client and the Object Reference Factory acts on the server. Both

allow stubs or skeletons to be replaced by a Proxy [35]. The proxy maintains a

reference to the real stub or skeleton (i.e., the delegate). Equivalent code that was

implemented as AspectJ advice in our Java implementation is generated in the meth-

ods of the C++ proxy. Proxies are generated for each IDL interface that parallel

the aspects generated for Java.

Naturally, client- and server-side adaptlets, even if using different languages or

different instrumentation mechanisms, are fully inter-operable. The adaptlet pro-

grammer remains agnostic with respect to the actual instrumentation mechanism

that is used to trigger the adaptlet.

3.3 Advice Operations

Recall that Dado introduces several new service-related roles into the software

process: a service architect, service programmer, and a service deployer. When a

service architect decides that some additional behavior on the client or server of a

33

(1) service TimeStockServer : Timing {
(2) client {
(3) void timedOperation();
(4) before call(float StockServer.getQuote(string)) :
(5) timedOperation();
(6) };
(7)};

Figure 3.9: Timing deploy. Written by Deployment Expert as in item 5, Figure 3.1.

distributed application is desirable, she can add an advice operation to the interface of

an adaptlet. Advice operations can be specified to be client-side or server-side advice.

The service deployer can then add the behavior specified by the advice interface

to a specific application object by writing an appropriate pointcut. The service

programmer has the obligation to implement each advice.

In the example, to deploy Timing adaptlets for a given application object, the

server-side would make the service available by registering a server Timing adapt-

let. When clients become aware of those server objects, the Dado run-time will

automatically deploy client adaptlets based on the client’s pointcuts (Figure 3.9).

In this deployment the client would like invocations to the getQuote operation

to be intercepted by the advice timedOperation. Here, a client deployment expert

extends the Timing adaptlet interface independently from the server. The server side

is unaware of the advice declaration (line 3) for timedOperation and the pointcut

binding on lines 4-5. The server-side does not need to specify any additional pointcut

instructions, as the request operation timeRequest is invoked dynamically by the

client-side adaptlet.

The Timing extension TimeStockServer generates an interface which extends

the generated interface, Timing Client. In Figure 3.10, the interface is used

(line 2) to extend the implementation of Timing Client Impl as presented in Figure

3.4.

34

(1) class TimeStockServer Client Impl extends Timing Client Impl
(2) implements TimeStockServer Client {
(3) TimeStockServer Server Stub that;
(4) void timedOperation() {
(5) that.timingRequest();
(6) }
(7) void initialize(TimeStockServer Server Stub that) {
(8) that = that;
(9) }
(10)}

Figure 3.10: TimeStockServer implementation. Written by Service Programmer as
in item 3, Figure 3.1.

A new advice, timedOperation has been added3 by the deployment expert, to

trigger the timing requests at a particular client joinpoint. This is achieved on line

5 by invoking the timeRequest operation on the provided server adaptlet stub.

The separation of advice and request operations in the adaptlet interface repre-

sents two levels of adaptation required to implement crosscutting distributed hetero-

geneous services. In this section, we detailed how advice operations would be used by

the different roles in the Dado development process and how they are implemented

in our prototype middleware tools. Next, we see how adaptlets communicate by

modifying client/server application communication using request messages.

3.4 Adaptlet Requests

Some services can be implemented simply by executing advice on the client- or

server-side. However, in some cases, additional information may need to be sent along

from the client to the server side adaptlet (or vice versa).

In our running example we presented a service where a client-side adaptlet can

3Since the implementation of timedOperation is not application specific it could have been in-
cluded in the base class. However, since this is not necessary for coordinating client and server, we
included it in the client specific sub-class.

35

request that a matching server adaptlet calculate server processing time for specific

invocations, and then communicate this information back to the client adaptlet. This

additional information conveyed between client and server adaptlets is contextual.

It must be associated with some original CORBA invocation. Likewise, the timing

behavior by the server adaptlet must occur before and after the processing of the

invocation for which the client adaptlet requested statistics.

The service architect can include operations tagged with the request modifier key-

word to provide an extra communication path between client and server adaptlets

that is associated with the current CORBA invocation. The body of client and

server advice can be programmed to add request messages by using a reference

which exposes the interface of request operations available to a client adaptlet by the

server adaptlet and vice versa.

Adaptlet requests give service developers more ways of programming interactions

between client-side and server-side adaptlets. Consider that a client adaptlet may

require different types of actions to be taken at the server side. As a very simple

example, a per-use payment service adaptlet attached to a server object might accept

e-cash payments, or a credit card. Another example is authentication. It could be

based on Kerberos-style tokens, or on a simple password. We could include both

options as possible parameters, in a single operation signature, along with an extra

flag to indicate the active choice; this leads to poorly modularized operations with

many arguments. Rather, we take the “distributed object” philosophy of supporting

different requests at a single server object; we allow adaptlets on either side to support

several different requests.

Adaptlet requests are implemented as one-way, asynchronous “piggy-backed” mes-

sage that are sent along with an invocation (from client to server) or a response (vice

versa). Since multiple services can be present simultaneously, the requests are queued

on each client and packaged with the original invocation.

36

(1) class Timing Client Stub {
(2) void timingResults(long before, long after) {
(3) CDROutputStream out = RequestStack.top();
(4) out.write string("Timing Client");
(5) out.write string("TimingResults");
(6) out.write long(before);
(7) out.write long(after);
(8) }
(9)}

Figure 3.11: Timing Client Stub. Generated by DDL Compiler as in item 2, Figure
3.1.

The generated stub for the Timing client adaptlet is presented in Figure 3.11.

A reference to this stub is made available to the server side adaptlet for queuing

timingResults requests.

In line 3, a reference to the top of the RequestStack for the current thread is

obtained. First, the interface name of the adaptlet for which the request is intended

is written to the stream. In our example, this request would be dispatched to the

TimeStockServer Client implementation because it implements the Timing Client

interface.

Next, in line 5, the name of the request operation is added. This is so the

appropriate operation is invoked on the client-side. Operations are dispatched through

a switch statement in the corresponding Timing Client Skeleton (not shown). In

this switch, a case for the timingResults operation deserializes the arguments

that were serialized in line 6 and 7, to be used as actual arguments in a call to

timingResults.

Advice and request play different roles in adapting the execution of a distributed

application. Advice operations are used to add code at points in the program deter-

mined by pointcut based deployment. Although the addition and removal of advice

can occur dynamically at runtime it is still based on referring to static elements in

the IDL interface. Pointcuts create a connection between client programs and client

37

adaptlets or server objects and server adaptlets only. The connection between client

adaptlets and server adaptlets is made through request messages and is completely

dynamic. The request messages serve both to convey additional information and in-

voke behavior to process the information. In essence, request messages provide a form

of dynamic per-invocation adaptation [94] while supporting type-checked interactions

and modular design through IDL declaration.

3.5 Transparent Late Service Binding

In a WAN environment such as the Internet, where servers are discovered at run-

time, clients cannot predict the set of services provided by (or required by) a particular

server until it is located. Static approaches that install new services based only on

type information cannot easily provide this kind of late binding.

When server objects are associated with a Dado service (this happens at deploy-

ment time via a configuration file), they are assigned an external object reference that

is used by the client side run-time to detect the applicable services.

Essentially, the reference encodes information about the adaptlets associated with

this object. This information is used by the Dado interception logic on the client-side

to transparently engage the corresponding client-side adaptlets.

The process is graphically illustrated in Figure 3.12. When an application object

registers itself with a naming service, the reference encodes all active services (Arrow

1). Subsequently, a retrieved reference (2) is intercepted by the Dado runtime, which

decodes the applicable service identifiers from the reference. For each operation in

the interface, it injects the appropriate advice into the execution path of invocations

originating from the client.

38

Figure 3.12: Late-binding service adaptations (1) Server object, with Security and
Transaction adaptlets, named “b1” of type “Bill” is registered with a Naming ser-
vice. The identifiers “Transaction” and “Security” are tagged to the external object
reference. When client looks up object named “b1”, the returned object reference (2)
is intercepted by Dado component. Dado attempts (3) to find client-side adaptlets
for ”Transaction” and ”Authentication” from client-side factory. Factory creates and
binds transactions (T) and security (S) adaptlets to client application object.

3.5.1 Advice Factory

This transparent engagement is achieved through Advice Factories. Each adaptlet

implementation is packaged with a generated class that provides AdviceProxy lists

for specific IDL operations.

Figure 3.13 shows the AdviceFactory for the TimeStockServer Client adapt-

let. It implements the StockServer AdviceFactory, so it can provide advice for

the operations declared in the StockServer interface. These AdviceFactory inter-

faces are generated for all IDL interfaces in the application. In general, an adaptlet

AdviceFactory will implement the factory interface for any IDL interfaces that it

crosscuts.

When a client stub or server skeleton are created, an introduced constructor (Fig-

ure 3.14) will iterate through the operations in the AdviceFactorys for applicable

adaptlets to obtain the advice lists. In Figure 3.13, no advice is returned for the

setQuotes operation (line 3) and a single advice is returned for the getQuote oper-

ation (line 7). This return value in line 7 is the implementation of the AdviceProxy

39

(1) class TimeStockServer Client AdviceFactory
(2) implements StockServer AdviceFactory {
(3) AdviceProxy StockServer setQuotes() {
(4) return null;
(5) }
(6) AdviceProxy StockServer getQuote() {
(7) return new
(8) TimeStockServer Client timedOperation StockServer getQuote();
(9) }
(10) Object getInstance() {
(11) return Class.forName(System.getProperty("TimeStockServer.Impl"))
(12) .newInstance();
(13) }
(14)}

Figure 3.13: TimeStockServer Factory. Generated by DDL compiler as in item 6,
Figure 3.1.

class that will dispatch the TimeStockServer Client advice, timedOperation, when-

ever getQuotes is invoked. A Factory Method [35] is generated on line 8-10 to

obtain an instance of the implementation for the TimeStockServer Client adaptlet.

The instance is created through reflection of the environment variable “TimeStock-

Server.Impl”, which names the implementation class.

(1) StockServer Client.new() {
(2) List<StockServer AdviceFactory> factories = decodeReference(this);
(3) for(Object factory : factories) {
(4) Object adaptlet = factory.getInstance();
(5) setQuotes.append(factory.StockServer setQuotes(), adaptlet);
(6) getQuotes.append(factory.StockServer getQuotes(), adaptlet);
(7) }
(8)}

Figure 3.14: Template for initializing advice lists. Generated by Dado IDL Compiler
as in item 2, Figure 3.1.

Figure 3.14 shows the generated code to bind adaptlets to an application at run-

time. This is done by introducing an explicit no-argument constructor in place of

the default no-argument constructor for a client stub. The constructor obtains the

40

AdviceFactory objects for all the adaptlets found in the server reference (line 2).

The code for the function decodeReference is not shown. Next, we iterate over all

the factories. Each iteration obtains a reference to the adaptlet implementation (line

4) and appends the AdviceProxy from each factory to the current lists. This is done

for each operation in the IDL interface (line 5 and 6). During the append process

(not shown), the instance field for each AdviceProxy is set to the adaptlet reference

obtained from the factory.

The late-binding process described in this section ensures that client adaptlets are

deployed to match adaptlets on the server.

3.6 Measurements

The data presented is in the style of micro-benchmarks: we measure the incre-

mental effect of the actual additional marshaling work induced by the new communi-

cation code (generated by DDL compiler), as well as for dispatching adaptlet advice

and request. For this reason, we use null advice and request methods that do no

computation, so that we can focus primarily on the actual overhead of the runtime.

The measurements were taken for a single client server pair. The client machine

was a 1.80 GHz Intel Pentium with 1GB main memory running Linux 7.1. The client

middleware was JacORB 1.4 on JDK 1.4. The server machine was an 800 Mhz Intel

Pentium Laptop with 512MB main memory running Microsoft Windows 2000. Server

software used TAO 1.2 compiled in C++ Visual Studio. The DDL interface to the

adaptlet used for performance measurement is shown in Figure 3.15.

As can be seen, there is one client-side advice and one server side request. The

client-side advice is bound to a method call (with a single argument of type string)

by the pointcut. In our implementation, the client-side advice simply captures the

string argument from the invocation and calls the server side request, passing along

41

service Test{
client {
void grabArg(string arg);
before call(* StockServer.getQuote(arg)) :

grabArg(arg);
};

server {
request putArg(string arg);
};
};

Figure 3.15: Test Adaptlets

the string argument. So the overhead we are measuring (beyond the normal CORBA

invocation overhead) includes the additional cost of: intercepting the invocation on

the client-side, dispatching the client-side advice, executing the client-side request

stub, marshaling the additional data, transmitting the additional data over the wire,

unmarshaling the data on the server side, and dispatching and executing the request

implementation on the server side. All measurements given here are for round-trip

delays for a simple invocation that sends a “hello world” string. The data is averaged

over 1000 invocations, and is given in milliseconds.

Experiment 100 Base-T RPC (ms)

1. Plain CORBA 0.65
2. with 1 advice execution, 1 request 1
3. with 10 advice executions, No request 0.68
4. with 10 advice executions, 10 request 1.52
5. Plain CORBA with equivalent raw
data Payload for 10 requests 1.38

The first row is the plain unloaded CORBA call, as a baseline for comparison. The

second row is a CORBA call with one adaptlet advice, and one additional request.

In the third row, we show the effect of applying the advice 10 times. The fourth

row shows the effect of executing the advice shown on the second row 10 times,

42

and attaching a request for each advice. The critical fifth row shows an interesting

comparison: it measures the plain CORBA call, with additional “piggy-backed” data,

exactly equivalent to 10 request messages, without any adaptlet code whatsoever. This

row corresponds to the precise straw-man comparison for sending data without Dado,

and corresponds to the way interceptor-based services (such as Transactions and Real-

Time, as per [62], page 30 of Chap. 13) are currently programmed.

As can be seen, the advice itself, which does not send any data, does not induce

very large overheads (comparing rows 1 and 3, it is about 5% in both cases for 10

advice invocations). We believe the overhead for sending requests is largely due to

the base cost of marshaling and adding our “piggybacked” messages. Addition of

messages is achieved through calls to a middleware-level CORBA API.

3.7 Conclusion

We conclude here with several observations about Dado.

The design space of a convenient framework to implement DH crosscutting ser-

vices is quite large, comprising many dimensions such as synchronization mechanisms,

scope of data, and the handling of exceptions. The current implementation of DDL

has made some reasonable choices, but other choices will need to be explored as other

application demands are confronted. Some examples: “service-scoped” state, i.e.,

state that is implicitly shared between adaptlets; services whose scope transcends

a matched stub-skeleton adaptlets; other (e.g., synchronous) interactions between

adaptlets.

