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Abstract

Theinformation carried by asignal unavoidably decays when the signal is corrupted by
random noise. This occurs when a noisy channel transmits a message as well as when a noisy
component performs computation. Wefirst study thissignal decay inthe context of communication
and obtain a tight bound on the decay of the information carried by a signal asit crosses a noisy
channel. We then use this information theoretic result to obtain depth lower bounds in the noisy
circuit model of computation defined by von Neumann. In this model, each component fails
(produces 1 instead of O or vice-versa) independently with afixed probability, and yet the output
of the circuit should be correct with high probability. Von Neumann showed how to construct
circuitsinthismodel that reliably compute afunction and are no morethan aconstant factor deeper
than noiseless circuits for the function. Our result implies that such a multiplicative increase in
depth is necessary for reliable computation. The result also indicates that above acertain level of
component noise, reliable computation isimpossible.

We use a similar technique to lower bound the size of reliable circuits in terms of the
noise and complexity of their components, and the sensitivity of the function they compute. Our

1The author was partially supported by National Science Foundation grant CCR92-01092.



bound is asymptotically equivalent to previous bounds as a function of sensitivity, but unlike
previous bounds, its dependence on component noise implies that as this noise increases to 1/2,
the size of reliable circuits must increase unboundedly. Inall cases, the bound is strictly stronger
than previous results.

Using different techniques, we obtain the exact threshold for component noise, above
which noisy formulas cannot reliably compute al functions. We obtained an upper bound on this
threshold in studying the depth of noisy circuits. The fact that this bound is only dightly larger
than the true threshold indicates the high precision of our information theoretic techniques.
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Chapter 1

| ntroduction

Our present treatment of error is unsatisfactory and ad hoc. It is the author’s
conviction, voiced over many years, that error should be treated by thermodynamical
methods, and be the subject of a thermodynamical theory, as information has been,
by thework of L. Szilard and C.E. Shannon.

J. von Neumann 1952

The decay of aninformation signal asit propagatesthrough amedium isan unavoidable
phenomenon, familiar in almost every form of communication: sound, wire, radio and so on.

The problem of signal decay is not restricted to communication: that it plagues long
computations, as well, was all too apparent to the first users of electronic computers, and was for
example the spur for Hamming's interest in coding theory [12].

Von Neumann recognized that, rather than being technological and passing, this signa
decay was an essential difficulty for large-scale computations, which by their nature rely on the
propagation of long chains of events [28]. Von Neumann’s goal wasto subject noisy computation
to the same thermodynamical treatment as communication had received in the contemporary
work of Shannon [23]. Surprisingly, it took over thirty-five years before the tools developed by
Shannon to study information and communication were successfully applied to the problem of
noisy computation, in the work of Pippenger [16]. During that time, Shannon’s methods proved
so useful for communication that an entire area devoted to the study of information devel oped.

In this thesis, we present new results in the area of information theory and use these
results, along with other techniques, to obtain lower bounds on the complexity of noisy computa-
tion. A primary goal of this research isto indicate the applicability of information theoretic tools
to the study of computation.
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1.1 Information in Noisy Computation

Imagine computation as a sequence of individual steps. Each step produces an output
which carries some information about the original input; and that output is the input to the next
step in the path. The computation forms a chain in which each intermediate result depends only
on its predecessor. Thefinal output of the computation must carry alarge amount of information
about the input (assuming the function being computed is non-trivial). If the steps are subject to
random noise then the information about the input carried by successive outputs along one path
decreases. We can obtain the required amount of information at the output by increasing the
number of “parallel” computation paths. Thus, the decay in information caused by each noisy
step combined with the required accuracy of the final output leads to complexity bounds on the
structure of the computation.

To makethe reasoning moreformal, we use Shannon’s mutual information as ameasure
of this intuitive notion of information. Let X, the outcome of a probabilistic experiment, be
the input to the computation. Let Y represent the output of some step on the computation
path. The random variable Y may be thought of as a noisy signal reporting on the outcome
of the experiment. That is, each experimental outcome will give rise to a different conditional
probability distributionon therandom variableY. Themutual information 7( X ; Y') measureshow
statistically distinguishable these conditional distributions are. If the distributions are different
thentheinformation Y carriesabout X islarge. If, onthe other hand, the conditional distributions
onY given X areall thesame (i.e. Y isindependent of X') then Y carries zero information about
X.

Now suppose 7 is the output of the computation step with input Y in the computation
path. Since Z dependson X only through Y, it should be the case that the information Z carries
about X is no more than the information carried by Y. This is precisely the data processing
inequality; that 7(X'; Z)isnomorethan I( X ; Y') (seesection 1.4 and appendix A). The statement
reflects the fact that the conditional distributionson 7 are less distinguishable than thoseon Y.

In this simple view of computation, a noisy computation step can be viewed as a noisy
communication channel, and our interest is in the amount of information that such a channel
preserves. The first result in this thesis is a tight upper bound on the fraction of information
about X that is preserved in crossing anoisy binary channel (i.e. 7(X; Z)/1(X;Y)). Itisworth
emphasizing that the bound holds regardless of the distribution on X and Y, and is a property of
the channel alone.

1.2 Mode of Noisy Computation

Our picture of computation as a single chain of steps illustrates the applicability of
information theory but is rather imprecise. To make quite clear the mechanism of computation,
we adopt a model of noisy computation, inspired by the work of Turing [25] and McCulloch and



CHAPTER 1. INTRODUCTION 3

Pitts[14], which was first proposed by von Neumann in 1952 [28].

Themodel of computation isthe noisy circuit. A circuit takesn Boolean values asinput
and produces one Boolean output. 1tiscomposed of acollection of individual components called
gates. Each gate in the circuit is one of afinite set of allowable gates called the basis. A gate
takes a fixed number of Boolean inputs and produces a Boolean output. The inputsto agate in
the circuit may be the outputs of other gatesin the circuit, inputs to the circuit, or constants O or
1. The output of the circuit is the output of one of the gates.

We assume that the interconnection pattern does not allow “feedback”. That is, the
interconnection structure of the circuit forms a directed, acyclic graph. Vertices of the graph
correspond to gates and a directed edge from « to » corresponds to gate » taking as input the
output of gate ». If, in addition, the graph forms a tree (each vertex has one outgoing edge) then
we call the circuit a formula.

The depth of acircuit is the length of (i.e. number of vertices on) the longest directed
path in this graph. Depth is a measure of latency under the assumption that each gate causes
the same delay in computation. The size of a circuit is the number of vertices in the graph (i.e.
the number of gates in the circuit). In addition, there is the question of the complexity of the
components used to construct the circuit (i.e. the basis). For our purposes, the complexity of the
basiswill be the maximum number of inputs to any one gate in the basis.

In von Neumann’s noisy circuit, each gate fails (outputsa O instead of a1 or vice-versa)
independently with probability e. We may assume ¢ < 1/2, since any gate which fails with
probability greater than 1/2 isacting likea (1 — ¢)-noisy version of its complement.

Since each gate (including the final gate) is subject to this noise, the output of a noisy
circuit for computing afunction will be incorrect with probability at least ¢. Thusanoisy circuit
cannot “compute” afunction in the normal sense of the word. Instead of requiring the circuit to
be always correct, we ask that it be usually correct or reliable. A noisy circuit (1 — §)-reliably
computes a Boolean function f taking » Boolean inputsif, for al inputs 2 € {0, 1}", the circuit
outputs f(x) on input  with probability at least 1 — ¢.

Thisisavery simple model of noise, and one which is computationally powerful. What
makesthismodel perhaps unreasonably powerful isthe assumption that gatesfail with probability
precisely e. Itispossiblethat anoisy circuit in thismodel can (1 — 6)-reliably compute afunction,
but will fail to computethefunctionwhenitsgatesare noiseless. In effect, precise noise permitsthe
construction of “random bits’, allowing one to implement randomized algorithms. This objection
has been addressed by designing models which are more “realistic”. (See [18] for examples and
[19] for asurvey of resultsin the theory of reliable computation.)

Most of the results in this thesis are negative results or lower bounds, saying that
reliable, noisy computation cannot be done under various conditions. If we show a negative result
assuming a particular model of computation, then the result holds for al less computationally
powerful models as well. So assuming the most powerful model of computation leads to the
widest applicability. Thus von Neumann’'s noise model is an appropriate choice as our model
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of noisy computation. It has been used to obtain virtually all lower bounds on noisy circuit
complexity [2, 16, 7, 11, 9, 22, 6, §].

