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On the Maximum Tolerable Noise of k-input Gates for
Reliable Computation by Formulas

William S. Evans Member, IEEE and Leonard J. Schulman

Abstract— We determine the precise threshold of component noise
below which formulas composed of odd degree components can reliably
compute all Boolean functions.

Index Terms— Computation by unreliable components, reliable com-
puting

I. INTRODUCTION

We consider a model of computation that was first proposed by von
Neumann in 1952 [1]: the noisy circuit. A noisy circuit is composed
of ε-noisy gates. An ε-noisy, k-input gate is designed to compute a
Boolean function of its k Boolean inputs; however, it has the property
that for any assignment to the inputs, there is probability ε that the
output of the gate is the complement of the designed value. In a noisy
circuit this event occurs independently at every gate of the circuit.

A circuit takes n Boolean values as input and produces one
Boolean output. The inputs to a gate in the circuit may be the outputs
of other gates in the circuit, inputs to the circuit, or the constants 0
or 1. The output of the circuit is the output of one of the gates called
the top gate.

The interconnection pattern does not allow “feedback.” That is, the
interconnection structure of the circuit is a directed, acyclic graph:
vertices of the graph correspond to gates, and a directed edge from
u to v corresponds to gate v taking as input the output of gate u. If,
in addition, the graph forms a tree (each vertex having one outgoing
edge) then we call the circuit a formula.

Clearly, a noisy circuit with ε > 0 cannot deterministically
compute a Boolean function f ; on any input there is probability at
least ε that the top gate will output the complement of f . (We assume
without loss of generality that ε ≤ 1/2.) The error probability of a
noisy circuit for a Boolean function f is the maximum over all inputs
of the probability that the circuit’s output differs from the value of the
function. If this maximum is at most δ then the circuit (1−δ)-reliably
computes the function.

Fixing k, we are interested in the maximum value of ε for which it
is possible to have reliable computation, which we define as: there is a
δ < 1/2 so that for every Boolean function there exists a noisy circuit
using arbitrary ε-noisy, k-input gates, that (1− δ)-reliably computes
the function. The word reliable in this context does not mean perfectly
accurate, but rather that the output of the noisy circuit is biased, by
a fixed amount, towards the correct output on every input.

The need for a limit on gate noise in order to achieve reliable
computation was first noticed by von Neumann, who showed that for
ε < 0.0073, reliable computation is possible using ε-noisy, 3-input
majority gates. His method was to interleave “computation levels”
of the circuit, i.e., levels that correspond to levels of the original
(noiseless) circuit, with “error-correction levels,” in which 3-input
majority gates combine the output of three separate copies of each
computation, in order to obtain an output that is more likely to be
correct than any single copy.

As von Neumann noted, this idea cannot lead to reliable computa-
tion if ε ≥ 1/6. Consider a particular 3-input majority gate. If each
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of its inputs is incorrect independently with probability a, then it in
turn will be incorrect with probability

(1 − ε)(a3 + 3a2(1 − a)) + ε((1 − a)3 + 3a(1 − a)2). (1)

If ε < 1/6 then this value can be smaller than a; this amplification is
necessary for von Neumann’s argument to work. However, if ε ≥ 1/6,
then for every a < 1/2, the error probability of the output is greater
than a, i.e., the output of the majority gate is less reliable than its
inputs, and von Neumann’s method fails.

This suggested to von Neumann that perhaps reliable computation
is not possible by ε-noisy, 3-input gates if ε ≥ 1/6. The first proof
that there is some ε < 1/2 for which reliable computation by noisy
components is impossible, came in 1988 from Pippenger’s work on
formula depth1 bounds [2]. He proved that if ε ≥ 1

2
− 1

2k
then reliable

computation by formulas is impossible using ε-noisy, k-input gates.
Soon after, Feder [3] extended this result to general circuits, proving
reliable computation by circuits is impossible if ε ≥ 1

2
− 1

2k
. Evans

and Schulman [4] improved this bound to ε ≥ 1
2
− 1

2
√

k
.

The above papers developed a certain information-theoretic tech-
nique, which yielded both the bounds cited, and lower bounds on
noisy circuit depth. However, in 1991, Hajek and Weller used a
completely different technique to prove a tight threshold for reliable
computation by formulas with noisy 3-input gates [5], showing that
ε < 1/6 allows reliable computation but ε ≥ 1/6 forbids it. In this
paper, we extend the work of Hajek and Weller to prove a tight
threshold for reliable computation by formulas using noisy k-input
gates (k odd). The main result of this paper is summarized in:

Theorem 1: For k odd and

βk =
1

2
− 2k−2

k
`k−1

k−1

2

´
, (2)

there exists δ < 1/2 such that all Boolean functions can be (1− δ)-
reliably computed by noisy formulas if and only if ε < βk. (Using
Stirling’s approximation, βk ≈ 1

2
−

√
π

2
√

2k
for large values of k.)