Feature interactions are a difficult open research issue that Dado services must

deal with. The next chapter describes an approach to negotiate selection of services

when feature interactions induce preferences over possible configurations. Note that

it is also possible to program interactions between two Dado services: one can write

43

a third service that pointcuts adaptlets in each, and responds to the triggering of

both by preventing one from running, changing argument values, return values etc.

However, we do still not have enough experience with this approach, and it remains

an open area.

In conclusion, Dado is an approach to programming crosscutting concerns in dis-

tributed heterogeneous systems based on placing “adaptlets” at the points where the

application interacts with the middleware. It supports heterogeneous implementa-

tion and triggering of adaptlets, allows client- and server- adaptlets to communicate

in a type-checked environment using automated marshaling, provides flexibility in

communication between adaptlets, allows flexible binding, and late deployment of

adaptlets on to application objects.

44

Chapter 4

Examples

Chapter 3 presented an overview of the syntax and implementation of Dado. This

chapter presents two illustrative examples to show the range of possible non-functional

features that can be captured by Dado in a distributed heterogeneous setting.

4.1 Client Puzzle-Protocol

As Chapter 2 discussed, CPP defends against DoS (denial of service) attacks. The

protocol works by intercepting client requests and refusing service until the client pro-

vides a solution to a mathematical problem. The time it takes to solve the problems

is predictable; fresh problem instances are created for each request. The need to solve

puzzles throttles back the client, preventing it from overloading the server. Typically

the puzzle involves finding a collision in a hash function, e.g., finding an input string

that hashes to a given n bit value modulo 2m, for n > m. Such puzzles are very

easy to generate and require about 2m times as much effort to solve, given a collision-

resistant hash function. Here, m is called the difficulty, size, or length of the puzzle.

This explanation is made more concrete through Figure 4.1.

A server can generate a PuzzleChallenge, as in line 1. The PuzzleChallenge is

delivered to a client through the PuzzleException (line 7) which encapsulates the

45

(1) struct PuzzleChallenge {
(2) long puzzleID;
(3) short puzzleLength;
(4) Octet64 puzzlePreImage;
(5) Octet16 puzzleHash;
(6) };

(7) exception PuzzleException {
(8) PuzzleChallenge challenge;
(9) };

(10) struct PuzzleResponse {
(11) long puzzleID;
(12) Octet64 puzzleSolution;
(13) };

Figure 4.1: Client-Puzzle Protocol Messages

challenge. The server will not honor the client’s invocation until it has solved the

puzzle. It can provide a solution through the structure on line 10. Now, we discuss

the rationale for this protocol.

By providing a solution to the puzzle a client has proven to the server that it

has performed a certain computational task. In other words, the client has expended

some amount of CPU resources. Pragmatically, no client can ever obtain an infinite

amount of CPU resources. The CPP is designed so that legitimate clients expend a

moderate amount of resources. However, to launch a DoS attack would require more

resources than is practical. Three questions commonly arise in the context of this

rationale.

1. Why not simply authenticate clients to avoid interactions with malicious clients?

This is problematic for two reasons. First, the server may wish to operate in

an open environment where anonymous clients should be able to obtain service.

Second, authentication itself may be an expensive operation and thus subject

to DoS.

2. Why not impose a server-side throttle to prevent the server from being over-

46

loaded? We assume client invocations would be placed in a FIFO queue. The

server could reduce its CPU consumption by only servicing invocations from the

queue at certain intervals. However, since a malicious client would have many

more invocations on the queue, legitimate clients would essentially be denied

service. This leads to the final question.

3. Why not process the queue to distribute server processing evenly among the

client’s requests? This brings us back to our first question. It may not be

possible to determine the identity of clients. Criteria such as the client IP

address is problematic because the IP address could be forged or hidden by a

Network Address Translator.

By addressing these questions we hope to convince the reader of the suitability

of the CPP protocol as a potential usage scenario for our Dado software.

4.1.1 CPP Adaptlets

(1) service CPP {
(2) client {
(3) around void catchPuzzle();
(4) };
(5) server {
(6) around void CPP() raises PuzzleException;
(7) context puzzleSolution(PuzzleResponse solution);
(8) };
(9) };

Figure 4.2: Generic Cache Adaptlets

Figure 4.2 shows the DDL for the CPP adaptlets. The client side has one advice

used to bracket the execution of the application invocation. Clients receive puzzle

challenges through the exceptions that are caught by this code.

The server side includes an advice operation CPP (line 6) that should be bound to

application operations protected by the CPP. The operation puzzleSolution allows

47

clients who have been presented with a puzzle challenge to return their solution. This

operation is tagged by the keyword context. A context operation is a special type

of request message which we introduce now.

4.1.2 Context Operations

In some circumstances a service may require extra data to be shared by the client

and server adaptlets. Previously, we described how this was achieved using a request

message. When a request message arrived at a matched adaptlet, some operation

was invoked that matched the signature of the message.

In many situations, the data will need to be accessed by advices in the adaptlet.

For example, the puzzle solutions need to be accessed by the CPP advice. This is

not directly handled by request messages. A naive solution would be to have the

request operation save the value of the data in a field of the adaptlet object. Later,

when advice executes it could inspect the data.

This is problematic since the adaptlet field is shared by concurrently executing

threads. Rather than force developers to manage the thread/data relationship ex-

plicitly we provide the context message mechanism. Instead of being dispatched

to a method site, context messages are stored in a Java ThreadLocal. The actual

arguments of the context operation can be retrieved by an advice by invoking an op-

eration of the same name on its matched adaptlet stub. This operation returns either

true or false, indicating whether the message is available. The arguments (passed by

reference) are set to the data provided in the message. We show how this is useful in

the implementation of the CPP server adaptlet.

4.1.3 CPP Implementations

The implementation of the CPP is completely application agnostic. The only

interaction with the application is through modification of the client/server control

48

flow. Server responses are preceded by the issuing of a PuzzleException and subse-

quent verification of the PuzzleResponse. First, we present the client implementation

where PuzzleExceptions are caught and used to construct the PuzzleResponse.

(1) CPP ClientImpl implements CPP Client {
(2) void catchPuzzle(catchPuzzle Proceed proceed) {
(3) try {
(4) proceed.proceed();
(5) }
(6) catch(PuzzleException pc) {
(7) try {
(8) PuzzleSolution ps;
(9) ps.puzzleID = pc.challenge.puzzleID;
(10) recursiveSolver(pc.challenge.length,
(11) pc.challenge.puzzlePreImage);
(12) ps.puzzleSolution = pc.challenge.puzzlePreImage;
(13) that.puzzleSolution(ps);
(14) proceed.proceed();
(15) }
(16) catch(PuzzleException pc2) {
(17) throw new RemoteException("CPP Error");
(18) }
(19) }
(20) }
(21)}

Figure 4.3: CPP ClientImpl : Declaration of that and initialize not shown.

The client implementation, Figure 4.3, consists of one operation catchPuzzle.

This code is placed around invocations that may potentially raise a PuzzleException.

In Dado, a special argument (shown on line 2) is provided to every around advice.

It provides the same functionality as the proceed keyword in the AspectJ language,

which invokes execution of the original application code. However, in Dado, no special

language is used for the implementation of adaptlets. The proceed object encapsu-

lates a reference to the next AdviceProxy on the list. When the function proceed is

invoked, it indirectly causes the next run method to be invoked.

We see this in lines (3-5). An attempt is made to contact the server by proceeding

with the invocation. In case an exception is raised, it is handled in lines 6-16.

49

First, the ID of the puzzle is copied (line 9) so that the server may correlate

challenges and responses. We note that it is not feasible for a client to guess a

solution by forging an ID. Second, a “helper” method, recursiveSolver, is called to

solve the puzzle (line 10). This code is provided in the appendix. Once the puzzle

is solved it is added to the invocation through the puzzleSolution context message

(line 13). Once again the invocation is attempted on line 14. If failure occurs for the

second time, the client adaptlet gives up and throws an exception to the application

(line 17).

(1) CPP ServerImpl implements CPP Server {
(2) void CPP(CPP Proceed proceed) throws PuzzleException {
(3) PuzzleResponseHolder response;
(4) if(that.puzzleSolution(response) && checkResponse(response)) {
(5) proceed.proceed();
(6) else {
(7) PuzzleChallenge challenge = createChallenge(16);
(8) throw new PuzzleException(challenge);
(9) }
(10) }
(11)}

Figure 4.4: CPP ServerImpl : Declaration of that and initialize not shown.

Now we turn to the CPP Server implementation in Figure 4.4. Here also, only

one operation is required to be implemented. The context operation is only a vehicle

for communicating PuzzleResponses to the existing advice. The advice is declared

on line 2. It must first check for an incoming response (line 4). If one is available,

it must also verify its validity (also line 4) by a call to the method checkResponse

(see appendix). At this point the invocation is allowed to proceed. Otherwise, a new

challenge will be created (line 7) by calling createChallenge (also in the appendix).

The challenge is delivered to the client through an exception. If client and server

deployment have been properly coordinated, the advice on the client side will catch

the exception. Otherwise, the exception will propagate to the application. One of our

motivations for explicitly describing matched client and server adaptlets is to ensure

50

this proper coordination.

4.1.4 RCT Implementation

In order to test the compatibility of our implemented Dado software, we set out

to deploy an example on a realistic CORBA application. This was done to see if we

had made some unrealistic assumptions in our design choices. Although a single case

study cannot serve to completely validate our implementation, it has proven useful in

understanding some CORBA use-cases that were not previously anticipated. For the

remainder of this section we present our example deployment using the CPP adaptlets

and the RCT application.

As was discussed in Section 2.2, the RCT is a client/server application running

over the CORBA middleware. Since this software was developed by an outside third-

party we felt it made a good candidate for our case-study. An initial problem involved

the server-side software implemented in C++. This software utilized the Omni ORB,

while our software was written for the TAO ORB. Omni ORB does not support the

mechanisms we required for transparent wrapping of client and server side objects

(through Smart Proxies and the Object Reference Factory). After an initial review

of the RCT implementation we judged that it would be straightforward to “port” the

software to the TAO ORB. This involved recompiling the RCT IDL using the TAO

compiler and refactoring dependencies on the proprietary Omni API. At this time we

became familiar with the implementation details of the RCT server software. On the

client side we had very little difficulty. Our AspectJ implementation depends only on

the details of the generated CORBA stubs and skeletons. For Java, the interface of

this code is standardized by the CORBA Portable Stubs/Server specification.

Previously, we had implemented the generic CPP Java and C++ adaptlets. We

hypothesized that some applications would require protection on some but not all of

the operations made available to clients. In these cases pointcuts could be used by a

51

deployment expert to seamlessly apply the CPP protocol across those operations.

After reviewing the server software we noticed that a subset of the operations

across the RCT interfaces had code that interacted with the server-local relational

database. We identified this as a crosscutting concern. Potentially, these operations

would be highly CPU intensive. Each query to the database involves communication

across processes and execution of the relational query engine. The other operations

(those not part of the database concern) simply return some values stored in the

CORBA objects.

This database concern that we identified serves as the basis for the example de-

ployment of the CPP adaptlets.

CPP Deployment

(1) service CPP RCT : CPP {
(2) pointcut databaseConcern() : !(call(* Server.*(..)) ||
(3) call(* PingServer.*(..)));
(4) client {
(5) around databaseConcern() : catchPuzzle();
(6) };
(7) server {
(8) around databaseConcern() : CPP();
(9) };
(10)};

Figure 4.5: CPP RCT

As shown in Figure 4.5, the pointcut databaseConcern is declared inside the

service scope and shared by both the client and server adaptlets. This allows co-

ordination of advice that throws puzzle exceptions and advice that catches puzzle

exceptions. The pointcut matches all 76 operations in the interfaces of the RCT

application except those declared in either the Server or PingServer interface.

It is often claimed that a pointcut, such as the one shown here, is more concisely

able to capture the intention of the developer modifying an application. Here, the

databaseConcern is captured and ameliorated by applying the CPP protocol.

52

4.1.5 CPP Measurements

To measure the end-to-end overhead of our generated code, we compare our adapt-

let tool modified RCT application with a hand-modified RCT application. We mea-

sure the round-trip latency for a synchronous remote procedure call for eight different

application configurations. Measurements were performed in two different environ-

ments. The first environment was a single 1.6Ghz Pentium M laptop computer with

1GB of main memory running both client and server processes in Windows XP Pro-

fessional. The second environment placed the client process on a 2Ghz Pentium IV

computer running Linux at UCDavis (smf.cs.ucdavis.edu) and the server process on

the aforementioned laptop computer at the University of British Columbia. First we

present the details and measurements for the traditional application configurations

where no tool support is used. Then we compare these results with the configuration

and measurements of the adaptlet modified application.

The baseline “App” configuration measures the round-trip latency for a call to the

get id from user alias function on the RCT server. This was chosen as a representa-

tive application function for convenience because its execution presumes no particu-

lar application state. We hand-modified the original Java RCT 1.0 client application

to take timing measurements using the java.lang.System.currentTimeMillis()

function before and after 10,000 calls in the local environment and 100 calls in the

Internet environment. The values presented are the average over the 10,000 (100)

calls in milliseconds. We performed ten trials of the 10,000 (100) calls and took the

average of each measurement. The standard deviation for the local measurements

was quite small; for example, .0014 in measurement 1. In the case of the Internet

measurements, the deviation was more significant; for example, 4.19 in measure-

ment 3. These measurements were performed with and without the original server

function body present. The server code is the RCT 1.0 application running on the

TAO CORBA ORB compiled under Microsoft Visual Studio for C++. Measurements

53

Experiment RPC latency (ms) RCP latency (ms)
local Internet

1. App(null) .1274 77.40
2. App(null) with CPP(null) .2467 148.6
3. App with CPP(null) 1.207 151.6
4. App with CPP 132.3 349.4

Figure 4.6: Traditional Application Measurements

where the function body was removed are labeled as “App(null)” and are presented

to see just the overhead of communication through the middleware.

In the “App with CPP” configurations we implemented the CPP protocol over the

original application by adding a new application function, get challenge, and modi-

fying the signature of the get id from user alias function. A call to get challenge

is made before each call to the original functions to obtain a PuzzleChallenge. The

signature of the application function was widened to include a parameter for the

PuzzleResponse. We include measurements where the PuzzleChallenge generation

and PuzzleResponse solving code are removed in order to show just the communi-

cation costs. These measurements are labeled as “CPP(null)”.

