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Abstract. A set S of k points in the plane is a universal point subset for a class
G of planar graphs if every graph belonging to G admits a planar straight-line
drawing such that k of its vertices are represented by the points of S. In this
paper we study the following main problem: For a given class of graphs, what
is the maximum k such that there exists a universal point subset of size k? We
provide a d

√
n e lower bound on k for the class of planar graphs with n ver-

tices. In addition, we consider the value F (n,G) such that every set of F (n,G)
points in general position is a universal subset for all graphs with n vertices be-
longing to the family G, and we establish upper and lower bounds for F (n,G)
for different families of planar graphs, including 4-connected planar graphs and
nested-triangles graphs.

1 Introduction

A classic result in graph theory states that every planar graph G = (V,E) can be drawn
without crossings on the plane using some set S of points as vertices, and straight-line
segments with endpoints in S to represent the edges [7, 16, 21]. However, not every set
S with n = |S| = |V | is suitable for such a representation; for example, the drawing
is impossible if G is a maximal planar graph with n > 3 vertices and S is in convex
position, because in this case |E| = 3n − 6 while at most 2n − 3 segments can be
drawn between points of S without crossings. In fact, Cabello [4] proved that deciding
whether there is a planar straight-line drawing of G = (V,E) using a point set S with
|S| = |V | is an NP-complete problem.

As the number of combinatorially different sets of n points is finite [8], it is obvious
that there exist some adequate yet huge sets of points U , such that given any planar
graph G with n vertices, some n-subset of U admits a planar straight-line drawing of
G. The challenge though, is to find sets U with that property, yet as small as possible.
We define next this problem more precisely.

A set U of k points in the plane is a universal point set if every planar graph with n
vertices admits a planar straight-line drawing whose vertices are a subset of the points
of U . From the literature it is known that if U is a universal point set for planar graphs



then 1.235n ≤ |U | ≤ 8n2/9. Indeed, Kurowski [10] proved that the size of U requires
at least 1.235n points, while de Fraysseix, Pach, and Pollack [5], Schnyder [15] and
Brandenburg [3] showed that a O(n)×O(n) grid of points is a universal point set.

This topic has been a very active area of research since it was introduced, and several
variations have been considered. For example, one can restrict the family of graphs to
be represented. In this sense, Gritzman, Mohar, Pach and Pollack [9] proved that every
set of n distinct points in the plane in general position (no three collinear) is universal
for the class of outerplanar graphs with n vertices.

In this paper we introduce and study the notion of a universal point subset. A set S
of k points is a universal point subset for a class G of planar graphs if every graph in G
admits a planar straight-line drawing such that k of its vertices are represented by the
points of S.

In Section 2 we prove that a particular, very flat convex chain of d
√
n e points is a

universal point subset for all (maximal) planar graphs with n vertices.
For a certain subfamily of 4-connected planar graphs we have been able to obtain

a bound that is stronger in a particular sense, namely that every set of d lgn4 e points
in general position is a universal point subset for all the graphs with n vertices in this
family. Inspired by this result, we consider in Section 3 the value F (n,G) such that
every set of F (n,G) points in general position is a universal subset for the planar graphs
with n vertices belonging to G. It is trivial to prove that every set of 1, 2, or 3 points in
general position is a universal point subset for every planar graph and every value of n
(Tutte’s algorithm [19, 20]). On the other hand there exists a set of 4 points in general
position that is not a universal point subset for planar graphs having n = 5 vertices.

We show lower and upper bounds forF (n,G) for different families of planar graphs.
In particular, we show that every set of 4 points in general position is a universal point
subset for all planar graphs with at least 6 vertices and, on the other hand, we show that
there exists a set of 2bn3 c + 2 points in convex position that is not a universal subset
for the class of planar graphs. In other words, we prove that 4 ≤ F (n,G) ≤ 2bn3 c+ 1,
for all n ≥ 6, when G is the class of all planar graphs. In addition, we improve the
lower bound and the upper bound for some subfamilies of planar graphs; specifically,
we study the case that G is the class of 4-connected planar graphs whose outer face is a
quadrilateral, and the case that G is the class of nested-triangles graphs.

We conclude in Section 4 with some remarks and open problems. In that section
we also briefly discuss the relationships between our results and the related allocation
problem that has been the subject of recent studies (see, e.g. [11, 13]).