1.3 Outline of Results

Chapter 2 presents a new information theoretic result which bounds the fraction of
information that can cross a noisy channel. The data processing inequality establishes an upper
bound of 1 on thisfraction. In his paper which pioneered the use of information for studying noisy
computation, Pippenger [16] determined an upper bound of £ on thefraction for symmetric binary
channels which have probability ¢ = (1 — £)/2 of complementing their input. We determine an
exact upper bound on the fraction for any binary channel. For the symmetric channels considered
by Pippenger, our bound is£2. Thisresult can be seen as aquantified version of the dataprocessing
inequality for binary valued random variables. It will be an essential part of the lower bound in
chapter 3.

The remaining chapters of the thesis are devoted to presenting several lower bounds on
reliable, noisy circuit complexity.

Chapter 3 concerns the depth of noisy circuits. In 1952, Von Neumann [28] provided
the first upper bound on reliable circuit depth by showing, for any function, how to construct a
reliable circuit for the function which is no more than a constant factor deeper than its noiseless
circuit. The construction worksaslong as ¢ (the noise at each gate) islessthan somethreshold. In
1988, Pippenger [16] proved the first lower bound on reliable circuit depth by using information
theoretic techniques to prove that there exist functions whose reliable formula depth is at least
1/ log, (k€) times their noiseless formula depth where £ is the number of inputs to each gate and
£ = 1 — 2¢. Pippenger also showed that for ¢ > 1/2 — 1/2k, reliable computation® using noisy
formulas is impossible. 1n 1989, Feder [7] extended Pippenger’s result to general circuits by
abandoning the information theoretic approach for a strictly probabilistic argument.

In chapter 3, we use more precise information theoretic techniques than those used by
Pippenger, and show that the factor of increase in reliable circuit depth is at least 1/ log, (k£?).
The result also implies that reliable computation isimpossible for ¢ > 1/2 — 1/2v/k. Theresult
relies heavily on the “signal decay” theorem of chapter 2.

In chapter 4, we lower bound the size of reliable circuits. Von Neumann's 1952 work
implies that, for any function, there exists a reliable circuit for the function of size O(clogc)
where ¢ is the size of a nhoiseless circuit for the function. This implication was made explicit in
the work of Dobrushin and Ortyukov [3] and Pippenger [15].

In 1977, Dobrushin and Ortyukov [2] claimed alower bound of Q( s log s) onthereliable
circuit size of any function with sensitivity? s. In 1991, Pippenger, Stamoulis, and Tsitsiklis [20]

'Reliable computation refersto the ability to (1 — 6)-reliably computeall Boolean functionsfor somefixed § < 1/2.

2A function’s sensitivity is the maximum (over all input vectors) of the number of bits which change the function
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showed that thiswork contains serious flaws. By adifferent argument, they were able to prove an
Q(n logn) bound on the size of reliable circuits computing the parity of » inputs. 1n 1991, Gal [9]
and Reischuk and Schmeltz [22] successfully reproved Dobrushin and Ortyukov’s original claim,
that functions with sensitivity s requirereliable circuits of size Q(slog s).

Our lower bound is asymptotically equivalent to these previous bounds as a function
of the sensitivity of the function being computed. The difference is in the bound’s dependence
on the noise and complexity of the individual components. In particular, as the component noise
increases to 1/2, our lower bound increases to infinity (whereas previous bounds do not). In all
cases, our bound is strictly stronger than previous results.

In chapter 5, we establish a threshold on the noise of individua components above
which reliable computation of all Boolean functionsisimpossible. In other words, if ¢ is above
some threshold then for any value § < 1/2 there exist functions which cannot be (1 — 6)-reliably
computed using e-noisy components. The threshold depends only on the complexity of the
individual components (i.e. the maximum number of inputs to a component). In the case of
formulas built from components with an odd number of inputs, we show that this bound is tight;
that reliable computation can be achieved if and only if ¢ is less than the threshold. Strangely,
our result requires the component noise to be precise. In other words, that each component must
fail independently with precisely probability ¢. Thisextendswork done by Hajek and Weller [11]
who prove atight threshold for computation by formulas using 3-input gates.

1.4 Information Theory

In order to set the stage for our discussion, we must introduce the tool s from information
theory which we will be using. Suppose the result X of a probabilistic experiment has a known
distribution py (i.e. X = 7 with probability px(7)). How much information do we gain by
performing the experiment X? If px(¢) = 1 for some ¢, we gain no information since the
outcomeispre-determined. If px(0) = 1/2andp x (1) = 1/2 then wedo gain someinformation.
The question is how to measure the information gained.

Shannon’s answer to this question is an information measure called the entropy or
self-information of the random variable X . It is defined as

H(X)= = px(i) logpy (i)
=1

We will assume here and throughout the thesis that logarithms are base 2. One way to view the
entropy of X is asthe average number of bits needed to describe X . For example, if X isequally
likely to be any one of n possibilitiesthen we require log» bits to describe X'.

Just a quick word about notation. We use boldface letters (eg. p, a, and €) to
denote vectors. Since all distributionsin this thesis are over discrete sample spaces, we specify

value when flipped individually (seethe definition in section 4.2.1).
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distributions as vectors with non-negative elements summing to 1. We often use py to denote
a probability distribution on random variable X, and similarly, pxy—, or px, to denote a
probability distribution on random variable X conditionedonY = .

Now suppose we could perform a second experiment with outcome Y related to X.
Giventhevalue Y, theinformation conveyed by X iscalled the conditional entropy of X givenY
and is defined as

H(X|Y)= - EPX,Y(xv Y) |09PX|Y:y($)-
T,y
Intuitively, the information gained from X should decrease (or at most remain the same) given the
valueof Y. Inother words, Y tellsus something about X . The amount of information Y cornveys
about X isthe mutual information between X and Y. It isdefined as

I(X;Y)=H(X)- H(X|Y).

In words, the information Y conveys about X plus the information X conveys given Y equals
the total information conveyed by X. It is easy to verify that mutual information is symmetric
I(X;Y) =1(Y; X),and thus the information Y conveys about X is the same as the information
X conveysabout Y. Also I(X; X)) = H(X ) whichjustifies our use of the term self-information
for entropy.

Originally, mutual information was used to measure the rate of transmission across
noisy channels. For example, the capacity of a noisy channel, which Shannon showed to be the
maximum rate at which information can cross a channel with arbitrarily low error, is defined as
the maximum mutual information between an input and output of the channel. (In an attempt to
trangdlate this result to noisy computation, Elias studied the “ capacity” of noisy computation, but
concluded that arbitrarily low error requires an arbitrarily low “rate” of computation [5].)

In thisthesis, we view information as a measure of correlation. One of the fundamental
results which support this view is the data processing inequality. Informally, it states that a
function of Y cannot carry more information about X than Y itself. More precisdly, if X, Y, and
7 are random variables such that 7 isindependent of X given Y then I(X; Z)/I(X;Y) < 1.
The following chapter is devoted to showing a more precise version of thisinequality; one which
depends on the relation between Y and 7.

Appendix A contains further definitions and results from information theory which are
used in thisthesis.



Chapter 2

Signal Decay

In this chapter we investigate the propagation of information signalsin noisy media. We
study a basic question which is relevant to any such propagation, whether in communication or
in computation. To set the framework we first recall the well known “ data processing inequality”
for information. Let X be arandom variable which is the input to a communication channel, and
let Y be the output of that channel. Let Y in turn be input to another communication channel,
and let 7 be the output of that channel. (Thus 7 dependson X solely through Y'.) The mutual
information /(X;Y') is a nonnegative real number measuring the information available about
X after the first channel; likewise I( X'; Z) measures the information available after the second
channel. The data processing inequality states that no matter what the properties of the second
channel, I(X; Z) < I(X;Y).

I(X;Y)
—_——
X—=-Y -7
N———
I(X;7)
If the second channel is noisy then one may expect that this inequality is strict, and further, that
the signal decay affect the capabilities of the communication or computation system.

