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Abstract: As Web programming standards and browser infrastructures have matured, the 
implementation of UIs for many Web sites has seen a parallel increase in complexity. In order 
to deal with this problem, we are researching ways to bridge the gap between the browser view 
of a UI and its JavaScript implementation. To achieve this we propose a novel JavaScript 
reverse-engineering approach and a prototype tool called Script InSight. This approach helps to 
relate the semantically meaningful elements in the browser to the lower-level JavaScript syntax, 
by leveraging context available during the script execution. The approach uses run-time tracing 
to build a dynamic, context-sensitive, control-flow model that provides feedback to developers 
as a summary of tracing information. To demonstrate the applicability of the approach we 
present a study of an existing open-source Web 2.0 application called the Java Pet Store and 
metrics taken from several popular online sites. 
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1   Introduction 

The user interface (UI) is a key aspect of most Web sites. As Web browser 
programming standards such as JavaScript and the W3C Document Object Model 
(DOM) have matured, the implementation of UIs for many sites has seen a parallel 
increase in complexity. These rich Web applications have the advantage of providing 
a seamless and interactive experience for end-users. However, these applications also 
require more development effort to build and maintain than older Web UI. As the 
Web has become more interactive and complex, we are researching a more 
interactive, model-based approach for Web application reverse-engineering and 
debugging.  
     Most existing work on modeling of UI-intensive Web applications focuses on 
development but not specifically maintenance and debugging. For example, [1] 
introduces a framework for the integration of presentation components in mashup 
applications. Trigueros et al. present a model driven approach, the RUX-Model, for 
the design of rich Internet applications [2]. Valderas et al. introduce an approach to 
support the coordinated work between Web UI designers and analysts during the 
development of a Web application [3]. In [15], Rossi et al. use a model-driven 
approach to transform conventional Web applications into rich Internet applications 
by applying refactoring at the model level. Meliá et al. propose a model-driven 



development methodology which extends a traditional Web modeling methodology 
for use with the Google Web Toolkit [16]. Some research in software maintenance 
and reverse-engineering has been used for testing of Ajax applications [14], but not 
specifically for interactive debugging, as we focus on in this paper. 

As with any complex software development task, creating a user interface requires 
an iterative cycle of design and implementation. Starting with an initial design, an 
interface would first be prototyped and then refined over several cycles into a final 
product. At each stage, some design decisions may need to be reconsidered and the 
implementation adjusted accordingly. The UI might even evolve after the release of 
an application in order to fix bugs or add new features. 

After each cycle, developers can determine the quality of the current application by 
executing the implementation and evaluating the UI appearance and functionality in a 
Web browser. If they notice anything wrong with the browser view of the UI, they 
would need to map the problem back to some part of the implementation, to enact the 
appropriate change.  

Unfortunately, reversing engineering a rich interactive Web page and mapping the 
appearance or behavior of some element in the Web page to the corresponding 
implementation can be quite difficult. This is because today’s Web UI are stateful and 
reactive. Their appearance and behavior vary over time based on mutations of state 
made from JavaScript. This problem is exacerbated by the fact that a developer 
working on the UI might not have written the original code for all parts of the Web 
site. In that case, they may need to dig through unfamiliar code to try and reverse-
engineer the source. This process is especially difficult since code for some systems 
on the Web is poorly documented. As described by Hassan et al. [4], “Currently, 
[code] inquiries can only be answered by scanning the source code for answers using 
tools such as grep, consulting documentation, or asking senior developers.” 

In order to deal with this problem, we are researching an interactive approach to 
bridge the gap between the browser view of a UI and the JavaScript piece of the 
implementation. This is motivated by the fact that the browser view is usually easy to 
understand and semantically meaningful, unlike the implementation code. We want to 
help developers use the live UI as an entry-point into the lower-level implementation 
details. 

To achieve this, we propose a novel JavaScript tracing approach. To a first 
approximation, when a change is made by a script statement to a visual DOM 
attribute (e.g. color, height, etc...), we record a link between the effected browser 
element and the code responsible. The intuition is that a developer can now easily 
navigate through the code by hyperlinking directly from browser elements. However, 
a basic implementation of this approach is vulnerable to two problems.  

First, mapping semantically meaningful events, such as the mutation of a visual 
attribute directly to a location in the source code (e.g. a statement) may not be helpful,   
because that one statement might be reused for several different purposes in the 
execution of the script. For example, informing a developer that an attribute was 
changed in a “setter” method for that attribute provides little useful information. The 
“setter” method could be called many times in the execution of a script, in different 
contexts, for a variety of different purposes.  