By comparing measurements 1 and 2 in Figure 4.6 we see that the overhead for

CPP communication is about 93% (local) and 92% (Internet) . Recall that the “App

with CPP” configurations include an additional function call so two RPC calls are

required instead of one. Comparison of local measurements 2 and 3 shows the cost

for the actual get id from user alias function, .9603ms. Measurement 4 includes the

cost for the application and CPP protocol functions. The CPP generation and solving

functions add two orders of magnitude to the local end-to-end latency (131.3ms) and

more than doubles the latency over the Internet.

Four more measurements were made in order to see the overhead from our tool

generated code. The first measurement shows the cost of 10,000 (100) RPC calls hand-

modified to use the PortableInterceptor API [60] to piggyback a PuzzleResponse to

54

Experiment RPC latency (ms) RPC latency (ms)
local Internet

5. App(null) with Interceptors .3398 77.64
6. App(null) with

CPP Adaptlets(null) .5419 150.9
7. App with

CPP Adaptlets(null) 1.641 154.5
8. App with CPP Adaptlets 133.2 349.6

Figure 4.7: CPP Adaptlet Measurements

the client request and a PuzzleChallenge to the server response. Our generated code

uses these PortableInterceptor API calls to package adaptlet request and context

messages. This measurement was performed to see what percentage of overhead is due

to the use of this API. This measurement is labeled as “App(null) with Interceptors”.

The final three measurements apply the CPP adaptlets previously presented in this

chapter automatically to the RCT application using our tool support. We include

measurements where the adaptlets simply pass dummy challenges and responses,

“CPP Adaptlets(null)”, in order to highlight the cost of the generated code.

A comparison of local measurements 1 from Figure 4.6 and 5 from Figure 4.7

reveals the overhead due to the use of the PortableInterceptor API. As was detailed

in Chapter 3 this cost can be high in a local setting, accounting for a 166% overhead or

.2124ms. By factoring this cost from measurement 6 we are left with .3295ms which

compared to measurement 2 gives us a 33% overhead for our remaining generated

code in the local setting. Factoring the PortableInterceptor API out of measurements

7 and 8 gives us an overhead of 18% and .004% respectively when compared to

measurements 3 and 4.

In the Internet setting a comparison of measurements 1 through 4 to measurements

5 through 8 shows a smaller overhead. For example, comparing measurement 3 to

7 gives a 2% total overhead. This variation falls within the range of the standard

deviation for measurement 3 (4.19ms) and so is fairly insignificant.

55

As anecdotal evidence to the performance overhead of our tool we compared the

perceived responsiveness of the Java client GUI program in a sample user session.

First, we compared execution of a session in local configurations 3 and 7. The sample

session consisted of logging in, checking the user’s class enrollment, and logging out.

Throughout this session we could perceive no difference in the GUI responsiveness.

Next, we executed the session for local configuration 8. In this case some sluggishness

in the response was noticeable. This can be attributed completely to the overhead of

the client-puzzle protocol. Therefore, we would recommend protecting only certain

operations such as initial authentication or operations requiring anonymous access.

Here we conclude with some remarks about the performance of our current tools.

Our dependence on the PortableInterceptor API has an obvious drawback in terms

of performance. We made the decision to use this approach because it does not

require tightly integrating our tools with a particular CORBA middleware. Tighter

integration could probably improve performance at the cost of portability. Even still,

there is a significant performance overhead for local measurements 6 and 7. Thus

we conclude that our current implementation may not be suitable for many high

performance embedded applications where communication and application latency is

low.

This concludes the client puzzle-protocol example, which concerns a security non-

functional feature. We now present an additional example, this time concerning

client-side caching.

4.2 Client-Side Cache

We present a caching example, where a client requests some key indexed values

(e.g., stock quotes) from a server. These values are assumed to periodically change,

as the server receives updates. This example illustrates the use of parametric poly-

56

morphism [9] in Dado, and to our knowledge is a rather unusual use of parametric

polymorphism in a modeling language. In the example, type parameters are shown

in italic font.

Here, a client-side adaptlet maintains a cache of values. If a request can be

answered from the cache, the server is never contacted. To complicate matters slightly,

we also assume that the client-side adaptlet can receive from the server-side a time-

to-live (TTL) value. The server-side adaptlet maintains TTL values for various keys

by intercepting updates and observing update frequency for various keys (i.e., some

values may be updated more frequently than others).

Here we illustrate another feature of the DDL language: parametric polymor-

phism, as in C++ type templates or Java generics. Type parameters can be used in

three places: on the service scope, the client interface, or the server interface. The

first of these is rather different than the latter two and we discuss it first.

Type parameters can be attached to the definition of a service using the syntax

for Java 1.5 generics. This ensures that some data of the advice and requests of both

the client and server are type compatible. Type parameters on the service scope

must be instantiated at the DDL level before a service can be deployed. In the

generated code, a template class is generated that encloses the generated client and

server pure virtual base classes (interfaces). These interfaces are nested C++ classes.

Parameterization may also occur for the client or server interfaces. This is useful

for the specification of generic adaptlets where type instantiation is a purely local

phenomenon. Our tools generate a pure virtual base class (i.e., interface) in C++.

This class can be implemented using generic types and later extended when the

concrete types can be determined by a particular deployment scenario. In the example

we highlight both the case of service and adaptlet parameterization.

We start with an abstract interface to the client-side and server-side adaptlets

(Figure 4.8) necessary to carry out the caching service. The client-side includes a

57

(1)service Cache<KeyT> {
(2) client<ValueT> {
(3) context set TTL(long ttl);
(4) around ValueT get(KeyT key);
(5) };
(6) server{
(7) request ask for TTL(KeyT key);
(8) void update TTL(sequence<KeyT> values);
(9) };
(9)};

Figure 4.8: Generic Cache Adaplets

context operation (line 3) to receive TTL values that are “piggybacked” on server

responses. Additionally, an advice (line 4) is specified to short circuit client requests

for which cached data is available. The cache is keyed through application data of

type KeyT.

The server-side has one request and one advice operation. The request ask for TTL

(line 7) allows the client-side adaptlet to signal the server-side that it is planning to

cache the data in the current invocation response. The advice update TTL (line 8)

should be triggered whenever application events occur on the server-side that inval-

idate cache data. This allows the server-side to heuristically adjust its forecasted

TTL values. If application data cannot be used directly to key the cache, a deploy-

ment specific adapter function can be applied. Both the client-side and server-side

adaptlets can have a polymorphic implementation given a suitable target language

mapping (currently there is support for C++ templates).

4.2.1 Cache Client Generated Code and Implementation

Chapter 3 showed how adaptlet interfaces were used to generate interfaces for a

programming language and stubs for communication code. In particular, the dis-

cussion for Figure 3.4 discussed how these interfaces were generated. Figure 3.11

presented the code for the generated stub.

58

(1) template <class KeyT>
(2) class Cache {
(3) template <class ValueT>
(4) class Cache Client {
(5) virtual void initialize(Cache Server Stub that) = 0;
(6) virtual ValueT get(KeyT key) = 0;
(7) };
(8) class Cache Server Stub {
(9) void ask for TTL(KeyT key) {
(10) //Marshaling Code
(11) }
(12) };
(13)};

Figure 4.9: Cache Client Interface and Cache Server Stub

Now, we reiterate this discussion for the new case where the client interface and

server stub must agree on some type parameters. The generated code is presented

in Figure 4.9. Here both the client interface (lines 3-7) and server stub (lines 8-12)

share a common type scope. The scope is implemented as an enclosing template class

Cache (the entire figure) with the parameter KeyT. This common scope is used to

ensure compatibility between the key type for the client side value cache and the key

type for the server side TTL cache.

Figure 4.10 shows the implementation for the generic client-side cache. This class

implements the Cache Client interface from Figure 4.7. In lines 1 and 2, the free type

variables are captured by the class template. These type variables are used in four

places in the code.

First, in line 3, a server stub reference is declared that is coordinated through

the KeyT type. This reference would be set through the initialize method (not

shown). In line 4, the actual “cache” is declared as a Hash Map with values of type

ValueT and keys of type KeyT. Recall that the parameter ValueT is local to the

client-side adaptlet. In line 5 another map is declared for recording TTL values. This

will allow us to determine if a cached value has become “stale”. Finally, on line 6

the get operation is implemented. Its signature mimics that required for the actual

59

(1) template <class KeyT, class ValueT>
(2) class Cache ClientImpl : Cache<KeyT>::Cache Client<ValueT> {
(3) Cache<KeyT>::Cache Server Stub that;
(4) Hash Map<KeyT, ValueT> cache;
(5) Hash Map<KeyT, long> ttls;
(6) ValueT get(KeyT key, get Proceed proceed) {
(7) long ttl;
(8) ttls.find(key,&ttl);
(9) if(ttl < currentTimeMillis()) {
(10) ValueT cached;
(11) cache.find(key,&cached);
(12) return cached;
(13) }
(14) else {
(15) that.ask for TTL(key);
(16) ValueT returned = proceed.proceed(key);
(17) long ttlReturned;
(18) if(that.set TTL(&ttlReturned)) {
(19) ttls.bind(key,ttlReturned);
(20) cache.bind(key,returned);
(21) }
(22) return returned;
(23) }
(24) }
(25)};

Figure 4.10: Cache ClientImpl

cache (line 4). In addition, a proceed object is made available for short-circuiting

the client invocation.

The logic for the get method consists of two cases. Either the value for the

key has not expired, lines 9-13, or it has, lines 14-23. In the first case, the value is

retrieved from the cache and returned (i.e., the server is not contacted). Otherwise,

an ask for TTL request is queued (line 15) and the invocation is allowed to proceed

(line 16). After a value has been returned, the set TTL operation is queried for a new

TTL value (line 18). Finally, the cache and TTL values are updated (lines 19-20).

60

(1) template <class KeyT>
(2) class Cache ServerImpl : Cache<KeyT>::Cache Server {
(3) Cache<KeyT>::Cache Client Stub that;
(4) Hash Map<KeyT, long> last;
(5) Hash Map<KeyT, long> ttls;
(6) void ask for TTL(in KeyT key) {
(7) long ttl;
(8) ttls.bind(key,&ttl);
(9) that.set TTL(key,&ttl);
(10) }
(11) void update TTL(Sequence<KeyT> values) {
(12) for(int i=0;i<values.length();i++) {
(13) long lastUpdate;
(14) last.bind(values[i],&lastUpdate);
(15) ttls.bind(values[i],currentTimeMillis()-lastUpdate);
(16) }
(17) }
(18)}

Figure 4.11: Cache ServerImpl

4.2.2 Cache Server Implementation

On the server-side, Figure 4.11, TTL values for each key are being tracked and

reported back to the client. This is achieved through the ask for TTL request and

the update TTL advice.

The code for the request ask for TTL is shown on lines 6-10. This method is

dispatched whenever an invocation arrives at the server with an ask for TTL message

attached to it. It simply retrieves the current TTL value for the key (line 8) and

responds by attaching a set TTL context to the invocation response.

The code on lines 11-17 tracks updates and modifies the TTL values. An update

consists of a sequence of keys that are to be refreshed. TTL values are adjusted

heuristically by calculating the time difference from the last update to the current

time (line 15). This provides an estimated TTL (by the adaptlet) in situations where

TTL values have not been explicitly guaranteed by the application itself.

Now, deployment can proceed separately on the client-side and server-side. First,

61

we present client-side deployment.

4.2.3 Client-Side Deployment

service StockCache : Cache<string> {
client : client<float> {

around call(float StockServer.getQuote(string x)):
get(x);

};
};

Figure 4.12: Deploying the cache for the StockServer client

Figure 4.12 shows the instantiation of the Cache for the StockServer client. To

cache the result of the getQuote operation the client-side cache type parameter Val-

ueT is instantiated as float. The pointcut matches the invocation to getQuote and

captures the argument to key the cache. Finally this pointcut is applied to the advice,

get, that we want to intercept these invocations.

class StockCache ClientImpl : StockCache Client,
Cache ClientImpl<string,float>

{ };

Figure 4.13: Instantiation of concrete class for client Cache adaptlet

This final snippet of C++ code, Figure 4.13, is needed simply to instantiate the

type parameters for the generic Cache ClientImpl and ensure compatibility with the

generated interface for the StockCache Client sub-interface.

4.2.4 Server-Side Deployment

The server-side deployment, Figure 4.14, consists of dispatching the advice

update TTL for operations where TTL calculation can be updated. The pointcut

matches the operation StockServer.setQuotes and is applied so update TTL will be

dispatched before those invocations. Here, the application data-structure QuoteList

62

service StockCache : Cache<string> {
server{

StringSeq hashCodes(in QuoteList quotes);
before call(* StockServer.setQuotes(ql)):
update TTL(hashCodes(ql));

};
};

Figure 4.14: Deploying the cache for the Stock server

does not match the expected structure of the instantiated sequence of string. The

function hashCodes can be used as an adapter to convert the QuoteList, ql, captured

by the pointcut into the correct format.

class StockCache ServerImpl : StockCache Server,
Cache ServerImpl {

StringSeq hashCodes(in QuoteList quotes) {
//Copy key string from each Quote into a new list of strings

}
};

Figure 4.15: Instantiation of concrete class for server Cache adaptlet

Similarly to the client deployment scenario a new concrete class, Figure 4.15,

must be instantiated. In this case the deployment expert has more work than simply

applying some pointcuts. Since it is desirable to reuse the existing adaptlet imple-

mentation, a simple type adapter function is implemented. The code for the adapter

is straightforward.

4.2.5 Cache Example Conclusion

In this chapter we demonstrated the usefulness of matched client-server adaptlet

through the presentation of caching with TTL values. This was done to highlight an

additional contribution of our Dado methodology and as a study into the usefulness

of aspect-oriented programming.

Throughout the thesis we have claimed that many features in client/server ap-

63

plication require modifications to both the client and server. Thus, we proposed the

Dado framework for matched client/server adaptlets. Here we presented the use-

fulness of the matching when some features can be implemented generically. The

DDL language extension allowed the coordination of type parameters between the

adaptlets.

Also in this chapter we identified the crosscutting concern of TTL caching. This

not only spanned the client and server but also crosscut the structure of the server

interface. Modifications were required at both the “get” and “set” operations in

order to provide and update the TTL. This shows how Dado expands the notion of

aspect-oriented development into the specific domain of client/server applications.

64

Chapter 5

GlueQoS

Extending component interfaces directly with information about non-functional

concerns limits the reusability of an interface. Each component implementing the

interface must be prepared to handle these concerns appropriately. Furthermore, it

also limits customizability, for example, the ability of local security officers to tailor

the policies to suit their settings. The previous chapter presented a new approach to

the development of software that adds support for such non-functional concerns.

With this approach, components only implement a functional interface; QoS fea-

tures such as security are left unresolved until deployment time. A specification, writ-

ten by a deployment expert, can be used to transform the original components through

the use of aspect-oriented programming. As presented, the approach is server-centric,

and does not consider the issue of matching client-side QoS features to the deployment

policy on the server.