Our objective is therefore to obtain, as a function of the Y — 7 channel aone, a
tight upper bound on the ratio /(X; Z)/1(X;Y). Thusthe bound is required to hold for every
distribution on X and for every form of dependence of Y on X. The desire for an inequality
which is true under such a stringent requirement is motivated by the intended application of the
inequality: namely inferring the global properties of communication or computation systemsfrom
the local properties of their components.

Thefirstinequality of thistypeontheratio /(X'; 7Z)/1(X;Y) wasderived by Pippenger
(for binary symmetric channels) as a key step in his method for showing a lower bound on the
depth, and an upper bound on the maximum tolerable component noise, of noisy formulas[16].
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In this chapter, we obtain an exact upper bound on the maximum achievable “signal
strength ratio” I(X;%)/1(X;Y), for every binary channel (two input values and two output
values). We also obtain bounds on the signal strength ratio when the Y — 7 channel takes two
input valuesto m output values.

Noisy Channel

Before discussing this bound, we more formally define a noisy channel. An n-input,
m-output noisy channel takes one of n values as input and produces one of m values as output
according to a probability distribution which depends on the input value. If the input to a channel
isarandom variable then the channel will produce a random variable whose distribution (viewed
asavector) isthe product of the distribution of the input random variable with amatrix describing
the channel. The 7, jth entry of the matrix is the probability input 7 is transformed into output ;
by the channel. Thus the entries of the matrix are non-negative and the rows sum to 1.

If n = m = 2thenthechannel isabinary channel. Seefigure2.1for anillustration of a
binary channel and itscorresponding matrix. If theinput to thechannel isarandom variable X with

Inputs Outputs

1-b

Figure 2.1: A binary channel and its corresponding row-stochastic matrix.

distribution p x then the channel outputs arandom variable Y whose distributionispy = py - A.
In particular, py (0) = px(0)(1 - a) + px(1)b and py (1) = px(0)a + px(1)(1 - b).

2.1 Reduction to Weak Signal Case

Our first step in obtaining an upper boundon 7(X'; 7Z)/1(X;Y) reliesupon ageometric
interpretation of mutual information. From the definition of information (see appendix A), we
have:

I(X;Y) = H(Y)—H(Y|X)
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H(Y) = px(z)H(Y|X = z)
= h

Here £ is the altitude marked in figure 2.2; py|o and py-|; are the conditional distributions on
Y given X = 0 and 1; and py- is the unconditioned distribution on Y (i.e. the average of the
conditional distributions with the weights px (0) and px(1)). Thus mutual information can be
interpreted as a discrete second derivative of the entropy function H .

H(Z|X=0)

H(Z|X=1)
H(Y|X=0)

Figure2.2: Visualizationof I(X;Y)and I(X; 7)

Now suppose we pass the random variable Y through achannel A and obtain the output
Z. Foreachz = 0, 1, thedistribution p ;. equals py-|,, - A. Just asfor Y, the mutual information
1(X; 7)isthediscretesecond derivativeamong thepoints # (7| X = 0), H(Z)and H(Z| X = 1).
Thus, I(X; Z) isthe altitude A’ in figure 2.2. Recall that we wish to obtain an upper bound, as a
function of the channel A, ontheratio I(X; Z)/1(X;Y). Thisis equivalent to determining the
maximum over al py o, py |1 and al weights px, of theratio 4’/ h.

We will find the maximum ratio 4'/h by explicitly identifying parameters for which
it is attained. Our first step in determining these parameters relies on a very general fact about
maximizing the ratio between two discrete second derivatives.

For any function f, any two values z, y in the domain of f, and any p € [0, 1], let
folz,y,p) = f(pz+(1—p)y) — pf(z)— (1- p)f(y) denote the discrete second derivative of f.

Lemma 2.1.1 For any strictly concave functions f, g on closed and bounded intervals and any
p € [0, 1], theratio

r(z,y) = g2(,y,p)/ foz,y,p)
ismaximized in thelimit |z — y| — 0.
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Proof: Let 2* and y* beaclosest pair of pointswhich achieve themaximumratio r (say z* < y*).
We obtain a contradiction by finding a closer pair z,y which achieve at least ratio r.

The function ¢ is bounded since it is a continuous function on a closed and bounded
interval. Since f and g are strictly concave it followsthat 0 < r < oc. By suitable affine linear
transformations of f and g we can reduce to the case in which the functions are equal at the
endpoints (i.e. f(z*) = g(2*) and f(y*) = g(y")); and we can scale the maximum ratio r to 1
(thus f(pz™ + (1 - p)y™) = g(pz™ + (1 - p)y™)).

We now produce a pair =,y with |z — y| < |2* — y*| and r(z,y) > r(z*,y*). There
aretwo cases. If g(z) > f(z) for somez € [z*, y*] thenlet = be the greatest value lessthan z, for
which f(z) = g(z); and let y be the least value greater than z, for which f(y) = g(y). Observe
that z # y, and also that at |least one of =, y is not at an endpoint z* or y*, since by assumption
f(pz*+ (1= p)y*) = g(pz* + (1 — p)y*). Further observethat g(z') > f(2’) foradl 2’ € [z, y],
andin particular for 2/ = pz 4+ (1 — p)y. Hence z, y are as desired.

In the other case g(z) < f(z) for al =z € [¢*,y*]. Then any pair z,y such that
pz + (1—p)y = pz* 4+ (1 - p)y* and such that z* < z < y < y*, will completethe proof. O

We now reexamine the ratio of signal strengths, 7(X; Z)/I1(X;Y). We find that the
fraction of information about X which is preserved going through channel A is maximized for a
pair of distributions py-| x —¢ and py-| x =1 Which are amost indistinguishable:

Corollary 2.1.1 Theratio I(X; Z)/I(X;Y) ismaximizedinthelimit|py x—o — Py |x=1| — 0.

Recall that py-| x ¢ and py| x—; correspond to points on the unit interval. The distance function
isinduced from theinterval.

Proof: Fix any weights px(0) and px(1). Then I(X;Y) and I(X; Z) are the discrete second
derivatives of the strictly concave entropy function on [0, 1]. (See [1] for proof of concavity of
entropy.) O

Observe also that unless the channel is either perfectly noiseless or perfectly noisy, that
isunlessthe entriesof A areall 0's and 1's, the corollary will hold strictly; which is to say that
the maximum ratio is achieved only in the limit of very close distributions. Thusonly when it is
carrying avery weak signal can a (nontrivial) noisy channel perform at its peak efficiency.

For example suppose we transmit one bit of information over along cable; and suppose
that each meter of the cable introduces some random noise which is symmetric in the sense that
it affects 0's and 1's with the same frequency. We will later see that in this symmetric case,
the signal strength ratio is maximized when each of the distributions py-|x—o and py|x-, are
asymptotically close to the uniform distribution (in which O's and 1's are equally likely). Thisis
also the distribution each signal eventually approaches as it travels along this cable. Hence the
corollary implies that the greatest information loss occurs in the first part of the cable.

For a homogeneous cable this observation could be more simply made by examining
powers of the matrix describing the properties of a meter of cable. Our result shows that thisis
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actually a general phenomenon regarding transmission over noisy channels, rather than being a
property of multiplication of stochastic matrices.

Another lesson which is suggested by the corollary is that if several signals carry
information about an event, one may wish to propagate each signal separately rather than combine
the information into a single, clearer signal. Of course the corollary must be applied with care
since not every weak signal achieves the minimum loss.

2.2 Reduction to Divergence Ratio

Shannon’s mutual information may be written in several ways (see appendix A). One
of the most useful is,

ZPX ZPYM =z |09p7};|:;?;§y)-

The inner sum is known as the Kullback-Leibler divergence or simply the divergence of py-|x_,
from py-, and is defined, in general, for distributionsp and g as

(z)
q(z)

D(pllq) = ZP )log?

Divergence is dways non-negative and is zero if and only if p and q are identical (see
A.2.3). Inthat sense, it behaves like a distance measure between distributions. However, it is
not a true distance measure since it is not symmetric and does not obey the triangle inequality.
Nonethel ess, we show in the following section that divergence may be interpreted asthe square of
a distance when the distributions p and g are extremely close.