For this reason we are researching the use of context-sensitivity to help provide a 
mapping. A context-sensitive approach captures not only the execution of individual 



statements, but also the state of the call stack, which can help distinguish between 
multiple executions of the same statement.  

Second, the visual behavior of a Web page (e.g. the way widgets are animated) is 
often achieved by a set of coordinated DOM attribute mutations. For example, a 
button’s appearance may change to reflect the button is active when a panel is closed, 
and change again to reflect it is inactive when the panel is open. The changes to the 
button appearance and panel appearance have a causal relationship. If a developer 
wants to change the widget animation they may need to make coordinated changes to 
several DOM nodes. For this reason we are researching the use of a custom control-
flow model, the DOM mutation graph (DMG), that developers can use to leverage 
their understanding of these causal relationships, seen in the browser view, in 
mapping from the browser view to script source code. 

 To demonstrate our approach of using this DMG to explore script code, we 
present a study of an existing open-source Web 2.0 application called the Java Pet 
Store [9] and metrics taken from several popular online sites. We show how this 
model is used to understand animation effects in the application which require 
coordinated changes to several page elements. The metrics taken from other pages 
provide evidence supporting the need for context-sensitivity in Web application 
reverse-engineering.  

The rest of the paper is organized as following: Section 2 presents a motivating 
example and an overview of our approach, Section 3 presents technical details, 
Section 4 presents metrics from online sites, Section 5 presents a further detailed 
example, and in Section 6 we give related work and we conclude in Section 7. 

2   Motivating Example and Approach Overview 

In order to motivate our approach, we use a case-study of an existing open-source 
Web application called Java Petstore 2.0 (henceforth, JPS). This online pet store 
offers the end-user several interactive widgets to control the application, as shown in 
Figure 1. Here we see the “Catalog Browser” page from which the end-user can 
browse prospective pets. This one page alone makes use of 1232 lines of JavaScript 
code spread across 3 files. 

Running down the left-side of the page is an accordion bar. This widget is a 
stylized tree-view for browsing categories of pets and their respective sub-categories 
(e.g. the specific kinds of cats). The table rows for the categories interactively 
expand/deflate to reveal/hide sub-categories when the mouse cursor is 
positioned/removed from a category name. This “accordion” animation requires 
JavaScript programming to mutate the DOM in an event loop. In Figure 1, the “Cats” 
row is expanded and the other categories remain deflated. 

Consider the perspective of a front-end developer who would like to make changes 
to this Web page. They have to remember or understand how the 1232 lines of code is 
mapped to elements of the page and their behavior. 

In the original JPS, each accordion row is expanded and deflated at a constant 
speed. Here we consider a change task where a front-end developer wants to change  

 



  

 

Fig. 1. A snapshot for the “Catalog Browser” from the Java Pet Store. Label (A) is an expanded 
accordion row, “Cats”. The labels (B) and (C) will be described later, in Section 4.  

 
the animation to accelerate at a decreasing/increasing rate when a row is 
expanding/deflating. During the task the developer is confronted with three problems. 
     First, they would need to determine which DOM nodes and which attributes of 
those nodes are responsible for the animation. This could be difficult because the 
implementation details could vary. For example, the animation might involve any 
combination of style attributes such as height, top, clip, etc...  

Second, suppose a developer figures out that height is the key to change the 
animation. However, when they search through the code, there are two assignment 
statements to the height of some node in the JavaScript implementation. One of them 
is shown in Figure 2 and another one turns out not to be relevant. By looking at each 
statement individually, it is not always clear if the statement is relevant to the task at 
hand. They may also have to search the code to understand the calling context of each 
height setting statement. In other words, the function calls which lead to the 
statement’s execution.  

 
 

             

Fig. 2. The function setHeight on its own lacks the calling context which is needed to 
properly associate the function with the accordion bar animation.  

Third, suppose the developer determines the function as shown in Figure 2 
contains the assignment statement they are interested in. In order to create the new 

Row.prototype.setHeight = function(nH) { 
this.h = nH; 
this.div.style.height = nH + "px"; 

} 
 

  
  
 



acceleration/deceleration effect, they would want to change the argument value that 
was passed to a function call to setHeight, but not the definition of the 
setHeight code itself. But now, when a developer searches setHeight in the 
code, they find two places where the setHeight function is called, as shown in 
Figure 3. Each one is relevant for the change task, but for different reasons.  