Definitions and Notation

Point sets. A set S of points is in general position if no three points are collinear. The
convex hull CH(S) of S is the point set obtained as a convex combination of the points
of S. If no point is in the convex hull of the others, then S is in convex position. A set S
in convex position is one-sided if it can be rotated in such a way that the leftmost and
rightmost points are consecutive in the convex hull.

Graphs. We denote by (u, v) both an undirected and a directed edge, in the latter case
meaning the edge is directed from u to v. Also, we use the term triangle to denote
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both a 3-cycle and its drawing. A graph G = (V,E) is planar if it has a drawing Γ
without edge crossings. Drawing Γ splits the plane into connected regions called faces;
the unbounded region is the outer face and the other faces are the internal faces. The
cyclic ordering of edges around each vertex of Γ together with a choice of the outer face
is a planar embedding of G. A plane graph is a graph with a fixed planar embedding.
A planar (plane) graph is maximal if each face of the graph is a triangle, thus no edge
can be added to it without violating planarity. A graph G is k-connected if it does not
contain a set of k − 1 vertices whose removal disconnects it.

Let G = (V,E) be a maximal plane graph with outer face (v1, v2, vn). A canonical
ordering [5] of G is an order σ = (v1, v2, v3, . . . , vn) of its vertices satisfying the
following properties: (1) The subgraphGi−1 induced by v1, v2, . . . , vi−1 is 2-connected
and the boundary of the outer face of Gi−1 is a cycle Ci−1 containing edge (v1, v2);
(2) vertex vi is in the outer face of Gi and its neighbors in Gi−1 form a (non-trivial)
subpath of path Ci−1 − (v1, v2).

Let G be a planar graph with a planar drawing Γ . Let t1 and t2 be two disjoint
triangles of G. We say that t2 is nested in t1, and write t2 < t1, if t2 is in the bounded
region of the plane delimited by t1. A nested-triangles graph G with n vertices (n is
a multiple of 3) is a 3-connected graph admitting a planar drawing Γ in which n/3
disjoint triangles t1, t2, . . . , tn/3 exist such that t1 > t2 > · · · > tn/3.

2 A Universal Point Subset for Planar Graphs

In this section we provide a universal point subset of size d
√
n e for (maximal) planar

graphs with n vertices. Note that considering maximal planar graphs is not a limitation,
since any planar graph is a subgraph of a maximal planar graph.

Let G be a maximal planar graph with n vertices. Let σ = (v1, v2, . . . , vn) be a
canonical ordering of the vertices of G for some planar embedding of G. Let Gi be the
subgraph of G induced by the first i vertices in σ and let Ci be the outer face of Gi.
Bose et al. [2] define the frame Gσ of G with respect to σ to be a directed subgraph of
G with edges: (v1, v2) and, for every vi (i ≥ 3), (va(i), vi) and (vi, vb(i)) where va(i) is
the first and vb(i) the last vertex that are adjacent to vi on path Ci−1 − (v1, v2).

Let <σ be the partial order on the vertices of G where u <σ v if and only if Gσ

contains a path from u to v. Notice that va(i) is the smallest vertex and vb(i) is the largest
vertex according to <σ that are adjacent to vi in G and precede vi in σ. A sequence of
numbers (x1, x2, . . . , xn) obeys the partial order <σ if xa < xb for all va <σ vb.

Lemma 1. Given a canonical ordering σ = (v1, v2, . . . , vn) of the vertices of a max-
imal planar graph G and a sequence of x-coordinates (x1, x2, . . . , xn) that obeys the
partial order <σ with xi ∈ [1, n], for any sequence of y-coordinates (y1, y2, . . . , yn)
satisfying y1 = y2 = 0 and yi > n−1

∆ yi−1 for i ≥ 3, where 0 < ∆ ≤ minva<σvb xb −
xa, the drawing of G with vi at point (xi, yi) for all i ∈ [n] is a plane drawing.

Proof: Suppose that the drawing of Gi−1 with vj at point (xj , yj) for j ∈ [i − 1] is a
plane drawing, and furthermore that Ci−1 is an x-monotone chain. Clearly, this holds
for i− 1 = 2. If the vertex vi at point (xi, yi) lies in the intersection of the half-planes
above the lines defined by consecutive vertices on the chain, then vi can connect to any
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subsequence of chain vertices without intersecting the drawing ofGi−1. By adding vi at
(xi, yi), we obtain a plane drawing of Gi since (v1, v2, . . . , vn) is a canonical ordering.
Since the sequence (x1, x2, . . . , xn) obeys the partial order <σ , Ci is x-monotone.