Our interest in the divergence of infinitesimally separated distributions, comes from our
goal of establishing an upper bound ontheratior = I(X; Z)/I1(X;Y). Insection 2.1, we showed
that r is maximized when the distributionson Y given X = 0 and X = 1 are infinitesimally
separated. This greatly simplifiesthe task of identifying the distributionswhich maximize r since
instead of having to consider two parameters (specifying the distributions on Y'), we can range
over just one parameter (specifying one of the distributions), and express r as a series expansion
in terms of the distance between the two distributions.

Rather than trying to solve this maximization problem directly, we first show that it is
equivalent to maximizing aratio of divergences. We then show how to interpret these divergences
in order to obtain a simple expression for their ratio.

In general, since 7 isthe output of channel A oninput Y,

I(X;7)  px(0)D(pypo- Allpy - A) + px(1)D(py 1 - Allpy - A)
I(xX;y) Px(0)D(pyollpy) + Px (1) D(pypllpy)
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If the conditional distributionson Y are infinitesimally separated, we can write py- asp and py |
asp + e withe = (¢, —¢). (Thisforces py |, = p — 2x1¢.) For fixed p,

Px(1)
IX:2) _Dip+o-Alp-4)
X))~ Dptdp 09

Inparticular, theweightsp x (0), px (1) vanish from the problem. Our task reducesto maximizing
the constant term in the expansion of D((p +€) - Al|p - A)/D(p + €||p) over al distributions p
on {0, 1}.

2.3 Divergence as Squareof L, Distance

Thereisaparameter spaceinwhich thismaximization problemis addressed most simply,
and in which the locus of maximization and value of the maximum, are expressed most naturally.
We now give this parameterization and then solve for the maximum.

Let p be a probability distribution on {0, 1}. Define

a(p) = (1/p(0),/p(1)).

Geometrically & mapsthe segment between (1, 0) and (0, 1) in ®2 (the standard parameterization
of the probability distributions) to the quarter circle, centered at the origin, between (1, 0) and
(0,1). Seefigure 2.3.

0

0 1
Figure 2.3: The map ¢ applied to two infinitesimally separated distributions.

Let e = (€, —¢) so that both p and p + € are probability distributions. For sufficiently
small ¢, D(p + €||p) is approximated by a power series expansion in . The coefficients of this
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expansion depend on p, the probability distribution about which the expansion is being taken.
However, after re-parameterization by o, the first term of the power series expansion no longer
hasadependenceon p. Infact, thefirst termissimply proportional to the square of the 7., distance
between the re-parameterized distributions:

Lemma23.1

D(p+ellp) = 2lla(p+e€) - a(p)ll3+ O()

Proof: By series expansion. O

Thereissomeintuition for thisre-parameterization. Itiswell knownthat the divergence
D(p+ €||p) measureshow statistically distinguishablethe two distributionsp + € and p are. (E.Q.
how many coin-tossing trials are required to distinguish a coin with distribution p + € from one
with distribution p.) A fixed € is more significant for a highly biased distribution p, than for p
near (1/2,1/2). Thisis clearest when consideringp = (0,1) and p + € = (¢,1 — ¢), in which
case a coin with distribution p will never be mistaken for acoin with distribution p + €. The map
o stretches the ends of the segment to capture this dependence on p exactly, so that the statistical
distinguishability of two nearby distributionsissimply captured by their 7., distance on thecircle.

2.4 Signal Decay Theorem

Beyond simplifying the form taken by the divergence, the parameterization of distribu-
tions by points on the circleis especially natural for expressing the following theorem.

Theorem 2.4.1 Let X and Y be Boolean random variables. Let the channel A be

A sna cofa
“ | sin?B cos? 3

Let 7 be the Boolean random variable output by the channel A oninput Y. Then

fg‘(g < sir’(a — ).

Note, @ — G is the angle (at the origin) between the points on the quarter circle which are the
images under the square root map of the most extreme possible distributionson 7.

Proof: Asdiscussed, it sufficesto show for any distribution p on Y that

Di(pte)-Allp-4) _ .-
Diptelp) o (=F) -




CHAPTER 2. SIGNAL DECAY 14

where e = (¢, —¢) and ¢ infinitesimal. The resulting distribution on Z isp,(0) = p(0)sinfa +
(1-p(0))Sir?3,p,(1) = 1—p(0)sinfa — (1— p(0)) sin? 3. Substituting A into theratio (2.1),
and expanding in terms of ¢, we find that

Di(p+e)- Allp-A) e
D(p+ellp) B O O

By differentiation one can determine that this expression is maximized for the distribution p
specified by

= (sirfa — sin

B < cosf@sing CoSa Sina )
P= cos3sin3 + cosasina’ cosBsings 4 cosa Sina

The value of theratio for this distribution issin?(a — 3). ]

Theorem 2.4.1 also holds under conditioning by certain random variables. In particular,
if @ isarandom variablesuch that Z (the output of the channel A) isindependent of (@), X' ) given
Y (the input to the channel) then theorem 2.4.1 holds under conditioning by ). The requirement
that 7 be independent of (@, X) given Y implies that p; o xy = pzy. In other words, the
channel A, whichisan expression of Py remainsfixed regardless of thevalueof ¢). Thiswould
not be true if, for example, () equals 7, sincein that case, 7 isfixed once () is given, rather than
being the output of channel A oninputY.

Corollary 2.4.1 Let X and Y be Boolean random variables. Let the channel A be

_ | sina cos?a
~ | sn?p cofp

Let 7 be the Boolean random variable output by the channel A oninput Y. Let ¢) be a (not
necessarily Boolean) random variable such that 7 isindependent of (@, X' ) given Y. Then

1(X;7]Q) . o
— % < sn(a— fB).
1xvjg) <A
Proof: Since Z is independent of (Q, X) givenY, pyoxy = pzy adthuspyo_, x=, =
Py|Q=q,x= - A for al vaues ¢ and z taken by the random variables ) and X respectively.
Thereforethedistributionson X', Y, and 7 given () = ¢ satisfy the conditions on the distributions
of X,Y,and Z intheorem 2.4.1. It follows from the theorem that

I(X;Z10=q¢) _ ;2
1xvig=q) <"
The corollary follows since
I(X;21Q) _ XyPela)l(XZQ=q) _  1(X;2]Q=q)

T 1 < §nd(a - B).
X0 - 5, o I(X Vg =q) = "X Vg =g = 3@ =7
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2.5 Boundsfor 2-input, m-output Channels

The previous discussion was limited to binary channels: channels which take two input
values and produce two output values. Similar results may be obtained for the case of 2-input to
m-output channels. The basic outline of the proof isthe sameasin the case of binary channels. We
prove that the conditional distributionson Y which maximizetheratior = I(X; Z)/I(X;Y) for
afixed channel areinfinitesimally separated. We then expresstheratio r asaratio of divergences.
Unfortunately, finding the distribution which maximizesthisratio is not as simple asin the binary
channel case, and we do not know a closed form expression for it. However, we do obtain an
upper bound on the ratio » which is exact for some channels. For example, for m = 2, the bound
isidentical to the exact bound given in theorem 2.4.1.

Let the channel A be described by the 2 x m matrix,

_ a/l a/z DEEEEY a/m
A—lbl by - bm]'

Leta = (a1,...,a,)andb = (by,...,b,). Inthecase m = 2, theorem 2.4.1 upper bounds the
ratio r by sin? of the angle between o (a) and o (b) (theimages of the rows of A under the square
root map). Recall that o denoted the square root map for distributionson {0, 1}.

Itiseasy to extend o to cover discretedistributionsonm elements. Fora = (a1, ..., a.,)
adistribution on m e ements, let

o(a) = (Vaz,....V/an).

In this section, we show that, for all m > 2, sin? of the angle between o(a) and o (b) is an upper
bound on the ratio ». We will not be able to make the further claim that for any channel, the
bound can be achieved in the limit. Such astatement istruein the case m = 2 since we explicitly
determine the distributions which maximize the ratio. For m > 2, the proof does not determine
these distributions.