 
 

 
 

Fig. 3. Two function calls related to the accordion bar animation. The developer will need 
information to disambiguate the purpose of each function call. Some code is elided for 
illustration purposes.  
 
 

After some investigation, they may find that the first one (line 149) is involved 
with expanding an accordion row and the second (line 157) is involved with the 
deflating. 

Using our proposed approach, a developer could have chosen to see a model of the 
accordion row’s execution. The model generated by our tool is shown in Fig. 4. In the 
model, each node represents a statement that mutated some visual DOM attribute and 
the calling context in which that statement execution. Notice that the model contains 
two nodes, although we are only concerned with one source code statement (the 
height setting statement in Fig. 2). From the model a developer could determine that 
the animation was created by alternating, repeated executions of the context 
represented by height0, followed by repeated executions of the context represented 
by height1. 

By selecting each node in our tool, the developer can perform two functions. First, 
the developer can view a trace of the values which were set in each context. From the 
trace, it is clear which one is responsible for expanding and which one is responsible 
for deflating. Having the information in mind, the developer can hyperlink to the 
corresponding source for the one they are interested in. In the model, height0 links 
to the executions of Fig.2, which were made from line 149 in Fig 3; height1 links 
to the following repeated executions of Fig. 2, which were made from line 157 in Fig. 
3.  

147. if(...) { 
148.   nHeight = nHeight + INCREMENT;          
149.   divs[nExpandIndex].setHeight(nHeight); 
150.   if(...) { 
151.     if(...)  { 
152.       ... 
153.     }  
154.     else { 
155.       oHeight = oHeight - INCREMENT; 
156.     } 
157.     divs[oExpandIndex].setHeight(oHeight); 
158.   } 
159. } 



Now, the developer can find the correct locations to change argument values for 
each call to implement the desired acceleration/deceleration change. In the remainder 
of the paper we describe more precisely the details regarding using a DMG for 
exploring JavaScript code using Script InSight. 
 
 

 
Fig. 4. The abstract behavior of an accordion row presented as a DMG. The two traces of the 
height values (overlayed on the model with block arrows, in the figure simply for illustration) 
show the information displayed to a developer when selecting one of the two nodes in the 
model. 

3   Implementation Details 

Our prototype is implemented as a JavaScript front-end, to execute within a standard 
Web browser, and a separate HTTP proxy executable. A developer using our tool will 
install and point their browser to the HTTP proxy which provides instrumentation of 
existing JavaScript code. First, we describe our prototype tool from a developer’s 
perspective to provide an overview of the lower-level details involved in our run-time 
tracing infrastructure, which is described in Section 3.1. The DMG model 
presentation for UI execution history is presented in Section 3.2. 
     Using Script InSight, developers can switch the Web browser between normal 
execution mode and inspection mode. In script inspection mode, a developer can 
select an element in the browser view. For example, the developer might select a 
particular image or table row they are interested in. Next, a list of the event handlers 
that have affected that node during execution are displayed. When the developer 
selects one of the handlers, a DMG of its previously recorded behavior is displayed.  

By selecting a node in the DMG, the developer is hyperlinked to the file for the 
associated JavaScript statement in a special text editor, as shown in Figure 5. In the 
editor, the cursor position is set for the line number of the statement for convenience. 
This text editor includes a drop-down menu for the developer to navigate the calling 
context for a given statement execution. This allows the developer to jump up and 
down the call stack that was captured precisely for that instance of statement 
execution in the trace history.  



3.1   Tracing JavaScr ipt Execution 

Run-time tracing is implemented as a set of JavaScript functions which are called by 
tracing code injected into existing scripts. Scripts are intercepted and manipulated by 
a client-side HTTP proxy. We use the open-source Rhino [10] JavaScript compiler 
framework to convert scripts into an abstract syntax tree (AST) which is then 
transformed to add the tracing code. In the remainder of this section we describe the 
details of this tracing procedure. 
   During program execution, our tool monitors a subset of the JavaScript statements 
executed. We refer to these statements as DOM mutators. A DOM mutator is a 
JavaScript statement which mutates the state of the DOM. This can be either by 
directly setting an attribute of a node (e.g. node.id = ‘submit’) or through any 
one of the functions in the W3C DOM standard (e.g. node.appendChild(..)).  