This inflexibility and “server-centricity” limits the use of the approach in new,

emerging application areas such as Service-Oriented [99] computing and Peer-to-

Peer (P2P) [93] computing. Here, we need a highly dynamic, and symmetric (not

server-centric) way of managing end-to-end QoS requirements. In these settings,

components, deployed as autonomous software processes, create and manage rela-

65

tionships with other processes dynamically; processes can play either client or server

role. Processes can exist in different administrative domains, with different deploy-

ment contexts (which may also change dynamically), and thus have different QoS

requirements. This chapter presents an approach to provide dynamic and symmetric

reconciliation between the (potentially different) QoS features of two communicating

processes. However, different QoS features can interact in various ways, and this

complicates reconciliation.

We use the term feature interaction [102] to reflect how feature combinations affect

each feature’s ability to function as it would separately. Feature interactions can be

complex, subtle, and very difficult to identify. Finding such interactions is outside

the scope of this thesis. In addition, feature preferences are a matter of deployment

policy and can vary.

Our work assumes each feature is universally named and potentially configured

through feature parameters. Realistically this may only be possible through stan-

dardization of QoS features such as in the web services setting. Our contribution is a

resolution and deployment middleware. The middleware supports the dynamic man-

agement of QoS features between two components, in a WAN setting, that encounter

each other for the first time.

We provide a declarative language, GlueQoS, for specifying the QoS feature poli-

cies. The middleware-based resolution mechanism uses these specifications to dy-

namically find a satisfying set of QoS features that allow a pair of components to

inter-operate. The basic language semantics are based on propositional logic [37].

However, in order to reason over feature parameters with numerical values, we base

our implementation on mixed-integer programming.

Note on formal presentation In our formal presentation, concepts are defined

in terms of mathematical sets and tuples. Sets contain objects of a single type (i.e.,

66

they are homogeneous). This is denoted Set〈TypeName〉. The operator += adds a

single element to a set. An iterator over sets is defined by the foreach construct.

A tuple is defined as a heterogeneous set of fixed size. Each object in a tuple

is named and has a corresponding type; this is analogous to a struct. The “dot”

notation is used as a projection function to access the named objects.

The remainder of this chapter is organized as follows: Section 5.1 presents the

desired elements of policies, Section 5.2 presents the concrete language syntax, Section

5.3 describes how policy matching is implemented, Section 5.4 provides a description

of policy exchange between client and server, and finally Section 5.5 ends with some

conclusions.

5.1 Motivation and Informal Semantics

The propositional logic provides a formal basis for reasoning about binary re-

lationships between abstract objects. An object can either be an atomic variable

occurrence or a sentence. Sentences are are composed of atomic variable occurrences

and other sentences. Composition is achieved through the familiar logical operators

(propositional connectives) (∧,∨,()). The famous satisfiability problem, 3-SAT, is

based on propositional logic. We use the term “variable occurrence” to distinguish

between an instance of a variable (which may appear negated) and the object itself.

Variables are represented by the type V ar.

In GlueQoS, policies are expressed as propositional sentences. The atomic vari-

ables stand for two types of statements called atomic statements (see below). Atomic

statements contain no propositional connectives.

Atomic Statements (A):

• Feature Status, a statement that a particular feature is enabled.

• Parameter Constraint, a restriction on the values that the parameters of some

67

features may take.

In propositional logic, the truth of a sentence is considered in the context of some

choice of truth (true or false) for all the variables, called a valuation V . A valuation

that satisfies a sentence is called a model,M. Likewise, a GlueQoS policy is considered

to be satisfied or violated based on choices of feature status and feature parameters.

We want to find a model for both the client and server policies.

A model for a sentence in propositional logic can be found through the process

of resolution [22]. The algorithm requires that a sentence is expressed in conjunctive

normal form (CNF). A sentence in CNF requires that clauses are joined by conjunc-

tion (i.e., “and”). Then, each clause consists of one or more variable occurrences

joined by disjunction (i.e., “or”). Another important form is the disjunctive normal

form (DNF). The DNF is built of conjunctive clauses joined by disjunction.

The interpretation of policies as propositional sentences is straightforward for

feature status but parameter constraints complicate matters considerably. First, we

consider this simple case where feature status is mapped to boolean variables.

5.1.1 Propositional Interpretation

Instances (as in object-oriented programming) of features are managed by the

GlueQoS middleware. Each client-server session is associated with a set of feature

instances. If a feature is in this set, we say the feature’s status is on (true) for that

session; otherwise, the status is off (false).

Clients and servers must have implementation code available with which they

can create an instance. An implementation could, for example, take the form of an

adaptlet.

For a given GlueQoS policy, the models of that policy are called the acceptable

feature configurations. A model tells us which features should be on or off. Rather

than be forced to enumerate models explicitly, a user can express a policy as the

68

conjunction of configuration requirements. Here we list some possible configuration

requirements for the special case of two features (in general requirements may contain

any number of features):

• Dependency: The deployment of a feature, A, depends on the deployment of

another feature, B. This can be expressed as an implication (Ā ∨B).

• Conflict: Two features conflict if their combination has a negative effect on

the behavior of the entire application. The deployment of one feature should

exclude the deployment of the other. The decision that an effect is negative

is application dependent but may include effects such as introducing deadlock,

putting data in inconsistent states, or degrading performance. This conflict is

represented by, (Ā ∨ B̄).

• Choice: Either feature or both can be chosen to meet some requirement. This

is expressed as (A ∨B).

• Exclusive Choice: Two features are equivalent for the satisfaction of some re-

quirement. An exclusive choice must be made as to which feature should be in-

stantiated. This is expressed by combining choice and conflict: (A∨B)∧(Ā∨B̄).

We stated that a model for propositional sentences could be found by resolution.

However, given the policy of both a client and a server, our policy resolution1 problem

is to find a model which satisfies both.

Our client/server scenario must account for the fact that client and server policies

are written in isolation. Therefore, the sets of variables mentioned in each policy

might not be the same. For example, given the single requirement policies of a client,

PolicyC , and a server, PolicyS,

PolicyC = (A ∨B)

1We note that our use of “resolution” used for the remainder of this section is in analogy to
propositional resolution but not technically related.

69

PolicyS = (A ∧ C)

is there a model which satisfies both?

Before the question can be answered, it must be agreed on what variables can

be included in a model. We call this agreement the client/server feature set. Policy

developers should not be expected to declare their requirements over any possible

feature. For example, in the above case, it would not be safe to assume that the

client deployment environment included an implementation of feature C. We define

the function vars2 that returns the set of feature status variables mentioned in a

policy.

Definition 5.1. The client/server feature set, S, is defined as vars(PolicyC) ∩

vars(PolicyS).

Definition 5.2. The basic client/server policy resolution problem is to find a model

for PolicyC ∧ PolicyS such that ∀v /∈ S = false.

So we see, any feature not in the feature set cannot be turned on for the session. In

the example, the server cannot meet the requirement (A∧C) because C is not in the

feature set. This is because vars(PolicyC) = {A, B} and vars(PolicyS) = {A, C}.

While the intersection is just {A}, the server policy requires both A and C. This

leads us to our definition of client/server policy resolution. This straightforward

interpretation allows us to continue to view the problem as propositional resolution.

5.1.2 Linear Constraints

Now that we have addressed the motivation and interpretation for policies re-

garding acceptable feature configurations, we turn to the matter of feature parameter

constraints.

2We omit the definition of vars, which can be defined by a structural induction on the policy.

70

Every instance of a feature may be configured according to a set of parameters.

This is analogous to Component Oriented Programming [88]. For example, in the Java

Beans component model every bean may expose a set of attributes for deployment

time configuration. However, in our scenario we must allow for joint agreement,

between client and server, of the session-time feature parameters.

For this purpose, we allow the representation of linear constraints [78, 20] over

feature parameters. In this thesis we limit our discussion of feature parameters to

values in < (the reals).

Definition 5.3. A linear constraint, L, is a triple (Components, Op, Rh).

• Components is a set of Component ≡ (V ar, Coefficient), where Coefficient ∈

<.

• Op ∈ (≥, =,≤)3 (i.e., the Operator)

• Rh ∈ < (i.e., the Right-hand side)

Example The linear constraint,

({(PayFeature.price,−2.0), (QoSMonitor.guarantee, 1.0)}, =,−100.0)

is interpreted as the mathematical equality,

−2.0 ∗ PayFeature.price + 1.0 ∗QoSMonitor.guarantee = −100.0

Graphically, this allows clients and servers to negotiate a choice of the two feature

parameters anywhere along the line defined by the equation. We will often refer to

the expression involving the variables as the “left-hand side”; the constant (−100.0

in the example) will be called the “right-hand side”.

A linear program consists of a set of linear constraints and a linear expression

(the utility) to be maximized. The utility assigns a weight to each variable. Thus, a

solution to a linear program consists of a model that not only satisfies the constraints

3Due to limitations in our implementation technology the operators < and > are not supported.

71

but also maximizes the utility. Modern solvers are usually based on the Simplex [20]

algorithm due to Dantzig.

In our policy language we would like to support the combination of propositional

sentences and linear constraints, using propositional connectives. Intuitively, this

combination allows one to express: linear arithmetic relationships between feature

parameters (constraints), logical relationships between constraints, and logical rela-

tionships between constraints and feature status.

Now, we must look beyond solution strategies based on the Davis, Putnam,

Lovelace algorithm in order to account for arithmetic relationships. Section 5.3 shows

our implementation based on leveraging an extension of Linear Programming, called

Mixed Integer Programming [20].

5.1.3 Run-time Policy Adaptation

Recall that clients and servers execute in an environment that is continuously

changing; they might need to be configured according to a dynamic deployment con-

text. Rather than force deployment experts to constantly update policies manually,

our policy language includes constructs to reflect these environmental changes. The

constructs are of two types: user-defined value functions and user-defined predicate

functions.

The values of coefficients or constants in linear constraints can be input through

user-defined value functions. Evaluation of these functions occurs periodically through-

out the execution of client and server applications. Before policy resolution occurs,

a “snapshot” of the client and server policies is taken to reflect their current states.

The implementation details are discussed further in Section 5.4. For example, we can

update the example given as,

−2.0 ∗ PayFeature.price + 1.0 ∗QoSMonitor.guarantee =

“CPULoad() ∗ 100.0− 100.0”

72

Graphically, this allows the expression of a line which is shifted vertically based

on the current value of the user-defined function CPULoad.

Likewise, requirement of a particular feature in an acceptable configuration set

may also depend on the state of the execution environment. A security feature, for

example, may only be required for certain types of network connections e.g.,

Password and (Encryption when “linkType(mobile)”).

Here, the required configuration varies between using the Password feature alone

and using both the Password and Encryption feature. This variation is based on

evaluation of the linkType user-defined predicate.

We have shown that the acceptable feature configurations may vary dynamically.

The actual policies expressed depend on the moment when resolution occurs. We

have provided two constructs in the our language to express this variation.

5.2 Policy Language

Policies are specified in the GlueQoS policy language. The design goals of this

language are to provide a declarative, expressive means of describing QoS features,

their interactions, and their sensitivity to operating conditions. The language provides

a set of built in operators to specify acceptable feature configurations, as well as the

ability to extend the system with functions to measure operating conditions (such as

load, available energy, and bandwidth).

As described in the previous section, feature status variables and parameter con-

straints could be combined freely according to the propositional logic. However in the

GlueQoS policy language, policies are restricted to a particular form to accommodate

the underlying resolution algorithm. This form encompasses both CNF and DNF; it

is based on the conjunction of DNF sentences. Here we provide a rationale for this

form, in terms of a possible usage pattern.

73

Policy

D

C

A

and

or

and

…
…

…

Figure 5.1: Policy Hierarchy : Policies consists of a set of Disjunctions representing
the policy requirements. Each requirement is built from the Conjunction of some
Atomic statements.

Policies are constructed as a hierarchy of four levels as shown in Figure 5.1. At

the root of the hierarchy is the policy itself, followed by requirements (Disjunctions),

configurations (Conjunctions), and ending in the atomic statements(Atomic). Con-

sidering the EBNF in Figure 5.2, we describe these levels in more detail.

A GlueQoS policy (line 1) consists of the conjunction of several requirements. Each

requirement (line 2) is either a disjunctive clause, a preference (described below), or

a supports clause (described below). A disjunction allows a requirement to consist of

dependencies, conflicts, or choices between configurations. A configuration (line 5)

is a conjunction of atomic statements. All the atomic statements in a configuration

must be satisfied in order to satisfy the configuration. An atomic statement (line 6)

is either a feature status variable (line 7) or a parameter constraint (line 8).

Definition 5.4. A Policy is a four-tuple (V ars, Parms, Req, Prefs).

• V ars is a set of variables considered as feature status variables

• Parms is a set of variables considered as feature parameters

• Req is a set of requirements (disjunctions)

74

• Prefs is an optional ordered set of variables (Preferences, described in Section

5.2.1)

Atomic statements can be qualified through the use of user-defined functions. A

feature status variable can be appended by a “when” clause (in line 6). The when

clause consists of a quoted Java expression of type boolean. Parameter constraints

can also be decorated with user-defined functions. This allows the coefficients (line

12) or right-hand sides (line 8) of the linear constraints to vary over time.

(1) PolicyClause:: Requirement ("and" Requirement)*

(2) Requirement:: "(" Config ("or" Config)* ")" | Preference | Supports

(3) Preference:: "Preference" "(" Feature* ")"

(4) Supports:: "Supports" "(" Feature* ")"

(5) Config:: "(" AtomicStmt ("and" AtomicStmt) ")"

(6) AtomicStmt:: Feature ("when" JavaExpr)? | Constraint

(7) Feature:: FeatureName | "not(" FeatureName ")"

(8) Constraint:: Operand ("+" Operand)* Operator ValueExpr

(9) FeatureName:: uppercase id

(10)ParamName:: lowercase id

(11)Operator:: "=" | ">=" | "<="

(12)Operand:: ValueExpr "*" FeatureName "." ParamName

(13)ValueExpr:: float | JavaExpr

(14)JavaExpr:: string

Figure 5.2: GlueQoS Language EBNF

75

5.2.1 Special Requirements

In addition to the language elements we have laid out so far, two special (non-

disjunction) types of requirements are supported. These are the Supports and

Preference clause.

Section 5.1.1 described the necessity for clients and servers to agree on the

client/server feature set. This was motivated by the fact that policies cannot be

expected to mention the acceptable status for any possible feature. We chose the

semantics that any feature not mentioned would be assumed to have its status forced

to off. So in order to add a feature to the feature set, a policy should mention a

feature in one of its requirements. The Supports clause allows a policy to express

that some feature can be included in the feature set without making any restriction

on its status. For example, the clause Supports(CPP) can be interpreted as adding

the tautology (CPP ∨ CPP) to the set of policy requirements.