Theorem 2.5.1 Let X and Y be Boolean random variables. Let the channel A be

. a1 a (1255
A_[bl by --- bm]

Let 7 be the Boolean random variable output by the channel A oninput Y. Then

IX:7) g (im)z
=1

I(X;Y)

Notethat 1 — (3°7; v/a;b;)? issin? of the angle between o (a) and o (b).
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Proof: Thefirst step of the proof isto show that the conditional distributionson Y which maximize
r = I(X;Z)/I(X;Y) are infinitesimally separated. In particular, we desire an extension of
corollary 2.1.1 to the case when 7 is an m valued random variable. As in the proof of that
corollary, for fixed weights px(0) and px (1), I(X;Y) is the discrete second derivative of the
entropy function on [0, 1]. Since 7 is the output of channel A oninput Y, the distributions p ;|
and pz, lie on the line in R between (0,1) - A and (1,0) - A. Thus I(X; Z) is the discrete
second derivative of the entropy function of m valued distributions restricted to this line. Since
entropy is astrictly concave function, thisrestriction is strictly concave and the extension follows
fromlemma2.1.1.

Restriction to the case of infinitesimally separated distributions allows us to write the

ratio r for fixed p as,
I(X:7) _ D{(p+e)-Allp-4) 0
I(X;Y) D(p + €llp) '

By series expansion,

Di(pte) Allp-A) m
Dp+ep)  POPUL S s e,

It remainsto prove that

2

i (a; — b;)? i

0)p(1 —_— < 1- ab; | .
POPD Y, St p(a <17\ 2V

This follows from the concavity of the square root function!. After some simple manipulation,
proving the inequality reducesto proving

Vi < ( —) |

; 2 (0)a; + p(1)b;

i=1 P

Let \; = p(0)a; + p(1)b; and z; = a;b;/A?. Notethat 3. \; = 1and 0 < z; < oo. Since, square

root is a concave function,
m m
Do AivEi <\ |0 i

and the proof is complete. O
Asin the case of the binary channel, this result also holds under conditioning.

Corollary 2.5.1 Let X and Y be Boolean random variables. Let the channel A be

. a1 ao Oy
A_[bl by --- bm]

Thanks to Simon C. Harris, Trinity College, Cambridge for pointing out this fact.
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Let 7 be the Boolean random variable output by the channel A oninput Y. Let @) be a (not
necessarily Boolean) random variable such that Z isindependent of (@, X' ) given Y. Then

I(X;Z|Q) <1- (im)z
i=1

I(X;Y]Q)

Proof: Usethe same argument asin the proof of corollary 2.4.1. O
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Chapter 3

Noisy Circuit Depth

Among the fundamental concerns in computation are the depth and size of circuits
regquired to compute Boolean functions. The depth of circuits, in particular, measures latency of
computation. Thisis of critical importance in circuits for real-time computation (e.g. the FFT);
and it is central to the study of parallel complexity classes.

In view of the limitations of physical circuits, von Neumann asked whether circuits
with noisy components can compute the same functions as circuits with reliable gates; and if so,
at what cost in latency (depth)? He provided the following positive, but qualified, response to
this question: Every circuit with noiseless gates can be reliably simulated by a circuit with noisy
gates, whose depth is at most a constant? times the depth of the original circuit, provided that the
probability of error in each component of the circuit isno more than some threshold < 1/2.

This answer has two especially interesting features. The first is the threshold on com-
ponent failure, above which the construction fails. The second is that the construction requires a
slow-down (i.e. increase in depth) by a factor strictly greater than 1. For along time it was not
known whether these features were necessary, or were artifacts of von Neumann’'s construction.
Finally, Pippenger showed through an elegant information-theoretic argument that both features
were necessary, at least in noisy formulas (circuits in which the output of each gate is the input
to at most one other gate) [16]. Shortly afterward Feder extended Pippenger’s bound to general
noisy circuits[7].

Surprisingly, Feder’s extension to circuits (which obtained the same threshold and factor
of depth increase bounds as Pippenger) did not argue in terms of mutual information. Thus,
Pippenger’s use of information theoretic techniques to attack this problem seemed extravagant. In
fact, an argument based on the 7.1 distance between conditional distributionsis sufficiently precise
to obtain Pippenger’s result. We discuss the use of the 7., distance in greater detail in appendix B
since some of the results obtained therein are used in later chapters.

Von Neumann’s original construction implies a depth increase by a factor of 2 for e < 0.0073 when computation
isby 3-input majority gates.
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Thefirst indication that information theoreti c techniqueswere not extravagant and could
provide extremely precise bounds on noisy computation, camein our work on lower bounding the
depth of noisy formula[6]. In this chapter, we discuss our previous result and extend it to general
circuits. We increase the lower bound on the factor of depth increase; and decrease the upper
bound on the noise threshold. Thus we improve on the results of both Pippenger and Feder, and
offer some justification for von Neumann's desire to use information theoretic techniques in the
study of noisy computation.

Thekey to our improved depth lower bound isthe signal decay theorem (theorem 2.4.1)
and its conditional version (corollary 2.4.1). These results give precise bounds on the fraction of
information which can cross a noisy channel. We first give an informal outline of the proof and
explain the role of the results from chapter 2. We then state and prove the main theorem of this
chapter.

3.1 Intuition

At ahigh level, the application of our information theoretic analysisto the lower bound
on circuit depth followsthe outline of Pippenger’s argument which, very briefly, hasthe following
structure.

For each input bit X upon which the function depends there is a setting of the other
inputs so that the functionis X (or X, the complement of X). A reliable circuit for the function,
with this setting of the inputs, must output a value which is highly correlated with X . In other
words, if X isarandom variable then the mutual information carried by the output about X must
be high.

On the other hand, the amount of information the input X can “send” to the output is
restricted by the structure of the intervening noisy circuit. In particular, the amount of information
is bounded by the sum over all paths from X to the output of a quantity that is exponentially
small in the length of the path. To establish this for formulas, Pippenger first showed that the
total information sent is bounded by the sum of the information sent over each path from X to
the output. This supports the view of information as a kind of fluid which flows from the input
X to the output along the wires of the formula. At each gate, several paths combine, but the
fluid flowing out of the gate is no more than the sum of the fluid flowing in. In aformula, this
fact follows from the fact that the inputs to the gate are mutually independent given X (see the
sub-additivity of informationin appendix A). In circuits, information may not be sub-additiveat a
gate, which ruins the interpretation of information asafluid. Thuswe cannot decompose acircuit
into aset of digoint paths as Pippenger did in the case of formulas. In the next section, we present
a new technigque which overcomes this difficulty.

Once the formula was decomposed into a set of digoint paths, Pippenger bounded the
information carried by each path by an amount which is exponentially small in the path length.
Let Y be the pre-noise output of some gate on a path from X to the circuit’s output and let 7 be
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the output after the random noise. (Z equals Y with probability 1 — ¢ = (1 + £)/2, and Y with
probability e = (1 — £)/2.) Theinformation carried by the random variable Y about the input X
drops by a certain factor when Y is affected by random noise. We need a bound on thisfactor. In
particular, we need the ratio 7(X'; Z)/1(X;Y") to be bounded by a function of the noise bias £.
Pippenger showsthat 7(X; 7Z)/I(X;Y) < £. We use the results from chapter 2 to show that this
ratio is bounded by £2.

Theimproved bound on I(X; Z)/1(X;Y) followsfrom theorem 2.4.1. We mode! the
noisy dependence of 7 on'Y by abinary communication channel which outputs 7 upon input Y.
For von Neumann's model of noisy components, the channel is symmetric with noise (1 — £)/2
(i.e. cos?a = sin?3 = (1 - ¢)/2). Theorem 2.4.1 impliesthat 1(X; Z)/I(X;Y) < €2. This
improvesstrictly on Pippenger’s corresponding bound of £ for al channels (except, of course, that
itisidentical for perfect or totally noisy channels). Seefigure 3.1. Thedistinction has its greatest
significance for relatively noisy channels. For, Pippenger’s bound grows linearly as the channel
is perturbed away from atotally noisy channel (£ = 0); whereas our bound has a quadratic basin
about that point. Such aresult should be anticipated on qualitative grounds, since the ratio we are
studying is a smooth, nonnegative function of £ and is equal to zero for the totally noisy channel.

1 W\,

this thesis —
Pippenger ----

05 r

-1 -0.5 0 0.5 1
3

Figure 3.1: Upper boundson I( X; Z)/I1(X;Y') for symmetric channels with noise (1 — £)/2.