For example, in JPS, the height attribute of some nodes is mutated dynamically. 
Our tool records this fact so that a developer concerned with an animation concerning 
the height can quickly locate the corresponding implementation.  

 
 

 
 

Fig. 5. Selecting a function call location from the calling context. The (?) entry references an 
anonymous JavaScript event handler function. A mutation of the style.height attribute for 
some DOM node was made in the function setHeight which is shown at the top of call 
stack. This mutation corresponds to the height0 node from Fig. 4. The stack contents serve 
to distinguish this execution of setHeight from those corresponding to node height1.  

 
In many cases, dynamic information is needed to distinguish the calling context in 

which some statement executed. For this reason, our tool captures the calling context 
of each DOM mutator execution instance. The DOM Mutator Context is an ordered 
list containing the location of all JavaScript function calls active at the moment of 
execution for some DOM mutator. This context captures the path of function calls 
from some event handler invoked by the browser, to the statement.  



     Consider an example from eBay where JavaScript library code is used to build 
“widgets”. These widgets are an aggregation of DOM nodes which are encapsulated 
behind a high-level widget interface.  

Suppose a developer is interested in a particular instance of an eBay drop-down 
menu. They might wish to modify the parameters that were used in the construction of 
the menu. Using our tool they could click on some part of the menu to be hyper-
linked to the DOM mutator where that part of the menu was created. However, since 
these nodes were created as an internal part of the widget library, the developer would 
not want to actually change the library code but rather find where it was called from 
for this menu instance. This could be achieved using the captured context modeled in 
the DMG.   

3.2 DOM Mutation Graph 

Many Web 2.0 and Ajax style sites use JavaScript to control dynamic UI effects and 
animations. We want to help developers navigate directly to the code responsible for 
controlling this part of the UI. In this case, it could be hard for a user to determine 
precisely the moment when the UI transitioned between states which are responsible 
for creating the effect or animation. 

To help developers review mutations in an animation which occur over the span of 
some time, we need to consider the history of DOM mutations related to each DOM 
node attribute. Our tracing infrastructure captures a complete trace of all DOM 
mutator contexts, including the value (e.g. 10, ‘red’,’http://..’) which is assigned by 
the mutator for each context. However, it is well known that dynamic traces can 
sometimes overwhelm a user with a large magnitude of data, making the information 
not valuable.  

To abstract large execution traces for developers, we designed a mechanism to 
represent JavaScript execution as a variation of a traditional control-flow model, the 
DOM mutation graph. Each DMG is an abstract representation of the execution 
history for a specific instance of a JavaScript event handler (e.g. onclick, 
onhover). This execution history captures all mutations made during the activation 
of the handler (i.e. while the handler is on the call stack).  

We use this partitioning of trace information because each particular event-handler 
is commonly responsible for creating one particular animation or dynamic effect on 
the page. Scoping the generation of models to align with event-handlers, allows a 
developer to focus on a particular animation or effect, and the way it may affect 
multiple attributes of multiple DOM nodes, in a coordinated fashion.  

Our model is similar to traditional control-flow models, such as a control-flow 
graph or call-graph, in that each node represents some implementation level artifact. 
However, we consider only the set of statements which affect the visual appearance of 
the UI and distinguish those statements based on dynamic context information. These 
statements serve as a bridge between the browser view and the implementation. This 
is because a developer can plainly observe their effect from the live UI.  

In the model, each node corresponds to a mutator context, abstracting over all the 
particular values which may have been assigned in that context. The trace of concrete 
mutations, including the attribute values assigned, can be retrieved by interrogating 



each node (as illustrated in Fig. 4). Edges in the model correspond to the sequencing 
of statement execution. A directed edge is created from node, u, to node, v, if there is 
a trace entry for u followed by a trace entry for v. This allows the model1

Web 
Page 

 to become a 
bridge between the flow of changes that a developer can see directly in the browser, 
and the implementation which is causing those changes.  

Using the DMG as a bridge is effective because the implementation-level 
statements which can cause visual changes to the UI in standards-compliant Web 
applications are limited to a standard set of HTML/CSS attributes and DOM 
operations. Thus we are able to capture, and focus on, just these attributes and 
operations. If implementation code was non-standardized or able to directly draw to 
the browser window using pixel-level operations, such a mapping would be much 
more difficult or even impossible to create.  