Figure 1 shows how this exact threshold compares to previous bounds
for reliable computation.
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Fig. 1. Bounds for reliable computation.

II. THRESHOLD VALUE

To calculate the threshold for reliable computation using k-input
gates, we start by generalizing von Neumann’s expression for the

1The depth of a circuit is the number of gates on the longest path from an
input of the circuit to its output.
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error probability of a 3-input majority gate (1). Let

mε,k(a) = (1 − ε)φk(bk/2c, a) + ε(1 − φk(bk/2c, a)) (3)

where

φk(l, a) =

l
X

i=0

 

k

i

!

(1 − a)iak−i.

The value mε,k(a) is the probability that an ε-noisy, k-input majority
gate is incorrect given that its inputs are incorrect independently with
probability a.

For k = 3, if ε ≥ 1/6 then mε,3(a) > a for all a ∈ [0, 1/2).
This is von Neumann’s observation that, if ε is large, the output of
a noisy, 3-input majority gate is less reliable than its inputs. In this
section, we generalize von Neumann’s observation to noisy, k-input
gates.

Lemma 1: For k odd,

1) if ε ≥ βk then mε,k(a) > a for all a ∈ [0, 1/2)
2) if ε < βk then there exists νε,k ∈ [0, 1/2) such that

mε,k(νε,k) = νε,k and

• if a < νε,k then mε,k(a) > a
• if a > νε,k then mε,k(a) < a

where βk is defined in (2).
See figure 2 for an example of mε,k when ε = βk and ε < βk (for
k = 3).
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Fig. 2. The error probability of an ε-noisy, 3-input majority gate as a function
of input error probability for ε = β3 and for ε < β3.

Proof: We first prove that for k odd, m0,k(a) ≤ a and
mβk,k(a) > a for a ∈ [0, 1/2). This and the linearity of mε,k(a) in
ε prove the first statement in the lemma.

m0,k(a) is the probability that the noiseless majority of k inputs
is incorrect given that each input is incorrect with probability a. To
show m0,k(a) ≤ a, we prove the inequality

m0,k(a) =

bk/2c
X

i=0

 

k

i

!

(1 − a)iak−i

≤ a
k
X

i=0

 

k

i

!

(1 − a)iak−i = a,

which for k odd is equivalent to

bk/2c
X

i=0

 

k

i

!

(1−a)iak−i ≤ a

bk/2c
X

i=0

 

k

i

!

((1−a)iak−i+(1−a)k−iai).

This inequality holds term by term since if a = 0, all terms are zero
and otherwise, dividing the ith term of the right-hand side by the ith
term on the left gives,

a

 

1 +

„

1 − a

a

«k−2i
!

≥ a

„

1 +
1 − a

a

«

= 1.

To prove mβk,k(a) > a for a ∈ [0, 1/2), write a = (1 − α)/2
and let

fk(ε, α) = mε,k((1 − α)/2) − 1 − α

2

(i.e., fk(ε, α) is the difference between the error probability of the
output and the error probability of the inputs). Since for k odd
fk(ε, 0) = 0 (in particular, fk(βk, 0) = 0), it suffices for the first
statement in the lemma to prove fk(βk, α) is an increasing function
of α ∈ (0, 1] (i.e. dfk(βk, α)/dα > 0),

dfk(ε, α)

dα
= 1/2 + (1 − 2ε)

d

dα
φk

„

bk/2c, 1 − α

2

«

. (4)

Since

d
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!

(1 − α2)bk/2c,

substituting into (4) yields,

dfk(ε, α)

dα
= 1/2 − (1 − 2ε)

k

2k

 

k − 1
k−1
2

!

(1 − α2)
k−1

2 . (5)

Setting ε = βk ,

dfk(βk, α)

dα
=

1

2
− (1 − α2)

k−1

2

2

which is positive for α ∈ (0, 1].
We now prove the second statement of the lemma. The second

derivative of fk(ε, α) is

d2fk(ε, α)

dα2
= (1 − 2ε)

k(k − 1)

2k

 

k − 1
k−1
2

!