3.2 Circuit Anomalies

In acircuit, it is not necessarily true that the total information sent by an input to the
output is bounded by the sum of the information sent over the paths. Such a statement requires
two inequalitiesto hold. One of the inequalitiesis the data processing inequality which states that
I(Y;X) < I(Y1,...,Ys; X)where Yy, ..., Y, are the inputs to a gate with pre-noise output Y.
Thisis also true for circuits. The other isthat 7(Y1,...,Yr X) < >, I(Y:; X). Thisistrue if
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the Y; are mutually independent given X, but in acircuit Y; and Y; (¢ # 7) may be dependent
given X (if they share some common noise source; e.g. if they are the output of the same noisy
gate). Infact, inacircuit, I(Y1, ..., Yy, X ) may begreater than ", I(Y;; X'). Thusthe method of
decomposing the circuit into a set of digoint paths while not decreasing the information between
input and output, which worksin the case of formulas, seems unlikely to succeed.

Rather than going through the intermediate step of decomposing the circuit into digjoint
paths, we directly bound the information between any set of wires (taken together) and the input
X by the sum of ¢2”! over al paths P from X to these wires. This establishes that the total
information sent by an input to the output is bounded by the sum over all paths P from that input
to the output of €27, Unfortunately, it makes the argument for the £2 drop in information at every
noisy gate more complicated. We use the conditioned version of the signal decay theorem 2.4.1
to handle this added complexity.

Wefirst prove thislemmaand then show how to useit to obtain alower bound on circuit
depth.

Lemma3.2.1 Let G beacircuit composed of (1 — £)/2-noisy gates. Suppose each input to &' is
X (a Boolean random variable) or a constant. Let W be the vector of random values carried by
asetof wiresin G. Then
w;x)< Y érl
PfromX toW
where the sumis over paths P in GG frominput X towiresin I, and | P| is the number of gates
on the path P.

Proof: View & as a directed acyclic graph whose vertices are gates or the inputs to the circuit
(X and constants 0 and 1), and whose edges are wires. Direct awire (edge) from vertex h to g
if the output of 4 istheinput of g. The wire which is the output of the circuit is a special edge
which is directed fromits one endpoint. Number the gate vertices distinctly from 1 to the number
of gatesin GG and number the input vertices O so that each wire starts from its smaller numbered
endpoint. Such anumbering is possible since ¢ is acyclic. Number the wires with the number of
their smaller numbered endpoint.

The proof is by induction on the number of the highest numbered wirein W. If the
highest numbered wire has number O then the edgesin W carry a combination of constant values
and X . If W containsawire with value X then I(; X') = 1and thereisat |east one wire which
originatesat X , i.e. one path of length O from X to wiresin W. If all thewiresin ¥ are constant
then 7(1V; X') = 0 and there are no paths from X to wiresin W. In either case,

w;x)< Y énl
PfromX toW

Assume the lemma holds for all & which contain wires numbered < ¢. Consider W
which contains wires numbered < ¢ + 1. Let Z be the binary random value carried by the wires
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numbered ¢+ 1in . Since each gate vertex has a distinct number and noise occurs at the gate, 7
iswell defined. Let W1, ..., W, bethewiresin W numbered < ¢. Sinceall wiresnumbered ¢+ 1
carry thesamevalue, I[(W; X') = I(Z, W, ..., W,,; X). From the definition of information,

H(Z, Wi, .o W X) = I(Z; X|Wa, .o, W) + T(Wh, ., W X).

Let Y be the pre-noise output of gatet + 1. The output Z of gatet + 1 isthe result of passing
Y through a symmetric channel with noise (1 — £)/2. Theinput X and thevalues W1, ..., W,
since they are the output of gates numbered < ¢, are independent of 7 given Y. Thus corollary
24.1implies

I(Z; X|Wa, ..., W) < E2I1(Y; X|Wy,...,Wp,).

LetYi,..., Y, betheinputsto gatet + 1. By the data processing inequality,
HY; X |We, ... W) < T(Y,. ., Y X|Wa, .o, W),
Therefore,

HZ, W, ... W X) < IV, .., Y X|Wa, oo, W) + T(Wa, ..., W X)

= 2I(Yy,...,. Ve, W, ..., W,; X)+ (1= ) I[(Wy,...,W,; X)

SinceYs,..., Y, areinputsto gate ¢ + 1, they are wireswith numbers < ¢. Thuswe can apply the
inductive hypothesisto both termsto obtain,

HZWy,. . Wy X) < 0 3 @Plpa-¢ Y @nl
P from X to P from X to
{Ye,..., Y, Wy,...,Wn} {Wi,...,Wm}

E 52|P|

P from X to
{Z,Wy,..., Wn}

Z 52|P|

PfromX toW

IN

IN

3.3 Noisy Circuit Depth Lower Bound

Let f be a Boolean function which depends on » arguments.> We show that any circuit
C' which computes thefunction f with high probability using noisy £-input gates must have depth
at least Rlog, n with acertain R > 1 depending on £ and the noise level. Thisimplies a lower

2A function depends on an argument z if there exists asetting of the other arguments such that the function restricted
to that setting is not a constant.
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bound on the factor by which the depth of a circuit must increase when going from the perfect to
the noisy gate model. In particular, suppose there exists a gate which computes a function ¢ that
dependson k& inputs, and no gate that depends on more than £ inputs. The function f which isthe
d-fold composition of ¢ depends on n = k% inputs and can be computed by a depth d circuit in
the perfect gate model. Feder’s result impliesthat in the noisy circuit model, the depth must be at
least Rd where R = 1/ log, (k¢). Our resultimplies R = 1/ log,,(k£2).

Theorem 3.3.1 Let f beafunctionwhichdependsonn inputs. Let C' beacircuit of depth ¢ using
gateswith at most £ inputs, whereeach gatefailsindependently with probability (1—£) /2. Suppose
C (1-6)-reliably computesthefunction f whereé < 1/2. LetA = 1+6logé+(1—6)log(1—4).

o 1f62> 1/kthenc > %%

o If¢?2 < 1/kthenn < 1/A
Proof: Let z4,...,x, betheinputsto the function f. Since f depends on all inputs, for each
input z; there exists a setting of the other » — 1 inputsso that f is either the function z; or z;. Let
C'; bethecircuit C' with this setting for the n» — 1 inputsother than z;. Let X be aBoolean random

variable uniformly distributed over {0, 1}. Let C;(X') be the random variable which is the output
of C; when z; = X. By Fano’'s inequality (see theorem A.2.6),

I(CyX); X) > A (3.1)

In other words, since C;( X ) and X are correlated, the mutual information between them islarge.
We apply lemma3.2.1with G = C; and W = C;( X ) to obtain the upper bound

I(C(X ), X)< Y é4rl (3.2)
Ped;

where the sumis over pathsin C' from z; to C’s output.
Combining the bounds (3.1) and (3.2) and summing over al C'; gives

nh < 3 APl (3.3)

PeC
Thefirst result of the theorem follows easily from the following lemma.

Lemma 3.3.1 For all circuits C' of depth ¢ that are composed of k-input gates, if £2 > 1/k then
E €2|P| < kchc

PeC

where the sumisover pathsin C' from C’sinputsto C"s outpuit.
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Proof: It suffices to show that when £2 > 1/k, the expression " p €211 is maximized for €
equal to the complete k-ary tree of depth ¢, sincethistreehas Y. p ¢3! = keg?e,

If C'isnot atreethen by duplicating any gate with multiple outputs, we can change C'
into a tree without affecting the number or length of paths. We can thus assume that C' is atree.
If C'isnot complete then some vertex v at depth [ < ¢ has fewer than £ children. If » isnot a
leaf then adding a child to » increases the sum over paths by ¢2(+1)| If v is aleaf then adding
children to v increases the sum by £¢2(4+1) — ¢2 whichisstrictly positivesince¢2 > 1/k. O

Combining the result of lemma 3.3.1 with (3.3), we obtain
n\ < k,chc

which impliesthefirst result of the theorem.

For the second result, notice that every gate increases the number of paths from inputs
to output. However, it also increases the distance (path length) from its inputs to the output. 1f
the gate is too noisy, the additional paths it provides will not compensate for the loss in signal
clarity. Eventualy, the output will bear little relation to the inputs. Thus, there is a threshold on
the noisiness of the gates. Above this threshold, gates are too noisy to allow reliable computation
and we cannot compute functions of an arbitrary number of inputs.