It remains to show that (xi, yi) is above the lines through every pair of adjacent
vertices in Ci−1. Let va precede vb on the chain Ci−1. Since va <σ vb, xa < xb.
The point (xi, yi) lies above the line through (xa, ya) and (xb, yb) if yi(xb − xa) >
ya(xb − xi) + yb(xi − xa). By choosing yi > n−1

∆ yi−1 this inequality holds for any
xi ∈ [1, n], since xb − xa ≥ ∆, ya, yb ≤ yi−1, and xa, xb ∈ [1, n].

Let Uk = {((2n)−ni, (2n)ni) | i ∈ [k]} be a nearly vertical set of k points in convex
position. Observe that Uk is a one-sided convex set.

Lemma 2. If a maximal planar graph G has a canonical ordering σ so that <σ has an
anti-chain of size k, then G admits a planar straight-line drawing with k of its vertices
placed on Uk.

Proof: Let v1, v2, . . . , vn be the vertices of G in canonical order σ. Let A = {vi1 ,
vi2 , . . . , vik} be an anti-chain in <σ with i1 < i2 < · · · < ik. Note that i1 > 2
(unless k = 1) since v1 and v2 cannot be part of an anti-chain of size greater than one:
v1 <σ v for all v 6= v1 and v <σ v2 for all v 6= v2. Let S be the set of vertices
less than (according to <σ) some vertex in A. We create a sequence of x-coordinates
(x1, x2, . . . , xn) that obeys the partial order <σ with each xi an integer in [1, n] for
vi 6∈ A and xij = |S| + 1 + (2n)−nj for all j ∈ [k]. This is easy to achieve using a
topological sort of S and a topological sort of V \ (S ∪A).

We create a sequence of y-coordinates (y1, y2, . . . , yn) with y1 = y2 = 0 and
yi = (2n)jn+(i−ij) for ij ≤ i < ij+1 where, for convenience, we have assumed i0 = 1
and ik+1 = n + 1. This assigns the jth vertex in the anti-chain a y-coordinate of the
form (2n)jn, and it assigns vertices not in the anti-chain, that are between the jth and
(j+1)th anti-chain vertices (in the canonical ordering σ), y-coordinates between (2n)jn

and (2n)(j+1)n. Since no two vertices in A are related by <σ , the minimum of xb − xa
for va <σ vb is at least 1 − (2n)−n > 1/2 = ∆. Thus the sequence (y1, y2, . . . , yn)
satisfies the conditions of Lemma 1. By that lemma, there is a plane drawing of G with
these x- and y-coordinates. Shifting this drawing by−|S|−1 in the x-coordinate places
the anti-chain A on the points Uk.

Lemma 3. Let π be a maximal chain of <σ . Then, the subgraph of G induced by the
vertices of π is outerplanar.

Proof: Since π is a maximal chain, it corresponds to a directed path, P , in Gσ from v1
to v2. Let C be the undirected cycle in G composed of P and the edge (v1, v2). We
prove that all the chords of C in G lie inside it with respect to the embedding used to
derive the canonical ordering σ. Assume, for a contradiction, that C has a chord (u, v)
outside C, where u occurs before v on P . Let P ′ = (u,w, . . . , z, v) be the subpath of
P from u to v. Suppose that u precedes v in σ. Since (u, v) is an outside chord, the
vertices in P ′−v precede v in σ. However, the fact that both u and z precede v in σ and
u <σ z contradicts the fact that (z, v) is an edge of Gσ . Indeed, Gσ contains only one
directed edge to v from a vertex that precedes v in σ. The edge is from the first vertex
in <σ among the neighbors of v in G that precede v in σ. Since u <σ z and since u
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Fig. 1. (a) A maximal planar graph G. The edges of Gσ are directed and black, while edges not
in Gσ are gray. π = (v1, v9, v8, v4, v2) is a maximal chain of <σ . (b) A drawing of the subgraph
G(π) of G on a one-sided convex point set. (c) Extending the drawing of G(π). (d) The final
drawing after filling in the faces of G(π).

precedes v in σ, vertex z cannot be the first neighbor. Hence, edge (z, v) cannot be in
Gσ . Similarly, if v precedes u in σ, both v and w precede u, and w <σ v contradicts
the fact that (u,w) is an edge of Gσ .