4   JavaScr ipt Metr ics  

In order to better understand if our approach is truly motivated by the complexity of 
today’s JavaScript implementations for several existing Web applications, we 
gathered metrics from JPS and several popular Web sites. These measurements were 
taken using Mozilla Firefox 3.0.3 for Microsoft Windows.  

 
 

# of 
Files 

Total 
Lines 

Context  
(see caption) 

Memory 
(MB) 

Petstore 3 1,232 2.2  (1.6)   /118 36 / 38 
eBay 4 19,682 1.5  (.84)   /43 40 / 44 
Facebook 7 37,310 1.7  (1.3)   /485 68 / 72 
Yahoo 1 10,218 2.3  (1.4)   /164 42 / 43 
Amazon 4 5,903 2.0  (.95)   /91 45 / 46 
Priceline 9 11,667 3.5  (1.8)   /73 38 / 40 

Table 1: (# of Files) lists the number of JavaScript files downloaded for each page and (Total 
Lines) is the sum of their file line counts (in some cases the code is obfuscated so we cannot 
give an accurate estimate of non-commented lines of code). (Context) lists the average number 
of distinct contexts which a mutator statement was executed in (standard deviation in 
parentheses) / and the total number of DOM mutator statements executed for the page after the 
slash. (Memory) is the original memory used by Firefox for page execution / with the memory 
used for our instrumented page after the slash.   
 
 

Table 1 shows four columns of metrics for each page. The second column, number 
of files, counts the JavaScript files which were referenced by the page. The total lines, 
column three, is the sum of the files sizes (in terms of lines) for those files.  

                                                           
1 To generate the visual appearance of the model, we use a GraphViz-based extension for 

Firefox. 



The column labeled Context describes information about the DOM mutator 
statements which were executed. The first number lists the average number of distinct 
calling contexts in which a statement executed. For example, considering the Petstore, 
each assignment statement to a DOM attribute was executed in 2.2 different contexts 
on average. The second number shows the standard deviation. The third number lists 
the total number of DOM mutator statements executed for the page. 

The final column lists the memory usage of Firefox with a page loaded, after 
having its UI exercised; first without our tool in use and second with our tool being 
used. Memory consumption is discussed further in Section 4.2.   

For JPS we use the Catalog Browser which has already been described in detail. 
The eBay page is a simple list of results for searching auctions related to “iPods”.  
The FaceBook page is the default “Profile” page for a new Facebook user. For Yahoo, 
Amazon, and Priceline, we used the default homepages.  

We took the metrics by triggering a measurement function injected into the code. 
Since these metrics measure properties of the JavaScript execution, we needed to 
exercise the UI of the page before taking measurements. We did this by simply 
manually manipulating any part of the UI which did not cause the page to be changed 
(hence losing the script state for the page).  

4.1 Discussion  

By looking at the results for the Context metrics, we see for which pages our 
calling context capture could be useful. Here we see that these pages either: 
frequently execute mutators in more than one context and/or execute some mutators 
in many different contexts.  

In general, we see that it was common for a mutator of a DOM node to be used in 
more than one context. At first this could seem unintuitive because even most 
interactive Web pages tend to have a large amount of static content. However, this 
makes sense since we are only including mutations made in the JavaScript code and 
not any HTML attributes which are set in the static HTML or HTML generated by the 
server. If some attribute was going to be set only one time and never mutated, it 
would make sense that the developer chose to generate the value on the server. Thus 
for JavaScript execution, the reuse of code from different contexts appears to be 
prominent for these pages.  
     Developers working on a particular Web page without the help of a model, will 
need to create a mental map which connects an element of the Web page to a 
particular location in code. This would currently be done in an ad-hoc fashion. Two 
possible examples are as follows.   

First, a developer could scan the code to identify relevant code. From the # of files 
and total LOC in Table 1, we believe that this approach is not scalable. There is 
simply too much code to consider across the files.  

Second, a developer could associate an identifier such as a JavaScript function 
name or file with each element of the Web page. For example, they might use a 
particular file for all “information pane” functions. In this way, when they want to 
work on some code related to a particular element, they could use a text-based search 
to find the relevant code. However this one-to-one mapping does not appear scalable 



in light of the Context metrics from Table 1, because a distinct page element may be 
associated with code reused by several elements or for different purposes. Next, in 
Section 5 we turn to an example in our JPS case-study to demonstrate how our 
approach could be leveraged to deal with these problems.  