In order to calculate this threshold, we first claim that thereexists 1 < ¢ < n such that

S kPl < a/m

PeC;

where the sum is over paths in C' from z; to C’s output. The claim follows by an averaging
argument and the fact that 3" p. 1/k!Fl < 1 (the Kraft inequality, which can be proven by
induction).

Combining (3.1) and (3.2) with the above claim, for £2 < 1/k, we obtain
A< Y P < S 1k < a/m

PeC; PeC;

which implies the second result of the theorem. O

Our result improveson theresultsof Pippenger and Feder intwoways. First, weincrease
the lower bound on the threshold below which computation in the noisy gate model is infeasible.
Thiswill be discussed further in chapter 5.

Second, we increase the factor by which the depth of the reliable circuit must increase.
To compute a function which depends on » inputs, Feder shows that areliable circuit must have
depth greater than log » by at least afactor 1/ log(k£). Our result isthat thisfactor must be at least
1/ log(k£?). Since there exist functions which can be computed in log, » depth using £-input
gates, our result impliesthat the reliable circuit depth must be at least afactor 1/ log, ( k£2) greater
than the noiseless circuit depth. Seefigure 3.2.
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Figure 3.2: Lower bounds on factor of increasein circuit depth using 3-input, e-noisy gates.

Von Neumann'’s original construction implies a depth increase by a factor of 2 for
¢ < 0.0073 when computation is performed by 3-input majority gates. Pippenger [16] provides
a more careful analysis of von Neumann's method and shows that, for computation by 3-input
parity gates, as ¢ — 0, the factor is asymptoticto 1/(1 — 2/10g;(1/¢)). Our result implies that
thisfactor isat least 1/(1 — 2logs(1/¢)) which is asymptotic to 4¢/ In 3.

Von Neumann's construction uses majority voting to reduce error. For a thorough
discussion of error correction by majority voting, see Pippenger [17].

Our depth bounds can be easily extended to the case of asymmetric noise in which
a component fails with probability that depends on its pre-noise output. The model allows the
possibility that agatemay fail with adifferent probability when producing a0 than when producing
al. Inthiscase, if Y isthe pre-noise output of the gate then the noisy output Z of the gateisthe
output of an arbitrary binary channel oninput Y. Let A denote the binary channel between'Y” and
7. Inthismodel, anoisy gate for computing afunction g calculates g correctly and then transmits
the result across the noisy channel A to produce an output. Theorem 2.4.1 bounds the fraction of
information preserved in crossing this more general channel. All that is needed isto replace the
bound ¢2 with this new bound to obtain the generalization.

Theorem 3.3.2 Let f be a function which depends on » inputs. Let C' be a circuit of depth
¢ using gates with at most & inputs, where each gate fails independently with asymmetric noise
described by the channel

sn?p  cos’

Suppose C' (1 — §)-reliably computesthe function f whereé < 1/2. LetA =1+ 6logé + (1 —
d)log(1—6).

_ l srPa cos?a ]
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o Ifsi’(a— ) > 1/kthenc > %

o Ifsin(a — B) < 1/k thenn < 1/A

26

Proof: The proof is identical to the proof of theorem 3.3.1 with the bound sin(a — ) (from

theorem 2.4.1) replacing £2.

|
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Chapter 4

Noisy Circuit Size

The size of acircuit, i.e. the number of componentsin it, is roughly a measure of the
sizeor cost of it’simplementation. In order to construct acircuit to compute a particular function,
one would expect to be forced to use more noisy components than noiseless ones. We will show
that thisis indeed the case for certain functions.

Noisy circuit size has received somewhat more attention than noisy circuit depth. Von
Neumann planted the seeds of thisinvestigation by heuristically bounding the redundancy required
for computation using noisy components [28]. In 1977, Dobrushin and Ortyukov refined von
Neumann’s method to prove that for all functionsthere exist noisy circuitswhosesizeisO(cloge)
where ¢ is the size of a noiseless circuit for the function [3]. Pippenger strengthened this result
by exhibiting an explicit construction of the noisy circuit and extending the result to less powerful
models of noisy computation [15].

Accompanying these positive upper bounds are lower bounds of the same general form.
In particular, Dobrushin and Ortyukov claimed that Q(slogs) noisy circuit size is necessary to
compute functions reliably where s is the sensitivity® of the function. Pippenger et. al. showed
that this work contains serious flaws [20]. By a different argument, they were able to prove that
noisy circuits computing the parity of » bits require Q(nlogn) size. Ga [9] and Reischuk and
Schmeltz [22] successfully reproved Dobrushin and Ortyukov’s original claim, that all functions
with sensitivity s require Q(slogs) size noisy circuits. This statement treats as constants the
noise of each component, the reliability requirement of the noisy circuit, and the complexity of
the basis. In this chapter, we improve the dependence of this lower bound on these factors, and
obtain a bound which grows to infinity as the noise ¢ of the components approaches 1/2.

In order to lower bound the size of the circuit, we lower bound the number of wires
which lead to the circuit from the inputs. Since each gate has a bounded number of inputs, this
implies a bound on the number of gates. Intuitively, because the gates are noisy, the circuit must

A function’s sensitivity is the maximum (over all input vectors) of the number of bits which change the function
value when flipped individually.



CHAPTER 4. NOISY CIRCUIT SIZE 28

have several wiresto each input bit in order to gain enough knowledge about the input to compute
thefunction reliably. From the previous section, it would seem that an ideal measure of knowledge
is Shannon’s mutual information. However, in this case asimpler proof and adightly better result
can be obtained using 7.1 distance. We present the proof based on 7.1 distancein this chapter and
include the argument based on mutual information in appendix C.

4.1 Noisy Input Wires

We typically view an ¢-noisy gate as computing a Boolean function ¢ (correctly) and
then complementing the result with probability . Noise, in this view, is a single random event
which is independent of the input to the gate. This is the view taken by von Neumann when
describing his noisy gate model. It captures the defining property of an e-noisy, k-input gate that
computes g:

Property 4.1.1 For eachinput z € {0, 1}*, the gate outputs g(z) with probability 1 — e.

We found it convenient to adopt this view of anoisy gate when proving bounds on noisy
circuit depth. However, to bound noisy circuit size, we adopt a different view first proposed by
Dobrushinand Ortyukov in [2]. Thisisonly aconceptual aid. Themodel isstill that of the e-noisy
gate defined by property 4.1.1.

In this new view, rather than the output wire failing with probability ¢, each input wire
failsindependently with probability w. The output of the gateisthen computed based on the noisy
version of theinput. In particular, an input = becomes y with probability

Alz,y) = (1 —w)k?

where d is the Hamming distance between = and y.?> The gate then outputs 0 with probability
1 (y) and 1 with probability 1 — )(y) where ¢4 isafunction characterizing the gate. It isworth
emphasizing that given y, the output of the gate is independent of .

Thefunction ¥» must be chosen so that the gate obeys property 4.1.1. If w istoo large, it
may not be possible to find such a+> and in this case the e-noisy gate cannot be viewed as having
w-NOISy input wires.

To calculate the error on a particular input, treat the function + as a 2* dimensional
column vector in [0,1]%", and A(z,y) as a 2% x 2F matrix. The error on input z is the zth
component of the matrix, vector product A - 4 which we denote (A - ¢4 )(). With this notation,
the condition that the gate be e-noisy isthat, for al = € {0, 1}]“,

1-¢ ifg(z)=0
=1

€ if g(x) (4.1)

¥(z) € [0,1] and (A-¢)(w)={

2The Hamming distance between = and y is the number of bit positionsin which z and y differ.
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Our goal isto find the values of w for which there is a ) that satisfies 4.1. In other words, how
noisy can we view the input wires of an e-noisy gate?

The following lemma answers this question. It improves lemma 3.1 from [2] which
required w € [0, ¢/k]. Asin chapter 3, let £ betwicethe biasof € from /2 (i.e. £ = 1 — 2¢).

k
Lemma4.1.1 For every Boolean function g : {0,1}* — {0,1},¢ € [0,1/2],andw € [0, 1_2‘/E]
there exists an ¢-noisy gate with w-noisy input wires that computes g.