Lemma 4. If a maximal planar graph G has a canonical ordering σ such that <σ has
a maximal chain π of size k, then G admits a planar straight-line drawing with k of its
vertices placed on any one-sided convex set of size k.

Proof: Consider any one-sided convex point set P of size k. Assume, without loss
of generality up to a rotation of the coordinate system, that such points are ordered
based on their x-coordinate and that the leftmost and the rightmost points are also the
bottommost ones. By Lemma 3, the subgraph G(π) of G induced by the vertices of π
is outerplanar. Hence, such a subgraph can be drawn [1] on the points of P in such a
way that the vertices of π are assigned increasing x-coordinates according to the order
they appear on π. Figure 1(a) illustrates a maximal planar graph G, together with the
frame Gσ associated with a partial order <σ of G. Figure 1(b) illustrates a drawing of
the subgraph G(π) of G on a one-sided convex point set.

Further, consider the planar graph G′ obtained from G by removing every vertex
that is internal to some face ofG(π). SinceG(π) is outerplanar, there exists a canonical
ordering σ′ of the vertices of G′ such that the k vertices of G(π) appear in the first k
positions of σ′, that is, G(π) = G′k. Since the drawing of G(π) = G′k obtained by
placing its vertices on P is such that C ′k is an x-monotone chain, such a drawing can
be extended to a planar drawing of G′ by applying an algorithm that is analogous to the
one given by de Fraysseix, et al. [5] to construct polynomial area drawings of planar
graphs. Namely, place each vertex v′j of G′, with j > k, in such a way that G′j is an
x-monotone chain. Note that this is always possible, since vertices v′j , with j > k, do
not need to be placed on prescribed points (neither a point of the prescribed point set
nor an integer grid point, as it happens in [5]). See Fig. 1(c).
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Finally, for each face f ofG(π), consider the subgraphGf ofG induced by the ver-
tices of f and by the vertices that are internal to f . Then, apply Tutte’s algorithm [19,
20] to construct a planar drawing Γf ofGf such that the outer face ofGf is represented
in Γf by the polygon delimiting f in the drawing of G(π) obtained by placing its ver-
tices on P . Again, such a drawing can always be constructed since the internal vertices
of Gf do not need to be placed on prescribed points. The final drawing of the graph in
Fig. 1(a) is depicted in Fig. 1(d).

The following theorem follows from Lemmas 2 and 4.

Theorem 1. There exists a set of d
√
n e points that is a universal point subset for

planar graphs with n vertices.

Proof: Let H be any planar graph. By adding edges to H , we obtain a maximal planar
graphG. Let σ be a canonical ordering ofG for some planar embedding ofG. LetGσ be
a frame of G and let <σ be the corresponding partial order. By Dilworth’s theorem [6],
there exists in <σ either a chain of d

√
n e vertices or an anti-chain of d

√
n e vertices.

In either case, by Lemma 2 or 4, G admits an embedding preserving planar straight-
line drawing with k = d

√
n e of its vertices placed on the points of the one-sided

convex point set Uk = {((2n)−ni, (2n)ni) | i ∈ [k]}. Removing the added edges gives
a drawing of H .

3 Universalizing the Size of Universal Point Subsets

Let G be a class of planar graphs. We define F (n,G) as the maximum value such that
every set of F (n,G) points in general position is a universal point subset for the graphs
in G with n vertices. When G coincides with the class of all planar graphs, we simply
denote this value by F (n). In this section we give lower and upper bounds for F (n,G)
for some classes of planar graphs.

3.1 Planar graphs

When G coincides with the class of all planar graphs, we show thatF (5) = 3,F (6) = 4,
and 4 ≤ F (n) ≤ 2bn3 c+ 1 for all the other values of n.

First observe that there exists a set of 4 points in general position that is not a
universal point subset for planar graphs with n = 5 vertices. Indeed, consider the set S
of 4 points at the corners of a unit square. The claim follows from the fact that the outer
face of every maximal planar graph with 5 vertices can use at most one point of S, as
otherwise it could not contain all the remaining points of S in its interior. This, together
with the fact that, by Tutte’s theorem [19, 20], every set of 3 points in general position
is a universal point subset for planar graphs, implies that F (5) = 3. Then, we consider
planar graphs with n = 6. Again, with the same argument as the one used for n = 5,
we can prove that a set of 5 points composed of the corners of a regular pentagon is not
a universal point subset for all planar graphs of size 6, which means F (6) ≤ 4. In the
following lemma we prove that also this bound is tight (that is, F (6) = 4). First, we
observe that all maximal planar graphs with six vertices are those depicted in Fig. 2(a-
d).
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Fig. 2. (a-d) All maximal six-vertex planar graphs. (e) The common structure used to draw them
on a set of four points in convex position. (f) The corresponding drawing of the graph in (a).