4.2 Per formance Considerations 

Since our tool collects a history trace of DOM mutations, we wanted to determine 
how much memory overhead was used for the example Web pages in Table 1. These 
measurements are listed in last column. Here we see that the amount of memory used 
was never more than 4MB. Since we only exercised the parts of the UI that were 
obvious to us, it is possible we had missed some button, menu, or other widget that 
was not clearly marked. Still, since the amount of memory used was small relative to 
that in today’s desktop machines, we did not consider this to be a large issue.  

Certainly the memory used will depend on the code for the page itself. For 
example, looking back at Fig. 4, we see that the history for expanding and deflating 
one accordion bar, one time, required 16 trace entries. If JPS was programmed 
differently, this number could certainly increase but we believe that JPS and the 
example pages in Table 1 are a fair representation of UI programming practices for 
many of today’s Web applications.  

We have used our tool extensively in the exploration of JPS and also as part of 
collecting the measurements for Table 1. Using the tool we did not notice any 
perceptible slow down caused by the run-time tracing while interacting with the page.  

5   Catalog Browser  Example 

In order for us to be able to describe some details of our study in depth, we choose to 
focus on the “Information Pane” (B) and “Collapse Button” (C) on the Catalog 
Browser page of JPS in Fig. 1. 

In this section, we will first introduce the behavior of this information pane and 
collapse button at a high level. Then, we will give a more low level description from 
the developer’s perspective. Finally, we describe the model that is generated by using 
our approach to bridge these two different perspectives. A developer can use this 
model as linked from the browser view, to quickly get into the script programming 
details.   

The information pane (B) describes the detail information for a selected pet (e.g. 
name, description and rating). This widget is mapped to a div element in the DOM. 
In Fig 1., the information pane appears raised, partially obscuring a pet image. When 
the pane is lowered, it appears to slide behind the scrollbar (positioned beneath it). 
This animation is performed by mutating clip, height, and top attributes in 
coordination.  

The collapse button (C) controls the raising and lowering of the information pane. 
It is an img element in the DOM. There are two places in JavaScript which set the 
src attribute. The collapse button’s icon is changed to a down arrow when the 



information pane becomes fully raised and changed to an up arrow when the 
information pane becomes fully lowered.  
 
 

DOM Mutator  Context Trace Values  
height0 [75px…177px] 

top0 [452px…350px] 
clip0 [75px…177px] 
src0 up-to-down.gif 

height1 [177px…75px] 
top1 [350px…452px] 
clip1 [177px…75px] 
src1 down-to-up.gif 

 
Table. 2. The various contexts in which attributes of the information pane and collapse button 
are mutated. The trace information of value changes associated which each context are shown 
in the second column (some are elided for illustration). Note that as is common, the coordinate 
for top is measured as the pixel distance from the top of the screen, hence it is decreasing. The 
clip value actually includes four coordinates but only one changes in this example so the others 
are elided.  
 

 
Table 2 summarizes the three mutated attributes of the information pane and one 

attribute of the collapse button. Each attribute is mutated in two contexts, which 
correspond to each of the nodes in Fig. 6. The figure encapsulates changes made to 
multiple attributes of multiple DOM nodes, to show the flow of execution which was 
monitored.  

From Fig. 6, we can see that the two sets of nodes related to the information pane 
(at the top and bottom of the figure) are separated by the nodes related to the button 
icon, which reflects the raising and lowering of the information pane. For each set of 
information pane attributes, the mutation of the three different attributes, height, 
top, clip have been executed continuously in an event-loop, shown by the 
recursive edges out of clip0 and clip1.  

By examining the trace of values captured for different DMG nodes we can 
observe the changes which occur to create the raising and lowering effect. For 
example, by looking at the entry in Table 2 for height0. Here we see the height 
increases. Without examining the source code, we can already tell that this context is 
responsible for raising the information pane.  

After discerning this information, then by an understanding of the information 
pane and collapse button behavior from the browser view, and examining the 
topology of the flow relationships between the DMG nodes, we can plainly determine 
that src0 is the context responsible for setting the image of the down arrow; top0 
and clip0 must then be responsible for part of the information pane raising effect; 
so then, height1, top1, and clip1 must be responsible for the lowering effect; 
and finally we can surmise that src1 changes the down arrow to up arrow. Now, we 



can link to the code associated with any of the DMG nodes we are interested in for 
performing any changes during maintenance or debugging.  