Assuming the client is given some choices (as in Section 5.1.1) between features

to meet a particular server requirement, the Preference clause provides a way to

instruct the resolution algorithm which feature to choose. Optimization methods

based on linear programming allow for resolution of a model which maximizes some

utility function over the constraint variables. Leveraging this utility function we can

support preferences over the configuration of features from any possible acceptable

feature configuration.

In the following section we demonstrate the possible usage of the language elements

laid out in this section.

5.2.2 Security Revisited

Figure 5.3 is a realization of the security policies from Chapter 2 as expressed in

GlueQoS. The first policy is shown for the server.

76

Server:
(1) (not(Authentication) or (CPP.size = "GQ.CPUUsage()*8")) and
(2) (CPP when "GQ.CPUUsage() > .5") and
(3) (Authentication or (CPP.size = "GQ.CPUUsage()*16"))

Client1:
(4) Authentication

Client2:
(5) Supports(CPP,Authentication) and
(6) Preference(not(Authentication),Authentication) and
(7) (CPP.size <= 4)

Figure 5.3: Security Example

Each line (1, 2, and 3) represents a different server requirement. The first is an

implication between the status of the Authentication feature and a constraint on the

size parameter of the CPP feature. It states that with Authentication, the size of

puzzles varies linearly from 0 to 8 depending on CPU load. Another requirement (line

2) uses a predicate (GQ.CPUUsage() > .5) to determine whether CPP is required.

When CPU load is less than .5, the server allows Authentication to be used without

the CPP; otherwise just CPP, with the largest puzzle size, can be used. This shows

how runtime conditions can dynamically adapt the acceptable feature combinations

expressed by hosts.

The first client policy is shown on line 4. This client will only use the Authentica-

tion feature (perhaps because of software availability, or because it is too performance-

limited for CPP). Therefore, this client can only create a session with the server when

the server’s load is less than 0.5.

The second client policy (lines 5-7) uses parameter constraints to choose between

two feature combinations. Recall that the Preference semantics in our language

denotes a preference for the first alternative. Consider a situation where this client

wishes to maintain its anonymity by not using the Authentication feature. However,

it also has a performance requirement that takes precedence. Perhaps the client is on

77

a mobile device with low computing power. Line 6 expresses the client’s preference

to maintain anonymity. However, in order to keep performance at a certain threshold

the client will also use Authentication if it will keep the puzzle size low. By comparing

to the sample server’s policy (lines 1 and 3 in particular): if this client contacts the

server when the server’s CPU load is 25 percent or lower the client can maintain its

anonymity by using CPP only (from line 3 and 7, 16 ∗ .25 <= 4). However, if it

contacts the server and the server’s CPU load is between 25 percent and 50 percent

it will agree to reveal its identity to maintain higher performance (from line 1 and 7,

8 ∗ .5 <= 4). When the server’s load passes 50 percent the client will be unable to

mediate a satisfactory feature composition with the server.

5.3 Mixed Integer Programming Policy Matching

In the previous section, we described our policy language for expressing acceptable

feature configurations. Prior to that description, we laid out the problem of finding

a configuration that satisfies both the client and server policies. We have made some

informed design decisions and arrived at an implementation based on mixed integer

programming. Pragmatically, the best choice for these decisions would be based on

best practices observed over a number of years. This is beyond the scope of our thesis.

Mixed Integer Programming has been used widely in the area of Operations Re-

search [20] for decades. Here we apply this technique for automating the configuration

management4 of aspect-oriented software in a client/server setting.

Mixed Integer Programming extends the theory of linear programming. In a

mixed integer program (MIP) a subset of variables can be constrained to integer

values. Hence, the “mixed” denotation refers to a mix of real and integer variables. A

4A more thorough treatment would include management for versioning of features. In this
thesis we focus only on management of interactions between features induced by non-functional
requirements.

78

popular strategy for solving a MIP is based on the Branch-and-Bound [78] algorithm.

Implementations of these algorithms are widely available as commercial [49] or open

source [50] packages. These algorithms are complete, a solution can be found if one

exists.

In this thesis we view the MIP algorithm as a black-box that is utilized for the

purpose of resolving policies. This can be approached by modeling boolean variables

as 0/1 integers and feature parameters as real variables. Our task in this section is

to describe how a GlueQoS Policy is reduced to a MIP.

Definition 5.5. A Mixed Integer Program, MIP , is a pair, (V arEntries,

Constraints).

• V arEntries is a set of V arEntry ≡ (V ar, Type,Weight), where Type ∈

{<, Binary}, Weight ∈ <

• Constraints is a set of linear constraints (i.e., Set〈L〉)

Now we describe the transformation of Policies to a MIP . Our description is

bottom-up (from the Figure 5.1); we start by transforming the atomic statements,

conjunctions, disjunctions, and finally the entire policy.

5.3.1 Transformation of Variables

(1) MIP genVariables(Policy policy)
(2) MIP mip
(3) foreach V ∈ policy.Vars
(4) mip.VarEntries += VarEntry(V,Binary,1/policy.Prefs.indexOf(V))
(5) mip.VarEntries +=
(6) VarEntry(V’,Binary,1/policy.Prefs.indexOf(not(V)))
(7) mip.Constraints += L({(V,1),(V’,1)},′ =′,1)
(8) foreach P ∈ policy.Parms
(9) mip.VarEntries += VarEntry(P,<,0)
(10) return mip

79

The transformation starts by generating a consistency constraint for every feature

status variable in the policy. Lines 3-7 add two binary variables named, V and V ′,

for a boolean variable V , to the MIP . The weight is chosen to be the inverse of the

position in the Preference clause. A new constraint,

V + V ′ = 1

is then added. It prevents the two binary variables representing the boolean variable

and its negation from taking on the same truth value simultaneously. Lines 8-9 map

each feature parameter directly to a variable of type <.

5.3.2 Transformation of Atomic Statements

(1) Set〈L〉 genConstraints(C conj)
(2) Set〈L〉 ls
(3) Components bools
(4) foreach V in C.Pos
(5) bools += Component(V,1.0)
(6) foreach V in C.Neg
(7) bools += Component(V’,1.0)
(8) ls += L(bools,’=’,|bools|)
(9) ls = ls ∪ conj.Constraints
(10) return ls

Figure 5.4: Transformation of Atomic Statements

All feature status variables in a single conjunctive clause will be transformed into

an equivalent linear constraint (lines 3-8) (i.e., n variables to 1 constraint). First,

we create the constraint variables by including one for each feature status variable

occurrence. The occurrence could be negated or not and is taken into consideration

in lines 5 and 7 through mapping to V or V ′.

Coefficients of 1.0 are generated for each constraint variable. This is so that the

sum of the left-hand side matches the number of “true” (value 1) constraint variables.

A conjunction requires that all of its feature status variables are true. So, the

right-hand side must be equal to exactly the number of constraint variables in the

80

clause. This is represented by the new constraint in line 8 and formalized in the

following lemma.

Lemma 5.6. t1 ∧ t2 ∧ .. ∧ tn ↔ (b1 + b2 + ... + bn) = n

Given that feature status variables in a conjunction are represented as ti and

constraint variables represented as bi. Here we see the correspondence between the

conjunction of feature status variables and a single linear constraint.

Finally, all the parameter constraints are directly mapped by adding them to

the return set of constraints (line 9). Then we return the final set of constraints

corresponding to the input conjunction. We call this set of constraints the origi-

nal constraints; they originated from a conjunction in the policy; later they will be

augmented to account for disjunctions in the policy.

Theorem 5.7. A conjunction is satisfiable if and only if all the original constraints

it is mapped to by the transformation procedure are satisfiable.

A conjunction is satisfied if all its atomic statements are satisfied. Lemma 5.6

shows the correspondence for feature status variables and one original constraint.

The other atomic statements in a conjunction, the parameter constraints, are mapped

directly into linear constraints (the correspondence is direct). This shows the corre-

spondence for the entire conjunction. Now we make the steps described so far more

concrete with an example.

Example The conjunction,

(CPP ∧ Authentication ∧ (CPP.size ≥ 4))

is mapped into the system of equations,

CPP + Authentication = 2

81

CPP.size ≥ 4.0

CPP + CPP ′ = 1

Authentication + Authentication′ = 1

s.t. CPP, CPP ′, Authentication, Authentication′ ∈ 0, 1

CPP.size ∈ <

5.3.3 Transformation of Disjunction of Conjunctions

All status variables, features parameters, and individual conjunctions have been

transformed, but we must still take into account the disjunction of conjunctions.

This is done by augmenting each original constraint by an expression in a new

constraint variable rxi [78]. All L originating from Ci are related because the choice

of value in rxi has an effect on each. Given rxi, the constraints augmented by rxi are

identified by the notation L/rxi.

Here is the effect we desire: if rxi = 1 then all L/rxi are satisfied regardless

of the original constraints. Hooker et al. [39] identify this effect as relaxation of

constraints by the variable rxi. We limit our discussion of relaxation to constraints

with a ≥ operator; the case for ≤ is symmetric. Equality constraints are not handled

by relaxation.

To achieve the desired effect we must choose a coefficient, m (referred to in the

literature as “Big-M”) for rx such that when rx = 1 the left-hand side is greater than

or equal to any possible right-hand side (m acts like infinity). Our choice of m is

made on the basis of the maximum real value representable in the policy language.

This augmentation step is carried out in Figure 5.5. Line 2 sets the value of m

according to the value we desire. Lines 4-5 handle the case where the constraint

operator is a ≥. We return the augmented constraint by adding the new variable, rx,

with the coefficient m. In lines 6-7 the case for ≤ constraints is handled by reversing

the sign of m. In lines 8-10 equalities are dealt with. Since the BigM formulation only

82

applies to inequalities [39] we simply transform the equality into two inequalities: one

≥ and one ≤.

(1) Set〈L〉 BigM(Set〈L〉 conj, Var rx)
(2) m = (MaxV alue2 ∗MaxV ars) + MaxV alue
(3) Set〈L〉 ls
(3) foreach l ∈ conj
(4) if(l.Op == ≥)
(5) ls += L(l.Component ∪ Component(rx,m),≥,l.Rh)
(6) else if(l.Op == ≤)
(7) ls += L(l.Component ∪ Component(rx,-m),≤,l.Rh)
(8) else if(l.Op == ’=’)
(9) ls += L(l.Component ∪ Component(rx,m),≥,l.Rh)
(10) ls += L(l.Component ∪ Component(rx,-m),≤,l.Rh)
(11) return ls

Figure 5.5: “Big-M” Transformation

(1) L relaxation(Set〈V ar〉 rxs)
(2) Set〈<〉 coefficients
(3) foreach rx in rxs
(4) coefficients = 1.0
(5) return L(rxs,coefficient,≤,|rxs|-1)

Figure 5.6: Linear Relaxation

Now we arrive at the last step in the transformation. There were two important

steps so far: the transformation of atomic statements into equivalent linear constraints

and the augmentation of constraints with BigM. The augmentation was formed in such

a way that constraints originating from Ci could selectively be relaxed by choosing the

value 1 for rxi. Here, we see how this is used to represent disjunctions of conjunctions.

Let rx1...rxn represent the variables generated for all the conjunctions in a single

disjunction. The requirement is that one rxi is equal to 0, reducing L/rxi to the

original constraints. Now, L/rxi ↔ Ci by Theorem 5.7. This requirement is enforced

by adding the following constraint to the MIP (lines 3-5 in Figure 5.6),

n∑
i=1

rx1...rxn ≤ n− 1

83

Without this constraint, a solution could always be constructed by choosing all

rxi to be 1. We want to make sure that a solution is only found when at least one of

the conjunctions is true. So, at least one of the rxi must be 0.

5.3.4 Transformation of Policies

(1) MIP genMIP(Policy policy)
(2) MIP mip = genVariables(policy)
(3) foreach D ∈ policy.Clauses
(4) Set〈V ar〉 cs
(5) foreach C ∈ D
(6) Var rx = freshVariable()
(7) rxs = rxs ∪ rx
(8) mip.Constraints += BigM(genConstraints(C),rx)
(9) mip.Constraints += relaxation(rxs)
(10) return mip

Figure 5.7: Overall Policy → MIP translation

The transformation steps we have covered are summarized in the overall Policy

to MIP conversion shown in Figure 5.7. First, we transformed all the variables in

the policy (line 2). Then, we transformed all the conjunctions in a disjunction. Each

conjunction was associated with a new variable (as in line 6) to selectively relax the

constraints originating from it. The constraints are generated in line 8 and augmented

by the BigM procedure. All the relaxation variables are collected (in the Set declared

on line 4) to create a relaxation constraint in line 9 for each disjunction. Now the

MIP is completed. Here, we present a proof that the transformation is correct.

5.3.5 Proof of Transformation Correctness

Proof. We must show that the Policy is satisfied ↔ the MIP is satisfiable. A model

for a policy determines a model for a MIP by mapping any true valued boolean

variable, V , into a 1.0 value for V in MIP and a 0 value for V ′ in MIP . The opposite

84

occurs for false valued boolean variables. Feature parameter values in a Policy model

determine the corresponding real valued constraint variables in MIP . The values of

rx variables in constraints are free to take any value; they are not determined by

the mapping from a Policy model. The relaxation constraint simply prevents a MIP

from being satisfiable when the corresponding Policy is not satisfiable.

→ Suppose Policy P is satisfied, but the MIP is not. We will show by construction

that a model for P can be transformed into a model for MIP . Since P is satisfied,

all disjuncts are satisfied. Without loss of generality, pick one disjunct Di. Some Cs

in this disjunct must be satisfied. We set that corresponding rxs in the MIP to be 0,

and this satisfies the relaxation constraint associated with the disjunct; all the other

rx’s arising from Di are set to 1, thus satisfying the associated linear constraints.

Now, by Theorem 5.7, we can construct a model for all the other linear constraints

in MIP arising from Cs. This means that the all constraints arising from Cs are

satisfied, and all others in Di are relaxed. Similarly, we can argue that all MIP

constraints from the other disjuncts in the entire policy P can be satisfied.

← Suppose MIP is satisfiable but the Policy, P , that it transforms into is not

satisfiable. This means that some disjunctive clause, Du in P is unsatisfiable, but

every constraint L ∈MIP is satisfiable. We know every C ∈ Du is unsatisfiable since

Du is a disjunction.

Now, consider the relaxation clause generated by Du. Since it is satisfied, there

is at least one rxj with a value of 0, such that Cj ∈ Du. So all L originating from

Cj are reduced to the original constraints. By Theorem 5.7, we have a contradiction,

since Cj must be satisfiable.