Lemma 5. F (6) = 4.

Proof: Let S be a set of 4 points in general position. If S is not in convex position, we
map the vertices of the outer face of G to the three points on the convex hull CH(S)
of S. For all cases of Fig. 2(a-d), the remaining vertices are drawn inside CH(S), by
using the fourth point of S to place one of them.

If the points of S are in convex position, let s1, s2, s3, and s4 be the points of
CH(S) in clockwise order. Let s5 and s6 be points not in S so that triangle s1s5s6
contains S \ {s1} in its interior; s5 sees s3, s4, s2, and s1 in clockwise order; and s6
sees s3, s4, s2, and s1 in counterclockwise order. It is straightforward to confirm that
such points exist since S is in convex position. Add segments s1s2, s2s4, s4s3, s5s6,
s5s3, s5s2, s5s1, s6s3, s6s4, and s6s1. See Fig. 2(e). For each case of Fig. 2(a-d), we
map the outer vertices of G to the points s1, s5, s6, we map the internal vertices of G
to the points s2, s3, s4 and we insert the remaining edges of G. As an example, the
drawing of the graph in Fig. 2(a) is shown in Fig. 2(f).

Finally, we consider the general case, namely planar graphs with n > 6 vertices. We
first observe that, by using an argument similar to the one used to prove F (5) ≤ 3 and
F (6) ≤ 4, we can prove that F (n) ≤ n− 2. Indeed, a set of n− 1 points composed of
the corners of a regular (n−1)-gon is not a universal point subset for all maximal planar
graphs of size n, as at most one point in this point set can be used to place vertices of
the outer face. However, as shown in the following theorem, in the general case we can
prove a better upper bound. On the other hand, the lower bound of 4 is obtained by
extending the result for planar graphs with six vertices.

Theorem 2. If n > 6 then 4 ≤ F (n) ≤ 2bn3 c+ 1.

Proof: We first prove the lower bound. Let S be a set of 4 points in general position.
Consider a maximal planar graph G with n ≥ 6 vertices. The proof is by induction on
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the number of vertices of G. In the base case G has n = 6 vertices, and the statement
follows from Lemma 5. For n > 6, we can use Read’s algorithm [14] to produce a
straight-line drawing of G given a planar embedding of G. Let u be an internal ver-
tex of G and denote by N(u) the set of neighbors of u. We can have three cases: (i)
if deg(u) = 3, then remove u; (ii) if deg(u) = 4, then let v ∈ N(u) be a vertex
with exactly two neighbors in N(u): remove u and triangulate the quadrilateral face by
adding an edge (v, x) such that x ∈ N(u) and x /∈ N(v); (iii) if deg(u) = 5, then let
v ∈ N(u) be a vertex with exactly two neighbors in N(u): remove u and triangulate
the pentagonal face by adding two edges (v, x) and (v, y) such that x, y ∈ N(u) and
x, y /∈ N(v). Denote by G′ the reduced graph. Note that, by Euler’s formula, G always
contains a vertex of degree 3, 4, or 5. Moreover, G′ and G have the same outer face
and in all the above cases the neighbors of v in G′ that are neighbors of u in G occur
consecutively in clockwise order around v. Since G′ has n − 1 vertices and it is maxi-
mal planar, S is a universal point subset for G′ by induction. Let Γ ′ be an embedding
preserving drawing of G′ that uses the points of S. Consider the cycle C composed by
the vertices that were adjacent to u before its removal. Depending on deg(u), C can be
a triangle, a quadrilateral, or a pentagon. For each of these cases, by construction, there
exists a point p inside C sufficiently close to v on which we can draw u and obtain an
embedding preserving drawing of G [14].

Now we prove the upper bound. LetG contain a nested-triangles graph with 3bn3 c >
6 vertices and let S be a set of 2bn3 c + 2 points in convex position. Since there are
2bn3 c + 2 points and the number of nested triangles in G is bn3 c, there are at least two
triangles t1 and t2 of G that have all three vertices mapped on points of S. However,
since S is in convex position, t1 cannot include t2 and vice-versa.