α(1 − α2)
k−3
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which is nonnegative for all α ∈ [0, 1] and ε ∈ [0, 1/2]. Thus fk(ε, α)
is convex in α ∈ [0, 1]. Since fk(ε, 0) = 0 for k odd and fk(ε, 1) = ε,
the convexity of fk(ε, α) will imply the lemma if we can prove
dfk(ε, α)/dα < 0 at α = 0. By equation (5), for ε < βk,

dfk(ε, α)

dα
≤ 1

2
− (1 − α2)

k−1

2

2

with equality if and only if α = 1, and thus at α = 0, dfk(ε, α)/dα <
0.

III. NEGATIVE RESULT

Suppose we simply wish to “remember” an input bit for L
computation steps — that is, to design a noisy circuit of depth L
with one input x whose output is x with high probability. This is a
prerequisite for computing non-trivial functions of many variables. If
the computation components are ε-noisy, k-input gates, the obvious
method is to take the majority of k independent copies of the
best circuit for remembering the input bit for L − 1 steps. This
construction results in a depth L formula of majority gates that has
error probability m

(L)
ε,k (0) where m

(L)
ε,k is the L-fold composition of

mε,k. By lemma 1, if ε ≥ βk, this technique will not work for
arbitrarily large L. In fact, for k odd,

if ε ≥ βk then lim
L→∞

m
(L)
ε,k (0) = 1/2.

This is the intuitive reason why βk (which is derived from the
behavior of noisy, k-input majority gates) is the noise threshold for
computation using arbitrary noisy k-input gates.

To derive a precise statement from this intuition, we prove that if
ε ≥ βk then, for any fixed δ < 1/2, there are Boolean functions
that cannot be computed by formulas with error probability δ. In
particular, theorem 2 implies that for sufficiently large n, no function
that depends2 on n variables can be computed with error probability
δ.

Theorem 2: For k odd, if ε ≥ βk then any formula using ε-noisy,
k-input gates for computing a Boolean function that depends on at
least kL−1 + 1 variables errs with probability ≥ m

(L)
ε,k (0) on some

input.
Note that this implies reliable computation is impossible if ε ≥ βk

(since limL→∞ m
(L)
ε,k (0) = 1/2).

Proof: Let f be a Boolean function that depends on at least
kL−1 + 1 variables. Let F be a formula for f composed of ε-noisy,
k-input gates. Since f depends on kL−1 + 1 variables, there exists
some variable x that is an input only to gates at layers3 ≥ L in F .
Thus any path from the input x to the output of the formula must
pass through at least L gates. Fix the inputs other than x so that
either f = x or f = 1−x; without loss of generality say f = x. Let
Fx be the formula F after the inputs other than x have been fixed
as above.

Consider the two conditional probabilities P[Fx = 1|x = 0] and
P[Fx = 0|x = 1]. The maximum of these two quantities is a lower
bound on the error probability of F .

Following Hajek and Weller, one may view these conditional
probabilities geometrically as the point (P[Fx = 1|x = 0], P[Fx =
0|x = 1]) in the unit square. In general, if Y is a Boolean random
variable jointly distributed with x, let

λY = (λY
0 , λY

1 ) = (P[Y = 1|x = 0], P[Y = 0|x = 1]).

2A function depends on an argument x if there exists a setting of the other
arguments such that the function restricted to that setting is not a constant.

3The layer of a gate is the number of gates on the path from its input to
the output of the formula.

For example, the ε-noisy, k-input majority gate with all inputs
equal to x, produces an output Y described by the point λY =
(mε,k(0), mε,k(0)) = (ε, ε). In this case, the probability that Y
differs from x is ε.

The gate whose output is Fx (the top gate in the formula) does
not receive x directly as input. The value of x must pass through at
least L − 1 noisy gates to reach this top gate. Each gate adds noise
to the value of x, but the computation performed by the gate may
compensate for this noise.

We show that if ε ≥ βk then each gate cannot compensate for
the added noise. In fact, the space of points λY , describing possible
distributions at the gate’s output, contracts as we pass x through more
and more noisy gates. In particular, let S(a) be the convex hull of
the points {(0, 1), (1, 0), (a, a), (1−a, 1−a)}. We prove (lemma 2)
that if the inputs to an ε-noisy, k-input gate are described by points
in S(a), then the output must lie in S(mε,k(a)). See figure 3.

mε,k(a) 1 − mε,k(a) 10

0

(a, a)

mε,k(a)

1 − mε,k(a)

1
(1 − a, 1 − a)

Fig. 3. Contraction of S(a) (light gray) to S(mε,k(a)) (dark gray) caused
by one noisy gate.