85

5.4 Implementation

Our prototype implementation builds on the existing Dado middleware and the

Lindo API for mixed integer programming. This involves attaching policies to appli-

cations, maintaining a run-time representation of policies, and finally deploying the

properly parameterized resolved features.

A deployment expert considers local requirements and feature interactions to de-

sign a QoS Policy. The policies are associated with CORBA interface types, before

an application is executed. Our implementation currently does not support policies

on a per-method basis; a single policy can be assigned to each interface type. At

application load-time the GlueQoS middleware builds a data-structure representing

these policies. Now we describe the overall set-up as in Figure 5.8.

Client
Stub

Server
Object

MIP MIP

1

2

3

4

56

Policy

Policy

Figure 5.8: The overall flow of the GlueQoS run-time, including client stub, server
stub, and the Mixed Integer Programming (MIP) run-time component

The figure represents the client and server run-time using our GlueQoS middle-

86

ware, separated on the left and right sides respectively. Each side is symmetric in

terms of its structure but not in terms of its responsibilities. The dotted-line boxes

represent the boundary between middleware related functionality and the black-box

MIP component.

Inside the dotted lines are three pieces. First, the large circles represent the client

stub and server object to which the session based feature resolution applies. Second,

the tree of nodes represents the policy data-structure. Third, a separate thread,

shown as the curved line, is responsible for updating this data-structure based on the

values retrieved from the user-defined functions. Now we focus on the interaction

defined by the numbered flow of the diagram.

5.4.1 Client/Server Interaction

The GlueQoS middleware at each end of an interaction determines an acceptable

feature combination for each application session. These features and their operating

parameters remain fixed for the lifetime of the session.

When a client locates a server, it sends a policy request (1) to the server object

to initiate a session. Policy requests are implemented as a CORBA operation that

is transparently added (introduced) to all IDL interfaces. This is performed by the

DDL compiler when it processes application IDL, as described in Chapter 3. The

implementation of the policy request operation is introduced into the server skeleton

using AspectJ.

The server creates a session for the client in the form of a cookie. The cookie is

a generated number that will be used by the server to correlate client requests with

their session. Now, the server serializes the policy data-structure, associates it with

the newly created session, and returns the serialization to the client.

The client must match its own policy with the server and choose a feature combi-

nation acceptable to both. First, client and server data-structures are merged. Now,

87

a client matches policies by carrying out the mixed integer program resolution. The

merged data-structure and a vector representing the client’s preferences are passed to

the Lindo API. It will return a satisfying assignment for all variables or signal unsat-

isfiability (3). These results are used to control the execution of features. In the case

of unsatisfiability, an exception is thrown to the application to signal incompatible

policies. In our Dado middleware, features are implemented as adaptlets.

The model chosen by Lindo is used in the creation of adaptlets. The adaptlets

whose status variables are enabled in the satisfying assignment are instantiated using

the Java Reflection API. The parameter values chosen are passed to the adaptlets

constructor. We assume that the signature of the constructor is standardized as are

the parameters for each adaptlet. The values can then be used by the advice to

configure adaptlet execution. In this way the resolved features are activated and

configured according to the policies of both client and server.

The model chosen by the client is then sent to the server (4). This message is

piggybacked on a subsequent application request to the server. The server must verify

that the model chosen by the client actually satisfies its own policy. This requires

only a simple linear time check of constraint satisfiability (5). The values for the

variables are plugged into the policy which was associated with the client’s session.

If verification is successful, the server can discard the associated policy and create

adaptlets in the manner described for the client side. On subsequent requests, the

cookie from the client is used to execute adaptlets and advice on a per-client basis.

If verification is unsuccessful an exception is thrown back to the client (6).

5.4.2 GlueQoS Prototype

Our GlueQoS implementation has been tested on the example presented in this

chapter and an example in a related paper [89]. In the future we hope to further

validate the approach by applying it in a more realistic setting.

88

To understand some of the performance impact induced by the GlueQoS software

we measured the cost of the GlueQoS negotiation phase (Figure 5.8, steps 1 - 5)

on the example of Figure 5.3 with the second client policy. Measurement was per-

formed on a single 1.6Ghz Pentium M laptop computer with 1GB of main memory

running both client and server processes. The negotiation phase is initiated when

a client binds to a remote server object. We took timing measurements using the

java.lang.System.currentTimeMillis() function before and after 1,000 calls to

the function that performs binding. We performed ten trials of the 1,000 calls and

took the average of the measurements. The average setup cost was 2.282ms. This is

an order of magnitude smaller than the end-to-end communication latency in many

current Internet application settings. For example, at the time of writing, the latency

from the University of British Columbia to the University of California, Davis was

about 66ms as measured by the ping UNIX application. So, for this particular ex-

ample the overhead of the protocol would be dominated by communication costs of

steps 1, 2, and 4 in Figure 5.8.

An important detail missing from this experiment is the fact that only a single

example policy was used. Since the policy solver of step 3 grows exponentially with

the number of integer variables required in the policy encoding, it will be important to

repeat the experiments for a range of policy sizes. We could draw from the approach

described in [56]. This work shows how to generate random 3-SAT instances of a

desired size and difficulty (i.e., time required to solve the instance). In the future

it may be possible to extend this work for generating random policies of varying

difficulty that can be used for further experiments.

89

5.5 Conclusion

GlueQoS is middleware software to support dynamic adjustment of QoS features

between clients and servers. QoS feature preferences are specified in the GlueQoS

policy language. These policies are exchanged at binding time between systems in-

teracting in an ad-hoc setting. The polices are then matched up, and resolved by

the middleware. The resolved features are then deployed and executed. This chapter

described GlueQoS and provided an illustrative example. GlueQoS has been imple-

mented in the context of adaptlets.

90

Chapter 6

Related Work

6.1 Middleware Based Adaptation

6.1.1 Foundations

The motivation for work on middleware based adaptation can be traced back to

the theoretical study of adaptation in distributed systems. Early work on termina-

tion algorithms recognized the utility of separation of the core algorithm from the

termination criteria [11]. Chandy and Misra presented a termination algorithm that

could be reused by interleaving the actions of a chosen algorithm with the termination

algorithm. This model of stepwise refinement has come to be known as Superposi-

tion or Superimposition. The integration of first-class superimposition constructs in

a programming language was presented by Katz [42]. Other work focused on the

verification and validation of superimposed algorithms [7]. Minsky [55] identified the

usefulness of these ideas in the separation of mandatory security controls from the

core implementation of a distributed system. In his work the “law” of a system is

comprised of the implementation of global security constraints only. A preproces-

sor is used to interleave these controls with the implementation in a Prolog based

distributed language.

91

6.1.2 Customizable Middleware

As the environments in which applications based on middleware were deployed

in became increasingly heterogeneous, it became clear that one size fits all solutions

would not work. By exposing certain components in the middleware implementation,

customizable middleware platforms provided a means for programmers to plug-in

middleware components customized for their environment. Projects such as Flick [29]

and COMERA [100] focused mainly on the customization of the stub layers. Flick

takes the approach of allowing developers to customize the IDL compiler directly.

This allows for a greater range of optimization possibilities.

Work on design patterns and object-oriented frameworks influenced the design of

The ACE ORB (TAO) [74]. By virtualizing the ORB components and relying on

pluggable factories it became easier for developers to plug in their own concrete ORB

implementation classes.

Quarterware [79] is a software architecture for basic middleware functionality. Its

authors demonstrate how this architecture can be customized to provide an imple-

mentation of CORBA, RMI, or MPI (Message Passing Interface) middleware.

More and more, middleware platforms were being relied upon for critical sys-

tem infrastructure in areas such as telecommunications and military. Bringing these

systems offline in order to program reconfiguration became too costly.

6.1.3 Dynamic Customization

Motivated by work on dynamically reconfigurable distributed systems [48], mid-

dleware research looked toward dynamic customization of middleware.

DynamicTAO [47] extends the TAO CORBA middleware with support for run-

time changes of ORB properties. New security, threading, and monitoring behaviors

can be added or removed dynamically. Control of dynamic changes can be made

92

remotely through a distributed configuration management tool.

Lasagne [94] is a framework for dynamic and selective combination of extensions

in component based applications. Each component can be combined with a set of

wrappers to refine the interaction behavior with other components. Every wrapper

layer is tagged with an extension identifier. Related wrapper layers are tagged with

the same identifier in order to group them into a cohesive set. At run-time client

components attach a set of extension identifiers to the context of a remote procedure

call. This communicates to server components which wrapper layers should be invoked

for this call allowing selective per-invocation adaptation. Since related layers on

disparate components share the same identifier this allows clients to turn on and off

adaptive behavior that crosscuts component implementations.

The Cactus [12] framework provides customizations in distributed systems and

has been applied in the area of distributed object computing. Software implementing

customizations is known as an adaptive component (AC). ACs are injected into a

system using the proxy pattern. These ACs encapsulate alternative implementations

of a specific service using the Strategy pattern. When important state changes in

the system occur ACs can respond by swapping in and out different strategies. ACs

may communicate in order to reach consensus on strategy changes however their

model dictates no one particular consensus approach.

The reconfiguration in these systems is typically driven by outside forces such as

configuration management tools. To provide a framework where middleware com-

ponents could reason about their own configuration, middleware designs began to

provide more support for reflective software extensions.

6.1.4 Reflection

Reflection refers to the ability of a computational system to reason about its

own structure or behavior. Mature middleware platforms such as CORBA already

93

provided many reflective capabilities. The Interface Repository (IR) supports read-

only run-time data structures describing an object’s functionality. CORBA also offers

the Dynamic Invocation Interface (DII) and Dynamic Server Interface (DSI) facilities

for constructing invocations to or handling of invocations to interface types not know

statically. Borrowing from the idea of meta-object protocols [44], interceptors were

developed as a way adding behavior before and after the events of applications hosted

inside the middleware. Interceptors can make use of information about the events

such as function call names, parameter values, and target types. Portable Interceptors

are now part of the CORBA 3.0 standard and are used for introducing security,

transaction propagation, and real-time scheduling. Narasimhan et al. [60] show how

to use interceptors for introducing fault-tolerance into a CORBA based application.

Similar to the approach taken by Lasange, communication reflection reifies the

channels between client and server to address adaptation on a per-message level [10].

Meta-Classes were exploited in the FRIENDS [30] project using OpenC++ in order

to add fault tolerance and security to distributed programs. OpenCOM [16] takes

the idea of reflection a step further by reifying the communication between an ORB’s

internal components. This exposes more than just the application events for applying

reflective components such as interceptors. A more detailed comparison of reflective

APIs in the OpenCOM and DynamicTAO middleware is presented in [46].

Developers were recognizing that certain adaptations crosscut the implementation

of both the application and the middleware, making these adaptations especially

difficult to program.

6.1.5 Containers

The Enterprise Java Bean component model introduced a new middleware model

called Container Based Deployment in order to simplify the deployment of some

adaptations. Container deployment tools make all necessary configuration changes

94

to the application and middleware for the container supported adaptations. The

idea of having a “kit” of adaptations that developers could easily deploy led to the

success of the model in industry. However, the EJB model still lacked the flexibility

of customization needed by many developers.

6.1.6 Aspect-Oriented Middleware

Aspect-Oriented Middleware is motivated by the need to provide flexible cus-

tomization with a simplified deployment process, combining the benefits of reflective

middleware with container based deployment.

Recently, the open-source JBoss [41] application server announced aspect-oriented

deployment of container services using the Javassist [15] byte code editing toolkit. A

similar approach is used in the Java Aspect Components (JAC) framework [67] that

also utilizes load-time byte code weaving (using BCEL [19]) in Java. New services

can be constructed by implementing aspect-specific interceptors. Deployment takes

place using the notion of pointcuts from the AspectJ language. In JAC, aspects can

be un-deployed/re-deployed dynamically using a standardized API.

The Quality of Objects (QuO) [51] project aims to provide consistent availability

and performance guarantees for distributed objects in the face of limited or unreli-

able computation and network resources. QuO defines an abstraction known as the

operating region for processes (client or servers) cooperating in a distributed object

environment. Changes in perceived runtime conditions move a process into different

operating regions. Application code that is bound to a particular operating region

or region transition is the main vehicle by which adaptation is achieved. Objects

known as System Conditions are used by the QuO system to monitor the runtime

conditions of the operating environment. Programmers using QuO write code for

System Condition objects to affect the procurement of operating condition variables.

The QuO language is used to define predicates over the values of System Condition

95

objects to determine the current operating region. QuO extends the notion of AOP

by introducing transition callbacks. This functionality is executed when a transition

is perceived from one operating region to another. An example of this is for migrating

objects when a system condition object denoting a danger status reaches a certain

level.

The Desault Systemes Component Virtual Machine (DS CVM) [28] provides

aspect-oriented adaptations using the CORBA Component Model (CCM). The CCM

model makes explicit the connection between specific component implementations

and interfaces using deployment descriptors. Because of this the DS CVM aspect

language can discriminate between different implementation entities. This aspect

language also provides hooks for controlling the tools used to generate components

and services. Another advantage of DS CVM is the use of customizable communi-

cation proxies to handle lower level adaptation. These can be used for example to

provide custom marshaling routines, this feature was present in Flick and COMERA

but lacking in the newer aspect-oriented approaches.

The aspect-oriented middleware presented in this section achieve both flexible

customization and simplified deployment. This is made possible by a clear separa-

tion between adaptation programming and deployment. Deployment is facilitated by

pointcut based descriptions which map adaptation behavior to application events.

6.2 Other Areas

6.2.1 Wrapper-Based Techniques

Monitoring the information flow at the application to operating system interface

has often been used for the transparent addition of security behavior in a system.

This idea was popularized in a paper by Stephanie Forrest et al. [32]. These ideas

sparked an entire sub-field of computer security known as hardening. The goal of

96

hardening is to provide language and tool support for the transformation of insecure

applications to that of a secure one. Generic Software Wrappers [33] were proposed

as a means for simplifying the process of hardening for Commercial Off-The-Shelf

(COTS) applications. Loadable Kernel Modules are used as a hook by which security

wrappers gain access to system calls. A language called Wrapper Definition Language

is introduced to specify monitoring behavior.

6.2.2 Binary Editing

Recent research has exploited the fact that Java programs are typically deployed

in a format known as byte-code. Because byte-code is relatively high level it is

easy to reconstruct and edit programs statically or even at load time. BCA [43],

Javassist [15], and BCEL [19] all provide programmed support for byte code editing .