3.2 4-connected planar graphs

Next, we consider the value of F (n,G) when G coincides with the class of 4-connected
planar graphs whose outer face is a 4-cycle. For this class we can prove a stronger lower
bound than for planar graphs, namely F (n,G) ≥ lgn

4 .

Theorem 3. Let G be the class of 4-connected planar graphs whose outer face has size
at least 4. Then, lgn

4 ≤ F (n,G) ≤ n− 2.

Proof: The upper bound comes analogously to F (n) ≤ n − 2 for planar graphs. In
fact, consider a 4-connected planar graph with n > 8 vertices and whose outer face is
a 4-cycle, and consider a point set S composed of the corners of a regular (n− 1)-gon.
Again, at least two points not in S have to be used to place the vertices of the outer face.

We prove the lower bound. Let S be any set of d lgn4 e points in general position. Let
G be an internally 4-connected plane graph with n vertices and outer face of size at least
4. Thomassen [17] showed thatG is the dual of a rectangular subdivision of a rectangle.
Tóth [18] showed that there exists a horizontal or vertical line (called a stabber) that
intersects at least lgn

4 rectangles in this rectangular subdivision. Find such a stabber
that intersects rectangles r1, r2, ..., rk (k ≥ lgn

4 ). Add points to S to create a set S′

of k points. Choose axes so that no two points of S′ have the same x-coordinate. Let
p1, p2, ..., pk be the points of S′ sorted by x-coordinate. Place the vertex corresponding
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to rectangle ri at pi for i ∈ [k]. So S′ supports the x-monotone drawing of a path in
G, and the vertices corresponding to p1 and pk lie on the outer face of G. This path
divides G into two subgraphs G1 and G2, one on each side of the path. So we can use
the construction by de Fraysseix, et al. [5] twice, once for G1 and once for G2.

3.3 Nested-triangles graphs

Finally, we consider the value of F (n,G) when G coincides with the class of nested-
triangles graphs. We prove that for this class F (n,G) ≥ n

3 , almost matching the upper
bound.

Theorem 4. Let G be the class of nested-triangles graphs. Then, n
3 ≤ F (n,G) ≤

2bn3 c+ 1.

Proof: The upper bound is the same proved in Theorem 2. As for the lower bound, let S
be any set of n3 points in general position and choose the coordinate axes in such a way
that no two points have the same y-coordinate. Let G be a nested-triangles graph with a
given planar embedding. Let v be a vertex of the triangle t representing the outer face of
G and let p be the point of S having the largest y-coordinate. Map v to p and represent
t as a triangle that encloses all remaining points of S. Remove the outer face of G and
repeat the argument on S \ {p}; at every step, the sides of the triangles that represent
the outer face are drawn parallel to one another in such a way that the inclusion of the
triangular faces is respected and no two edges cross.

4 Final Remarks and Open Problems

We remark that the results in this paper assume the points to be in general position.
This is coherent with most of the literature in combinatorial and computational geom-
etry, where geometric graphs (i.e. planar straight line drawings) are defined on point
sets in general position [12]. However, one might also consider point sets that allow
collinearities. In this scenario, some of our results should definitely be reformulated.
For example, it is easy to see that a point set of four collinear points cannot be a univer-
sal point subset for all maximal planar graphs with six vertices. For a class G of planar
graphs one could define F (n,G) as the maximum value such that every set of F (n,G)
distinct points, whether it contains collinearities or not, is a universal point subset for
the graphs in G with n vertices, and analogously define F (n) for planar graphs. Note
that, allowing collinearities makes it possible to relate the problem of determining the
value of F (n) with the allocation problem for planar graphs [11, 13]. In this problem,
the input is an n-vertex planar graph G and a point set X of size n, possibly with
collinearities, and the goal is to construct a planar drawing Γ of G such that as many
vertices ofG as possible are placed in Γ on points ofX . In particular, by exploiting this
relationship, a slightly sublinear upper bound can be proved for F (n) via a construction
from [13] that makes heavy use of collinear points.

We conclude with a few open problems that we find particularly interesting. (i) Nar-
row the gaps between the upper and lower bounds of Section 3. (ii) Prove/disprove
a sublinear upper bound for F (n) when points are in general position. (iii) Does the
limn→∞ F (n) = ∞ hold? (iv) Is there any universal subset for the set of all planar
graphs with n vertices that consists of more than d

√
n e points?
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