   
 

 
 

Fig. 6. The flow of the information pane and collapse button presented as a DMG; each node 
corresponds to the entries from Table 2.  

6 Related Work 

JavaScr ipt Programming Tools  
Due to the popularity of Ajax based applications, there is an increasing demand for 
JavaScript programming tools. One representative tool for developing Ajax 
applications is the Firebug [13] extension for the Mozilla Firefox browser. Using 
Firebug, a developer can simply click on a rendered element in the browser and be 
hyperlinked to an expanded tree-view of the corresponding DOM element. Now, a 
developer can inspect the low-level attributes of that specific DOM object and also 
understand its context relative to its ancestor and children objects.  

Although this practice is useful, Firebug still does not provide any help for the 
developer to understand the connection between a DOM node and the JavaScript 
which acts on the DOM. Essentially, our research addresses this mapping between the 
DOM and JavaScript which is not addressed in existing practice.   
 
GUI Maintenance   
In [11],  McMaster et al. present how to use calling context information collected 
during a GUI program’s execution to solve the GUI test suite reduction problem (i.e. 
finding a minimal satisfactory test set). Their research considers two GUI test cases to 
be equivalent if they generate the same set of call stacks after execution. This new 
call-stack coverage criterion can be used to address the challenges for GUI-intensive 
applications, which are difficult to be handled by some other criteria such as 
statement or branch coverage. Similar with their research, we also use calling context 
to distinguish two artifacts. However, our research is used to resolve the ambiguity of 



the different UI changes instead of GUI test cases, for example, accordion row 
expanding and deflation.  

In [17], Michail introduced a tool to provide GUI-guided browsing of source. Their 
objective was to allow developers to find where in the code a feature was 
implemented, based on how code was related to the GUI. For example, to find “spell 
checking” code, they could locate the code which executed when the spell checking 
menu was selected. Similar to our approach, they use a GUI as an entry-point into the 
lower-level implementation details. However, they user the GUI to understand its 
relation to other program features and not the GUI implementation itself. 
 
Model-Based Approaches  
Several projects looked into the possibility of recovering a high-level architecture for 
a Web application from its implementation [4, 12]. In [4], Hassan and Holt describe a 
set of semi-automated tools that parse the source code and binaries of Web 
applications and extract relations between the different components to create a model. 
Their model helps Web developers to understand the high level architecture of 
traditional HTML and server-side template based Web applications.  

Using a finite state machine model to present GUI behavior has been studied in [7]. 
Their paper describes a Java toolkit called SwingStates which is used to assist in the 
development of GUIs for non-expert developers. The novel part of their research is 
that they use finite-state machines to describe the behavior of interactive UI systems. 
However, their research is concerned about how to create a user interface instead of 
reversing engineering from an existing UI.     

In [8], Shehady and Siewiorek introduced how to use a Variable Finite State 
Machine (VFSM) interface model to present the behavior of the user interface. Each 
node in the VFSM is the state of the GUI, and an edge represents the possible events 
that can be triggered in that state. This model is useful for determining the flow of 
user-triggered events which change the state of the GUI. In contrast, our model is 
useful for mapping the live DOM nodes which make up the GUI to implementation-
level statements.  

Ali et al. introduces a tool called CrawlJax in [14]. Their research uses a dynamic 
approach to crawl Ajax based applications by triggering the event handlers in the 
code. After crawling, a state-flow graph is constructed. In this graph, each node 
represents the snapshot of the DOM tree for a Web UI after some event handler is 
triggered; each edge in the state-flow graph represents the clickable elements that 
transform one state to another state. This state-flow graph can be used to provide 
automated testing of Ajax applications. Similar to the research in the previous 
paragraph, their research is not concerned with providing a mapping for a 
programmer to the implementation level details of the UI.  

 
 

7 Conclusion 

In this paper we have studied the problem of JavaScript implementation complexity 
for interactive Web UI. These details of the UI are easy to understand from the 
perspective of the Web browser view but can be hard to map to the related code. We 
proposed an approach which leverages execution history and calling context so that 



developers can explore the code from the browser view. The DMG model was 
introduced to present the obtained history and context information to developers for a 
better understanding of the behavior of the UI. We presented some script complexity 
metrics for popular Web sites to further motivate the need for our interactive script 
development approach. We found that many of the sites that we measured included 
significant complexity based on the number of calling contexts for a given statement.  
To demonstrate how the DMG could help, we presented examples from the open-
source Java Pet Store Ajax application.  
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