The Distributed Virtual Machine (DVM) [80] uses a network firewall to intercept and

edit Java code downloaded by client virtual machines. The DVM can enable insertion

of new security policies into Java programs. The Evolvable Systems Project provides

similar functionality through dynamically adaptive security [66]. J-Orchestra [92] uses

byte code editing to transparently introduce distribution into standard programs.

6.2.3 Mobile and Pervasive Adaptation

Several projects are focusing on adapting network communication primarily for

supporting different QoS. This can be useful for mobile applications where bandwidth

is limited.

Puppeteer [23] performs adaptations of content serving distributed applications

(such as web servers). The interception mechanism performs transformations of con-

tent based on users preferences. Puppeteer has been used to add content pre-fetching,

caching, and compression.

CANS [34] is a Composable Adaptive Network Services Infrastructure. This

97

technology provides a pipelined architecture for the transformation of network data

streams. Events such as decreased bandwidth can trigger the reconfiguration of adap-

tation components.

The techniques described in this section provide a valuable feature that is not

directly addressed in our work. Low-level control over network stream representa-

tion is required for some services such as encryption/compression. However, if an

appropriate API is supported by middleware, programmers can make use of Dado’s

crosscutting description language and cross-host coordination to invoke the API for

making these types of low-level changes.

6.2.4 Software Architecture

In software architecture, connectors [54, 68, 3] have proven to be a powerful and

useful modeling device. Connectors reify the concern of interaction between com-

ponents, and are a natural foci for some crosscutting concerns. Implementations of

architectural connectors have also been proposed [27, 76, 21, 83]. Some of these pro-

vide specific services [76, 21, 83] over DH middleware, such as security. Our work can

be viewed as providing a convenient implementation vehicle for different connector-

like services in a heterogeneous environment. The DDL language and compiler al-

low service builders to write client and server adaptlets that provide many kinds of

“connector-style” functionality, while the DDL “plumbing” handles the communica-

tion details. Furthermore, the pointcut language allows a flexible way of binding this

functionality to components, using pattern matching to bind events to adaptlets. The

question as to whether connector specifications (e.g., in an ADL) can be translated to

DDL specifications and pointcuts is interesting, and we hope to address it in future

research.

Cheng et al. [13] propose a software architecture based adaptation for pervasive

systems. Their framework consist of three layers: the task layer, the model layer,

98

and the runtime layer. The task layer is responsible for scheduling users tasks based

on negotiated QoS. The model layer is programmed with information regarding how

to adapt when QoS requirements can not be met. The runtime layer provides a low

level API that is used by the model layer to make required changes. This approach

is similar to the Quality of Objects QuO project.

6.2.5 Programming Language Approaches

Several programming languages provide built in support for static and run-time

program transformations.

Many programming languages use the concept of reflection to manipulate pro-

gram structure. Three types of reflection have been identified. Introspection provides

a read-only view of the program (e.g., java.lang.reflect and C++ RTTI). Behavioral

reflection allows only to wrap functions with ”before” and ”after” behavior. Struc-

tural reflection provides complete program rewriting. Smalltalk [70] and CLOS [44]

use meta-objects and dynamic inheritance to provide introspection and behavioral

adaptation. Because they are dynamically typed they enjoy none of the advantages

of static-type checking. Open-C++ [14] provides structural reflection only at com-

pile time and was extended to load-time with JavaAssist [15], no changes can be

made at run-time. Czarnecki [18] exploited the C++ templates system for similar

types of program transformation. Mixin-Layers [81] are an approach for encapsulat-

ing object-oriented collaborations as composable software layers. Collaborations cut

across several objects so mixin-layers provide support for incremental addition of new

features across entire layers. The Dynamic Virtual Machine [53] allows changes to be

made at run-time in Java and has been extended for distributed settings.

A wide variety of language based techniques support transparent and semi-

transparent adaptation of program source. None of them can support type-checked

interactions between adaptations across heterogeneous network hosts. However, we

99

hope to promote the usage of programming language specific features as implemen-

tation techniques for easing Dado into existing middleware for these languages.

6.2.6 Advanced Separation of Concerns

Advanced Separation of Concerns (ASOC) seeks to provide modularity and reuse

for many aspects of program behavior. Certain types of application requirements such

as security, concurrency, or monitoring are known to crosscut the program structure.

ASOC techniques attempt to factor out the implementation of all concerns into well

defined modules. The techniques differ in the way actual programs can be decomposed

at design time and reconstructed at compile time. AspectJ [45] uses Aspect-Oriented

Programming as described in Chapter 2. HyperJ [90] and Subject-Oriented Pro-

gramming [36] decompose programs into multi-dimensional inheritance hierarchies.

The hierarchies are composed using a language similar to pointcuts. Composition

Filters [2] extends the object-oriented model by providing a model where messages

between objects must pass through any number of user defined filters. Filters have

been used to separate synchronization and concurrency concerns from object-oriented

programs without introducing inheritance anomalies.

EEK [97] occurs whenever a needed datum is passed through a component to an-

other object further down on the invocation chain. Other forms of EEK occur when

components become dependent on the identity of other components where the actual

dependency is one of functionality and not identity. Programs can be designed with-

out EEK and later modified with boundary maps to install the required control flow

and data flow for a functional system; this is called Contextual Dispatch. It may be

possible to leverage Dado for solving similar problems in a distributed heterogeneous

context.

We have already used AspectJ as one tool for introducing Dado into the JacORB

middleware. By relying on mature program transformation techniques such as these

100

instead of platform dependent API’s, we feel the Dado framework can ensure its role

as a useful mechanism for distributed transformations.

6.2.7 Electronic Contracts and Service-Level Agreements

Our work on QoS feature composition relates to work on electronic contracts [38]

and (formal representations of) service-level agreements (SLAs), in particular those

that address nonfunctional requirements such as WSLA (Web SLA) [52]. Such

contracts define agreed-upon, non-functional (and possibly other) characteristics of

(Web) services and a model for measuring, evaluating, and managing the compliance

of these characteristics. Their representation involves assertions comparable to our

policies, and algorithms for assertion match-making and negotiation have been de-

veloped in the context of self-managing systems (systems management) and dynamic

e-business.

However, SLAs such as those described using WSLA focus on performance char-

acteristics only, and on locally (nondistributed) measurable phenomena as seen by

the client. The service provider’s performance offerings are matched with a client’s

specified expectations to determine a binding contract. Adherence to this contract

can be monitored. GlueQoS feature policies address a wider range of end-to-end

quality-of-service requirements, such as transactions, security, etc. In addition, Glue-

QoS has been designed to support policy-driven configuration of client and server

middleware to ensure interoperability. SLAs can be used to model contracts that

can still be violated. With GlueQoS, an interaction is only executed if a compatible

feature composition has been determined, and where no violation should be possible.

6.2.8 Requirements Engineering

As described in Figure 3.1 we envision our middleware to be part of a larger

software process. Work on managing conflicts between requirements or features is

101

especially relevant.

The KAOS [95] methodology uses formal specification to detect conflicting require-

ments using goals which can be identified using a temporal logic. Feather [31] extends

the approach for monitoring of actual runtime behavior. Their work is concerned with

functional requirements as opposed to mediation of conflicting QoS requirements be-

tween software in a distributed setting.

Automatic detection of interacting features in communication systems is an area

of active research. Much of the work focuses on reconciling customer features in

a telephony setting such as call-waiting and voice mail. Zave [102] views features

as modular components connected in a pipeline architecture similar to our layered

feature architecture. She identifies an ontology of feature interactions and provides

techniques for automatic detection of interactions.

We have not developed any formal techniques for identifying requirements level

phenomenon. Our work involves a middleware to be used for mediating policies

between QoS features once possible feature interactions have been elucidated.

102

Chapter 7

Conclusion

7.1 Discussion

Our framework for aspect-oriented development of distributed object applications

consists of two main contributions: the Dado language and tools for developing and

deploying adaptlets; and the GlueQoS language and software for resolving feature

policies. These contributions are summarized in this conclusion.

Modeling, Type-Checking, and Marshaling Adaptlets employ an enhanced IDL

and code-generation to support the following:

• Explicit IDL-level modeling of adaptlets and their interaction with application

components.

• Safer interaction (via static type-checking) between adaptlets, with automated

generation of marshaling code.

Pointcut-based Binding The enhanced IDL can describe the interfaces supported

by adaptlets separately from a deployment description, which specifies the precise

deployment context of a service. This allows a deployment expert to tune the connec-

tion between adaptlets and different application components. The binding language

103

is agnostic with respect to the implementation; adaptlets could be incorporated into

the existing application using static transformations (binary or source) or dynamic

wrapping, depending on available tools or performance issues.

Multiple Contextual Invocations Middleware extensions allow adaptlets on the

client and server side to communicate via messages. However, rather than inducing

additional middleware invocations, multiple messages are piggy-backed within the

single pre-existing application invocation.

Transparent Late binding Client software transparently (without additional pro-

gramming) discover the services associated with a server, and deploy additional

adaptlets as needed. We provide a declarative language for specifying the feature

preferences and conflicts, and a middleware-based resolution mechanism, GlueQoS.

The middleware reasons using these specifications to dynamically find a satisfying set

of features that allow a pair of components to inter-operate.

We hope to foster a new design methodology for transparent addition of features to

distributed applications that promotes reuse of software (adaptlets) between develop-

ers. The goal is to reduce development costs associated with middleware application

maintenance and deployment. Static type-checking of adaptlet interactions should

increase the dependability of software making use of cross-host features. We believe

transparent deployment of adaptlets onto existing applications will make it easier to

evolve components to new usage scenarios. Although some performance overhead was

observable in performance measurements, we showed this to be fairly small (less than

2%) when used a part of a typical application.

7.2 Dissemination

Currently our system has not been used by an outside third-party. Consequently,

it is still difficult to assess the long-term success of these ideas. Recently, this work was

104

presented to the Object Management Group (OMG) at an official technical meeting.

The OMG is a consortium of companies responsible for standardizing and promot-

ing the CORBA technology. We have been invited back to an upcoming meeting to

further discuss how the work in this thesis can be used to improve upcoming OMG

standards. Through these discussions we hope to lay the groundwork for dissemi-

nation of our research. This may provide us the opportunity for further validation

through outside use of our framework.

An initial hurdle that must be overcome in order to see adoption of this research

is in the training of developers who may benefit from its use. Technically, adoption

can take place independently of other aspect-oriented approaches such as AspectJ.

Realistically, it may be that the long-term success of our approach is tied to the success

of Aspect-Oriented technologies in general. This can be understood in analogy to the

success of distributed object middleware. For example, it can be argued that CORBA

is useful in a non-object-oriented environment. However, we believe that much of its

success hinged upon the adoption of the Java and C++ programming languages to

which it was closely related. So, if the aspect-oriented way of programming becomes

familiar to developers then we feel that the learning curve required to benefit from

this research will be low.

7.3 Future Plans

In the future we plan to extend this research to the area of cross-layer adaptation.

The key insight of cross-layer adaptation is that decisions made by code in a partic-

ular system layer can often be made better by knowing the state of other system or

application layers. Dean et al. [24] show how to improve defense against denial of

service attacks using a combination of application (web server) and transport layer

information. The GRACE project [101] combines an adaptive multimedia applica-

105

tion with soft-real time information from the operating system to improve playback

of streams on mobile devices. While these projects provide motivation they do not

address the challenges of software development in these settings.

Programming cross-layer adaptive software appears challenging because support

must exist in the original software to allow run-time reconfiguration to take place.

This support code may become tangled with the original functions inhibiting program

understanding and maintenance. The key research question is to determine whether

adaptation can take place across components at multiple layers (e.g., application,

middleware, and operating system) without sacrificing the benefits of the original lay-

ered composition. Current approaches (e.g., [24, 101]) require tight coupling between

components at different layers which may inhibit evolution and introduce significant

administrative burdens.

The tools developed as part of this research may not directly support an environ-

ment for cross-layer adaptation. Our software is targeted at CORBA programming

which is not a popular model for developing many important applications (such as

web servers) or operating system modules. However, application and system layers

are often built from a variety of different languages and platforms. Therefore we

believe that this thesis may provide some useful insights and techniques that will be

applicable in the cross-layer setting.

106

Appendix A

Additional Source Code

Java CPP Client Adaptlet Helper Function

boolean recursiveSolver(int n, PuzzleChallenge challenge)

{

if(n == 0)

{

MessageDigest md5 = MessageDigest.getInstance("MD5");

md5.update(challenge.puzzlePreImage);

byte[] digest = md5.digest();

if(!byteArrayEqual(challenge.puzzleHash,digest))

{

return true;

}

else

{

return false;

}

}

else

{

for(int i=-127;i<127;i++)

{

challenge.puzzlePreimage[challenge.puzzleLength-n] = (byte) i;

if(recursiveSolver(n-1,challenge))

{

return true;

}

}

}

107

return false;

}

C++ Server Adaptlet Helper Functions

bool checkResponse(PuzzleResponse * response)

{

PuzzleChallenge challenge;

table.find(response->puzzleID,challenge);

if(!strncmp((const char *) challenge.puzzlePreImage.get_buffer(),

(const char *) response->puzzleSolution.get_buffer(),64))

{

return true;

}

else

{

return false;

}

}

PuzzleChallenge createChallenge(int size)

{

char digest[16];

PuzzleChallenge challenge;

challenge.puzzleID = id;

challenge.puzzleLength = size;

challenge.puzzlePreImage = preImage();

MD5((unsigned char *) digest,

challenge.puzzlePreImage.get_buffer(),64);

challenge.puzzleHash.replace(16,16,(unsigned char *) digest);

table.bind(id,challenge);

for(int i=0;i<size;i++)

{

challenge.puzzlePreImage[i] = 0;

}

id++;

return challenge;

}

Octet64 preImage()

{

Octet64 returnVal;

returnVal.length(64);

for(int i=0;i<64;i++)

108

{

returnVal[i] = (CORBA::Octet) rand()%256;

}

return returnVal;

}

109

Bibliography

[1] ACE and TAO Success Stories. <http://www.cs.wustl.edu/˜schmidt/ACE-
users.html>. 12 pages.

[2] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstract-
ing object interactions using composition filters. In Proc. of the Workshop on
Object-Based Distributed Programming, pages 152–184, 1993.

[3] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

[4] T. Amsler and R. Walters. Open RCT home. <http://davinci.cs.ucdavis.edu/>.

[5] D. Batory, C. Johnson, B. MacDonald, and D. von Heeder. Achieving exten-
sibility through product-lines and domain-specific languages: A case study. In
Proc. of the International Conference on Software Reuse, pages 117–136, 2000.

[6] G. Blair and R. Campbell, editors. Reflective Middleware, 2000.

[7] L. Bouge and N. Francez. A compositional approach to superimposition. In
Proc. of the Symposium on Principles of Programming Languages, pages 240–
249, 1988.