Using this lemma, we prove by induction on L that the point
describing the output of Fx lies within S(m

(L)
ε,k (0)). This establishes

the theorem since any random variable Y whose point lies in S(a)
differs from x with probability at least a. Thus, the error probability
of Fx is at least m

(L)
ε,k (0).

For L = 1, the formula consists of at least one gate. The points
describing inputs to the top gate of the formula Fx lie within S(0)
(trivially) and thus, by lemma 2, the point describing the output lies
within S(mε,k(0)).

For L > 1, the formula consists of a top gate with at most k inputs.
Each of these inputs is either constant with respect to x or the output
of a formula in which x is an input to gates at layers ≥ L − 1. In
the first case, the point describing the input lies within S(a) for all
a. In the second, the point describing the input lies in S(m

(L−1)
ε,k (0))

by induction. Thus, by lemma 2, the point describing the output lies
within S(m

(L)
ε,k (0)).

IV. CONTRACTION OF S(a)

Lemma 2: If ε ≥ βk and λY1 , λY2 , ..., λYk ∈ S(a) with a ∈
[0, 1/2] then for all ε-noisy, k-input gates g with inputs Y1, Y2, ..., Yk

and output Y , λY ∈ S(mε,k(a)).
Proof: We will prove in lemmas 3 and 4 that we may assume

that λYi = (a, a) for all i and that g is an ε-noisy, k-input threshold
gate. A k-input threshold gate outputs 1 if and only if the number of
inputs equal to 1 is at least t. The threshold t is an integer between
0 and k inclusive.
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We prove that the output Y of the gate g has λY ∈ S(mε,k(a)).
By symmetry, we need only consider those threshold gates g with
threshold t ≥ dk/2e. We will prove that λY lies within the convex
hull of the vertices {(0, 1), (1/2, 1/2), (mε,k(a), mε,k(a))}. Since
t ≥ dk/2e, λY

0 ≤ λY
1 . Also, a ≤ 1− a implies λY

0 + λY
1 ≤ 1. Thus

we need only prove that,

λY
0 + mε,k(a)(λY

1 − λY
0 ) ≥ mε,k(a) (6)

when ε ≥ βk .
Let V be the pre-noise4 output of gate g. That is, λY

b = ε + (1 −
2ε)λV

b for b ∈ {0, 1}. Then (6) becomes,

λV
0 + mε,k(a)(λV

1 − λV
0 ) ≥ φk(bk/2c, a).

Since g is a k-input, threshold t gate, λV
0 = φk(k − t, a) and λV

1 =
φk(t− 1, a). Since ε ≥ βk implies mε,k(a) > a, it suffices to prove
λV

0 + a(λV
1 − λV

0 ) ≥ φk(bk/2c, a) or,

a(λV
1 − φk(bk/2c, a)) ≥ (1 − a)(φk(bk/2c, a) − λV

0 )

Substituting the values of φk(bk/2c, a), λV
0 , and λV

1 yields,5

a(φk(t−1, a)−φk(bk/2c, a)) ≥ (1−a)(φk(bk/2c, a)−φk(k−t, a))

After expanding each side as a summation, the inequality holds term
by term since a ∈ [0, 1/2] and i ≥ dk/2e imply a

`

k
i

´

(1−a)iak−i ≥
(1 − a)

`

k
k−i

´

(1 − a)k−iai.

V. REDUCTION LEMMAS

The above proof relies on two lemmas that are rather straightfor-
ward extensions of similar lemmas for k = 3 given by Hajek and
Weller [5].

An ε-noisy, k-input gate g takes as input Y1, . . . , Yk, described
by points λY1 , . . . , λYk , and outputs Y described by λY . Thus the
gate g defines a mapping g : [0, 1]2k → [0, 1]2. Lemma 2 states
that if ε ≥ βk then the union over all g of g(S(a)k) is contained in
S(mε,k(a)). The purpose of the following two lemmas is to show
that it suffices to prove that the union over all threshold gates g
of g((a, a)k) is contained in S(mε,k(a)). (Note: (a, a)k is the point
(a, a), (a, a), ..., (a, a) in [0, 1]2k .) The method is to show that the set
of image points has the same convex hull in both cases. Thus, since
S(mε,k(a)) is convex, showing containment of either set implies
containment of the other.

Lemma 3: If C is the convex hull of the union over all g of
g(S(a)k) and Ca is the convex hull of the union over all g of
g((a, a)k) then

C = Ca

Proof: The mapping from S(a)k to [0, 1]2 defined by g is
affine, [0, 1]2 → [0, 1]2, in each λYi when the others are fixed.
Thus the image of S(a)k is contained in the convex hull of the
image of the set of vertices of S(a)k. Each vertex is of the form
(λY1 , λY2 , ..., λYk ) with λYi ∈ {(1, 0), (0, 1), (a, a), (1−a, 1−a)}.
If λYi ∈ {(1, 0), (0, 1)} then the same value of λY can be obtained
with λYi = (a, a) by modifying the gate g to ignore the value of Yi.
Similarly, if λYi = (1− a, 1− a) then the same value of λY can be
obtained with λYi = (a, a) by modifying the gate g to negate input
Yi. The lemma follows.

4An ε-noisy gate computes a Boolean function of its inputs that is then
complemented with probability ε to become the gate’s output. The value
computed by the gate prior to the probabilistic change is the gate’s pre-noise
output.

5If t = dk/2e both sides of the inequality are zero.

Lemma 4: If Ca is the convex hull of the union over all g of
g((a, a)k) and Ca,t is the convex hull of the union over threshold
gates g of g((a, a)k) then

Ca = Ca,t

Proof: Note that λYi = (a, a) for all i. To establish the lemma,
it suffices to prove that for any constants r and s, rλY

0 + sλY
1 is

minimized when g is some threshold function.
Again let V be the pre-noise output of gate g, so λY

b = ε + (1 −
2ε)λV

b for b ∈ {0, 1}. Thus to minimize rλY
0 + sλY

1 , we minimize
rλV

0 + sλV
1 .

λV
0 =

X

(Y1,Y2,...,Yk)∈S1

P[(Y1, Y2, ..., Yk)|x = 0]

λV
1 =

X

(Y1,Y2,...,Yk)∈S0

P[(Y1, Y2, ..., Yk)|x = 1]

where Sb is the set of k-bit vectors representing inputs for which V =
b. A gate g that minimizes rλV

0 + sλV
1 has (Y1, Y2, ..., Yk) ∈ S1 if

and only if rP[(Y1, Y2, ..., Yk)|x = 0] < sP[(Y1, Y2, ..., Yk)|x = 1].
From the fact that λYi = (a, a),

P[(Y1, Y2, ..., Yk)|x = 0] = at(1 − a)k−t

P[(Y1, Y2, ..., Yk)|x = 1] = ak−t(1 − a)t

where t is the number of ones in the vector (Y1, Y2, ..., Yk). Thus the
relation rP[(Y1, Y2, . . . , Yk)|x = 0] < sP[(Y1, Y2, . . . , Yk)|x = 1]
holds monotonically in t and the lemma follows.

VI. POSITIVE RESULT

The preceding section shows that the ability of an ε-noisy, k-
input majority gate to decrease error probability is necessary for
reliable computation using k-input gates. (Put another way, reliable
computation is not possible unless a bit can be maintained indefinitely
in a formula by repeatedly taking majority.) In this section, we show
that this is also a sufficient condition.

For ε < βk , we prove that there exists δ < 1/2 such that given
any Boolean function, we can construct a formula using ε-noisy, k-
input gates that (1− δ)-reliably computes the function. One obvious
idea is to use von Neumann’s technique of taking the noisy majority
of k independent copies of a computation in order to decrease the
error probability. This process can be repeated to decrease the error
probability still further, but there is a limit. It will decrease the error
probability if and only if the original error probability is in the interval
(νε,k, 1/2) where

νε,k = lim
L→∞

m
(L)
ε,k (a)

(By lemma 1, the limit exists and is the same for any a ∈ [0, 1/2).)
Once the error probability is back to a reasonable level, more com-

putation can be done. Such a scheme works as long as computation
can be performed at the “reasonable” error probability level achieved
by the majority gates. In other words, computation at this level of
error probability must result in an output that is correct on all inputs
with probability strictly greater than 1/2.