[8] G. Brose. JacORB: Implementation and design of a Java ORB. In Proc. of the
International Working Conference on Distributed Applications and Interopera-
ble Systems, pages 143–154, 1997.

[9] L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 17(4):471–522, 1985.

[10] W. Cazzola and M. Ancona. mChaRM: A reflective middleware for
communication-based reflection. Technical Report DISI-TR-00-09, Universit
degli Studi di Genova, 29 pages, 2000.

[11] M. Chandy and J. Misra. An example of stepwise refinement of distributed pro-
grams: Quiescence detection. ACM Transactions on Programming Languages
and Systems, 8(3):326–343, 1986.

[12] W.-K. Chen, M. Hiltunen, and R. Schlichting. Constructing adaptive software
in distributed systems. In Proc. of International Conference on Distributed
Computing Systems, pages 635–643, 2001.

110

[13] S.-W. Cheng, D. Garlan, B. Schmerl, J.P. Sousa, B. Spitznagel, P. Steenkiste,
and N. Hu. Software architecture-based adaptation for pervasive systems. In
Proc. of the International Conference on Architecture of Computing Systems,
pages 67–82, 2002.

[14] S. Chiba. A metaobject protocol for C++. In Proc. of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 285–299,
1995.

[15] S. Chiba. Load-time structural reflection in Java. In Proc. of the European
Conference on Object-Oriented Programming, pages 313–336, 2000.

[16] M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas. An efficient component
model for the construction of adaptive middleware. In Proc. of the International
Conference on Distributed Systems Platforms and Open Distributed Processing
(Middleware), pages 160–178, 2001.

[17] Y. Coady, A. Brodsky, D. Brodsky, J. Pomkoski, S. Gudmundson, J.S. Ong,
and G. Kiczales. Can AOP support extensibility in client-server architectures?
In Proc. of the ECOOP Workshop on Aspect-Oriented Programming, 4 pages,
2001.

[18] K. Czarnecki, U. Eisenecker, and P. Steyaert. Generative Programming : Meth-
ods, Tools, and Applications. Addison-Wesley, 2000.

[19] M. Dahm. Byte code engineering with the BCEL API. Technical Report B-17-
98, Freie Universit at Berlin, Institut fur Informatik, 31 pages, 2001.

[20] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, N.J., 1962.

[21] E.M. Dashofy, N. Medvidovic, and R. Taylor. Using off-the-shelf middleware to
implement connectors in distributed architectures. In Proc. of the International
Conference on Software Engineering, pages 3–12, 1999.

[22] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201–205, 1960.

[23] E. de Lara, D. Wallach, and W. Zwaenepoel. Puppeteer: Component-based
adaptation for mobile computing. In Proc. of the USENIX Symposium on In-
ternet Technologies and Systems, pages 159–170, 2001.

[24] D. Dean and A. Stubblefield. Using client puzzles to protect TLS. In Proc. of
the USENIX Security Symposium, 9 pages, 2001.

[25] J. des Rivieres and B. Smith. The implementation of procedurally reflective
languages. In Proc. of the Symposium on LISP and functional programming,
pages 331–347, 1984.

111

[26] T. Dierks and C. Allen. Internet RFC 2246: Transport layer security, 1999.

[27] S. Ducasse and T. Richner. Executable connectors: Towards reusable design
elements. In Proc. of the Symposium on Foundations of Software Engineering,
pages 483–499, 1997.

[28] F. Duclos, J. Estublier, and P. Morat. Describing and using non-functional as-
pects in component based applications. In Proc. of the International Conference
on Aspect-Oriented Software Development, pages 65–75, 2002.

[29] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom. Flick: A flexible,
optimizing IDL compiler. In Proc. of the Conference on Programming Language
Design and Implementation, pages 44–56, 1997.

[30] J.-C. Fabre and T. Perennou. A metaobject architecture for fault-tolerant dis-
tributed systems: The FRIENDS approach. IEEE Transactions on Computers,
47(1), 1998.

[31] M.S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling sys-
tem requirements and runtime behavior. In Proc. of the International Workshop
on Software Specifications and Design, pages 50–60, 1998.

[32] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for Unix
processes. In Proc. of the Symposium on Security and Privacy, pages 120–128,
1996.

[33] T. Fraser, L. Badger, and M. Feldman. Hardening COTS software with generic
software wrappers. In Proc. of the Symposium on Security and Privacy, pages
2–16, 1999.

[34] X. Fu and V. Karamcheti. CANS: Composable, adaptive network services in-
frastructure. In Proc. of the USENIX Symposium on Internet Technologies and
Systems, 12 pages, 2001.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1994.

[36] W. Harrison and H. Ossher. Subject-Oriented programming: A critique of pure
objects. In Proc. of the Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 411–428, 1993.

[37] D. Hilbert and W. Ackermann. Principles of Theoretical Logic. Springer-Verlag,
1928.

[38] Y. Hoffner, S. Field, P. Grefen, and H. Ludwig. Contract-driven creation and
operation of virtual enterprises. Computer Networks, 37(2):111–136, 2001.

[39] J.N. Hooker and M.A. Osorio. Mixed logical/linear programming. Discrete
Applied Mathematics, 96(97):395–442, 1999.

112

[40] R. Housley, W. Ford, W. Polk, and D. Solo. Internet RFC 2459: Internet x.509
public key infrastructure certificate and CRL profile, 1999.

[41] JBoss. <http://www.jboss.org>. 4.0 edition.

[42] S. Katz. A superimposition control construct for distributed systems. ACM
Transactions on Programming Languages and Systems, 15(2):337–356, 1993.

[43] R. Keller and U. Hölzle. Binary component adaptation. In Proc. of the European
Conference on Object-Oriented Programming, pages 307–324, 1998.

[44] G. Kiczales and J. des Rivieres. The art of the metaobject protocol. MIT Press,
Cambridge, MA., 1991.

[45] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of AspectJ. In Proc. of the European Conference on Object-Oriented
Programming, pages 327–355, 2001.

[46] F. Kon, F. Costa, G. Blair, and R. Campbell. The case for reflective middleware.
Communications of the ACM, 45(6):33–38, 2002.

[47] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L.C. Magalhães, and R. Camp-
bell. Monitoring, security, and dynamic configuration with the dynamicTAO
reflective ORB. In Proc. of the International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware), pages 121–143, 2000.

[48] J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change
management. IEEE Transactions on Software Engineering, 16(11):1293–1306,
1990.

[49] Lindo API. <http://www.lindo.com/>. 2.0 edition.

[50] R. Lougee-Heimer. The Common Optimization INterface for operations re-
search: Promoting open-source software in the operations research community.
IBM Journal of Research and Development, 47(1):57–66, 2003.

[51] J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R. Vanegas, and K. An-
derson. QuO Aspect languages and their runtime integration. In Proc. of the
Workshop on Languages, Compilers and Runtime Systems for Scalable Compo-
nents, 16 pages, 1998.

[52] H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck. A service level agree-
ment language for dynamic electronic services. Electronic Commerce Research,
3(1-2):43–59, 2003.

[53] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J.F. Barnes. Runtime support
for type-safe dyanmic Java classes. In Proc. of the European Conference on
Object-Oriented Programming, pages 337–361, 2000.

113

[54] N. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software
connectors. In Proc. of the International Conference on Software Engineering,
pages 178–187, 2000.

[55] Naftaly H. Minsky. The imposition of protocols over open distributed systems.
IEEE Transactions on Software Engineering, 17(2):183–195, 1991.

[56] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT
problems. In Prof. of the Conference on Artificial Intelligence, pages 459–465,
1992.

[57] G. Murphy, A. Lai, R. Walker, and M. Robillard. Separating features in source
code: An exploratory study. In Proc. of the International Conference on Soft-
ware Engineering, pages 275–284, 2001.

[58] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional
requirements: A process-oriented approach. Software Engineering, 18(6):483–
497, 1992.

[59] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Provid-
ing support for survivable CORBA applications with the Immune system. In
Proc. of the International Conference on Distributed Computing Systems, pages
507–516, 1999.

[60] P. Narasimhan, L. Moser, and P. Mellior-Smith. Using interceptors to enhance
CORBA. IEEE Computer, 32(7):62–68, 1999.

[61] NSF Middleware Initiative. National Science Foundation. <http://www.nsf-
middleware.org/middleware/>.

[62] Object Management Group. CORBA 3.0 Specification, 3.0 edition.

[63] Object Management Group. CORBA Transaction Service, 1.4 edition.

[64] Open Systems Architecture Puts Six Bombs on Target.
<http://www.cs.wustl.edu/˜schmidt/TAO-boeing.html>. 2 pages.

[65] P. Pal, J. Loyall, R. Schantz, J. Zinky, R. Shapiro, and J. Megquier. Using
QDL to specify QoS aware distributed (QuO) application configuration. In
Proc. of the International Symposium on Object-Oriented Real-time Distributed
Computing, 12 pages, 2000.

[66] R. Pandey and B. Hashii. Providing fine-grained access control for Java pro-
grams via binary editing. Concurrency: Practice and Experience, 12(14):1405–
1430, 2000.

[67] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A flexible frame-
work for AOP in Java. In Proc. of the International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns (Reflection), 24 pages,
2001.

114

[68] D. Perry and A. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

[69] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders. Quanti-
fying the cost of providing intrusion tolerance in group communication systems.
In International Conference on Dependable Systems and Networks, pages 229–
238, 2002.

[70] F. Rivard. Smalltalk: A reflective language. In Proc. of the International
Conference on Metalevel Architectures (Reflection), 18 pages, 1996.

[71] M. Robillard and G. Murphy. Concern graphs: Finding and describing concerns
using structural program dependencies. In Proc. of the International Conference
on Software Engineering, pages 406–416, 2002.

[72] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad,
and J.B. Chen. Instrumentation and optimization of Win32/Intel executables
using Etch. In Proc. of the USENIX Windows NT Workshop, pages 1–8, 1997.

[73] D. Sames, B. Matt, B. Niebuhr, G. Tally, B. Whitmore, and D. Bakken. De-
veloping a heterogeneous intrusion tolerant CORBA system. In International
Conference on Dependable Systems and Networks, pages 387–397, 2002.

[74] D. Schmidt. Using design patterns to develop reusable object-oriented commu-
nication software. Communications of the ACM, 38(10):65–74, 1995.

[75] D. Schmidt, D. Levine, and T. Harrison. The design and performance of a
real-time CORBA object event service. In Proc. of the Conference on Object-
Oriented Programming, Languages, Systems and Applications, 19 pages, 1997.

[76] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik. Abstractions
for software architecture and tools to support them. Software Engineering,
21(4):314–335, 1995.

[77] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[78] M. Simonnard. Linear Programming. Prentice Hall, 1966.

[79] A. Singhai, A. Sane, and R. Campbell. Quarterware for middleware. In Proc.
of the International Conference on Distributed Computing Systems, pages 192–
201, 1998.

[80] E.G. Sirer, R. Grimm, A. Gregory, and B. Bershad. Design and implementa-
tion of a distributed virtual machine for networked computers. In Proc. of the
Symposium on Operating Systems Principles, pages 202–216, 1999.

[81] Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers.
In Proc. of the European Conference on Object-Oriented Programming, pages
550–570, 1998.

115

[82] Y. Smaragdakis and D. Batory. Mixin layers: An object-oriented implementa-
tion technique for refinements and collaboration-based designs. Software Engi-
neering and Methodology, 11(2):215–255, 2002.

[83] B. Spitznagel and D. Garlan. A compositional approach to constructing connec-
tors. In Proc. of the Working IEEE/IFIP Conference on Software Architecture,
pages 148–158, 2001.

[84] W. Stallings. Data and Computer Communications. Prentice Hall, 1997.

[85] D. Sterne, G. Tally, C.D. McDonell, D. Sherman, D.L. Sames, P.X. Pasturel,
and E.J. Sebes. Scalable access control for distributed object systems. In Proc.
of the USENIX Security Symposium, 14 pages, 1999.

[86] M. Stillerman, C. Marceau, and M. Stillman. Intrusion detection for distributed
applications. Communications of the ACM, 42(7):62–69, 1999.

[87] Java 2 Platform Enterprise Edition. Sun Microsystems.
<http://java.sun.com/j2ee/>.

[88] C. Szyperski. Component Software – Beyond Object Oriented Programming.
Addison Wesley, 1997.

[89] Stefan Tai, Thomas Mikalsen, Eric Wohlstadter, Nirmit Desai, and Isabelle
Rouvellou. Transaction policies for service-oriented computing. Data and
Knowledge Engineering Journal: Special Issue on Contract-based Coordination
and Collaboration, 51:59–79, 2004.

[90] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of separation: Multi-
dimensional separation of concerns. In Proc. of the International Conference
on Software Engineering, pages 107–119, 1999.

[91] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. OpenJava: A class-based
macro system for Java. In Proc. of the Workshop on Object-Oriented Reflection
and Software Engineering, pages 117–133, 1999.

[92] E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic Java application
partitioning. In Proceedings of the European Conference on Object-Oriented
Programming, pages 178–204, 2002.

[93] Peer to Peer. In Wikipedia. <http://en.wikipedia.org/wiki/Peer-to-peer>.

[94] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B.N. Jorgensen. Dy-
namic and selective combination of extensions in component-based applications.
In Proc. of the International Conference on Software Engineering, pages 233–
242, 2001.

[95] A. van Lamsweerde, R. Darimont, and E. Letier. Managing conflicts in goal-
driven requirements engineering. IEEE Transactions on Software Engineering,
24(11):908–926, 1998.

116

[96] M. VanHilst and D. Notkin. Using role components to implement collaboration-
based designs. In Proc. of the Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 359–369, 1996.

[97] R. Walker and G. Murphy. Implicit context: Easing software evolution and
reuse. In Proc. of the Symposium on Foundations of Software Engineering,
pages 69–78, 2000.

[98] N. Wang, K. Parameswaran, and D. Schmidt. The design and performance of
meta-programming mechanisms for object request broker middleware. In Proc.
of the Conference on Object-Oriented Technologies and Systems, pages 677–694,
2000.

[99] Web Services Activitiy. W3C. <http://www.w3.org/2002/ws/>.

[100] W. Yi-Min and L. Woei-Jyh. COMERA: COM extensible remoting architecture.
In Proc. of the Conference on Object-Oriented Technologies and Systems, 10
pages, 1998.

[101] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets. Design and evalu-
ation of a cross-layer adaptation framework for mobile multimedia systems. In
Proc. of the Conference on Multimedia Computing and Networking, 13 pages,
2003.

[102] P. Zave. An experiment in feature engineering. Programming Methodology,
pages 353–377, 2003.