Hajek and Weller found a noisy, 3-input gate that computes reliably
given very noisy inputs. Strangely at first sight, it requires the error
probability of all of its inputs to be close to νε,k, not just close to
or less than νε,k. In fact, the probability of an incorrect output bit
can increase from below 1/2 to above 1/2 by decreasing the error
probability of some of the inputs. Thus, if we know only that the
noise at each gate is at most ε, an adversary could decrease the noise
of some gates to below ε and ruin the reliability of the output. The
construction takes advantage of the precise ε noise at the gates to
obtain a reliable formula.
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Hajek and Weller’s noisy, 3-input computation gate is used to
simulate the computation of a noiseless 2-input NAND gate. It is
called an XNAND gate. A noiseless XNAND gate outputs 1 for
inputs (0,0,0), (1,0,0), (0,0,1), and (0,1,1); and outputs 0 otherwise.

Let x and y be the inputs to a NAND gate. Let X be a noisy
version of x; and Y1 and Y2 independent noisy versions of y. The
output of XNAND on input (X, Y1, Y2) is intended to be a reliable
version of NAND on input (x, y). The following lemma makes this
connection precise.

Lemma 5 (Lemma 3.1 [5]): For ε, ν ∈ [0, 1/2) there is a δ < 1/2
and an open interval I with ν ∈ I ⊂ [0, 1/2] so that the following
is true. If P[X 6= x], P[Y1 6= y], P[Y2 6= y] ∈ I , and if Z is
the output of an ε-noisy XNAND gate with input (X, Y1, Y2), then
P[Z 6= NAND (x, y)] < δ.

Proof: If P[X 6= x] = P[Y1 6= y] = P[Y2 6= y] = ν
then P[Z 6= NAND (x, y)] equals (1 − ν)(2ε − 1) + 1 − ε if
(x, y) = (0, 0) or (1, 1) and equals (2ν2 − 2ν + 1)(2ε − 1) + 1 − ε
if (x, y) = (1, 0) or (0, 1). In either case, if ε, ν ∈ [0, 1/2) then
P[Z 6= NAND (x, y)] < 1/2. Since P[Z 6= NAND (x, y)] is a
continuous function of (P[X 6= x],P[Y1 6= y],P[Y2 6= y]), the
proof is complete.

We use the XNAND gate in conjunction with k-input majority
gates (k odd) to prove that reliable computation by precisely ε-noisy,
k-input gates is possible if ε < βk.

Theorem 3: For k odd and 0 ≤ ε < βk , there exists δ < 1/2
such that any Boolean function can be (1− δ)-reliably computed by
a formula using ε-noisy, k-input gates.

Proof: The proof is a simple extension of Proposition 3 from
Hajek and Weller [5]. For k odd (k ≥ 3), an ε-noisy XNAND gate can
be implemented by an ε-noisy, k-input gate that ignores all but three
of its inputs. Use δ and I with ν = νε,k from the proof of lemma 5
and choose L large enough so that [m

(L)
ε,k (0), m

(L)
ε,k (δ)] ⊂ I .

Start with a formula composed of 2-input NAND gates that
computes the function. The idea is to replace the noiseless formula
with a formula composed of ε-noisy, k-input majority gates and
XNAND gates. The replacement is performed inductively. If the
formula is trivial, i.e. a single input or constant, then we are done.
Otherwise, suppose the top NAND gate has two inputs x and y. By
induction, replace the formulas computing x and y with three noisy
formulas: one that computes a noisy version U of x, and two that
compute independent noisy versions, V1 and V2, of y. The induction
insures that the error probabilities of these noisy versions lie within
[0, δ].

By replicating their formulas, make kL independent copies of each
of U , V1,and V2. Use L levels of ε-noisy, k-input gates to combine
the copies of U into one noisy version X of x whose error probability
lies within I . Do the same with the copies of V1 and V2 to obtain
Y1 and Y2 with error probability in I . By lemma 5, the output of an
XNAND gate with these inputs will be a (1 − δ)-reliable version of
the original output.

VII. CONCLUSIONS

This paper extends the work of Hajek and Weller [5] to establish an
exact threshold for reliable computation by formulas using ε-noisy, k-
input gates for odd k. Since a k+1-input gate can simulate a k-input
gate, our results for odd k translate into bounds on noise levels that
permit reliable computation for even k. However, the value (or even
the existence) of a threshold for reliable computation by formulas
using k-input gates for even k is unknown. Evans and Pippenger
[6] made some progress in this direction, showing that if a formula
is constructed from independent ε-noisy, 2-input NAND gates then
reliable computation can or cannot take place depending on whether

ε is less than or greater than (3−
√

7)/4 = 0.08856 . . .. In addition,
the existence and value of a threshold for reliable computation by
circuits using ε-noisy, k-input gates for even or odd k is unknown.
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