Proof: Fix k and e € [0,1/2]. We show that for any w € [0, 1_2%], and any Boolean function g
on & inputs, there exists afunction v satisfying condition 4.1. If ¢ = 1/2 then the output of the
gateisafair coin flip, independent of the input, and the function ¢» = 1/2 satisfies condition 4.1
forany w € [0,1/2].

If e < 1/2, weshow the existence of the function ) by treating condition 4.1 asa system

of linear equations. We show that +) is uniquely defined by this system and that for w € [0, 1_—2}%],
1 () isaprobability (i.e. liesin [0, 1]) for all =.

The matrix A can be written as the tensor product of a2 x 2 matrix with itself £ times.

A 1-w w ok
o w 1-w )

Theinverse of A existsand is easy to calculate from its tensor form,

A1 1 1-w —w o
A2\ —w 1-w ) =
From condition 4.1, the function > (treated as a vector) is A~1 - (%_4- ¢) Where %_ is the 2*

dimensional column vector of all 1/2’'sand ¢ € {+£/2, —5/2}2k (for £ = 1— 2¢) correspondsto
the Boolean function g:

—£/2 ifg(z) =

To complete the proof, we must show that for all Boolean functions ¢ (i.e. al vectors
@), the value ¢(z) liesin [0, 1] for all =. Since % is an eigenvector of A1 with eigenvalue 1,
AL (3 +¢) =3+ A1 ¢. Thusit remainsto prove that

bl — { +/2 g(z) =0

max max |(A71. ¢)(z)| < 1/2.
de{+¢/2,—¢/2)2F ze{0,1}*

A row of A=t isapermutation of the 2* termsin the binomial expansion ((1—w) — w)*
each weighted by (1 — 2w)~*. The sum of the absolute value of the entries in a row is (1 —
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20)7F(1-w)+w)k = (1-2w)~*. Sincethemagnitude of theentriesin ¢ is&/2, themaximum
of |(A™1- @)(z)| isE(1— 2w)~*/2. Thus+p(z) € [0, 1]if £(1— 2w)~*/2 < 1/2 or equivalently

1_51/19
<
v="2

4.2 Lower Bound on Noisy Circuit Size

Assume that & is an upper bound on the number of inputs to a gate in the basis. We
lower bound the sizeof a(1 — 6)-reliablecircuit by lower bounding the number of wiresfrom the
external inputs into the circuit. Since each gate in the circuit has at most £ inputs, alower bound
on the number of wires trandates directly into alower bound on the number of gates. The result
of the previous section alows us to think of the wires as failing independently with probability
w. Thus, we can view the noisy circuit as a probabilistic function which obtains a noisy version
of the true input. Intuitively, the circuit must obtain several samples of each input bit in order to
correctly compute the function. If the circuit fails to take sufficiently many samples of an input
bit, it will be unable to distinguish the input in which the bit is set to 1 from that in which the bit
is0. If, in addition, the function is different on these two inputs then the circuit fails to correctly
compute the function on at least one of the two inputs.

4.2.1 Sendtivity

To make this intuition precise, we define the sensitivity of a Boolean function f which
takesinput @ = z1, 22, ..., z,. Let e; denote the n-bit vector whichisal 0’s except for alinthe
1th position. Let eg denote the n-bit vector of O's.

A function f issensitiveon input z to an input bit z; if f(z) # f(z®de;) (i.e. thevalue
of f changeswhen z; isflipped). The sensitivity of f oninput  is

{2 f(=) # f(z@ei)}].

In other words, it is the number of input bitsto which f is sensitive oninput . The sensitivity of
f isthe maximum over all inputs « of the sensitivity of f on .

Theorem 4.2.1 For ¢ € (0,1/2] and 6 € [0,1/2), if a Boolean function f is (1 — ¢)-reliably
computed by a circuit with e-noisy, £-input gates then the number of gatesin the circuit isat least

slogs + 2slog(2(1 — 26))
klogt

k
where s is the sensitivity of the function f, ¢ = % andw = 1_2\/5_
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Proof: Without loss of generality, we assume that the function f has maximum sensitivity on the
input eg; that f(eg) = 0; and that on input eq, f is sensitiveto z1, ...,z (i.e. f(e;) = 1for
1=1,...,9).

Let m; be the number of wires from input z;. By lemma4.1.1, we may assume that

theseinput wiresfail with probability w = 1_2% . Thusan input to the circuit causes a probability
distribution on the values transmitted by the input wires.

Consider the input wires from the inputs z1, ..., z,. Let p(y|e;) be the probability that
these wires transmit a particular vector y of values when the input to the circuit ise;. The vector
yisa) ;1 m; dimensiona vector of 0'sand 1's.

Since the circuit is reliable, it outputs O with probability > 1 — é on input eg and 1
with probability > 1 — § oninput e; for 7 = 1,....s. In order to distinguish input eg from
e;, the distributions p(-|eg) and p(-|e;) must be different. Let X be a Boolean random variable
which is 0 if the circuit’'s input iseg and 1 if the circuit'sinput ise;. Let 7 be the output of the
circuit. Thereliability of the circuitimpliesthat ||p x—o0 — Pzx=1ll; > 2(1 - 2¢). In addition,
7 isindependent of X given the values transmitted by the input wires. By the data processing
inequality for 1, distance (lemmaB.0.2), the 11 distance between p(-|eg) and p(-|e;) must be at
least 2(1 — 26). That is,

> Ip(yleo) — p(ylei)| > Ipzix=0 — Pzx=1ll1 > 2(1— 25).
Yy

Thisimpliesthat the 1.1 distancebetween p(-|eg) and any averageof thep(-|e; ) isat least 2(1—2¢),

i.e
DEZ
Yy
with a; > OandEaZ =1

Let us now derive an upper bound on this 1,1 distance. Our first step is to rewrite the

distance as an expectation.
pr p(yleo)

where the expectation is with respect to the distribution p(-|eg). Sincee # 0, we havew # 0 and
p(yleo) # Ofor al y.
After rewriting || as v/22, we use the Cauchy-Schwarz inequality to obtain,

s A 2
(Z a; <1 B p(y|e2)>)
p p(yleo)
Since e; and eg differ only in the sth input bit, the ratio

fer - (2 (597

> 2(1— 26) 4.2)

pyles) — 3 aip(yler)
=1

D=E

D?’<E
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where Z; isthe number of 0's transmitted by the m; wires from the input ;.3 Under distribution
p(-|eo), Z; isindependent of Z; for j # ¢. Also,

E[l oy ] Zpyleo pylei) =

Thusthe o;(1 — p(yle;)/p(yleo)) fori = 1,. .., s aremutually independent and have mean zero.
If X1,...,X,, areindependent, mean zero random variablesthen E[(3°; X;)?] = E[3; X2]. It
follows that
s 2 2
p(y|€z’)) ( < (y|€¢)))
E Q; <1 — = E
(2::1 p(yleo) Z p(yleo)

iafEKw)z—l]

pa p(yleo)

Our next step is to cal culate the expectation within the preceding sum. Since the wires
fail independently with probability w, p(y|e;)/p(yleo) is the product of m, independent and
identically distributed random variables. Each random variable is w/(1 — w) with probability
1-wand(1- w)/w with probability w, and so,

M Thus,

w(l-w)
: pwle)\\ | = o
(Z (- <y|eo>)) ] =2 ol =1

wheret =

E

=1 =1

Up to this point, the «; could be any set of non-negative weights whose sum isone. We
now choose particular values for «; to minimize the right hand side of the preceding equation.
This constrained optimization problem can be solved using the theory of Lagrange multipliers.

The sum is minimized for 1

N(tmi — 1)

o =

3When y is distributed according to p(-|o), Z; isabinomialy distributed random variable:

PlZ =a] = (mi)(l—w)a mia

a
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where N isthe normalizing constant N = 3=, 1/(¢™¢ — 1). With this choice of «;,

s 1 -1 s 1 -1
s (e <(5)

1= =

Combining thiswith our lower bound (4.2) gives,

s 1 -1
(2(1-26))%* < (Z tmi) (4.3)

=1

Using the inequality of arithmetic and geometric means, yields

1/s
(2(1 - 26)) % (H tm=)

which after taking logarithms implies the theorem. O

The proof of the theorem provides more information about the m; than simply that their
sum islarge. Sincet > 1, the bound 4.3 implies that the number of inputs with fewer than m
input wiresisat most
tm
(2(1—26))%
In other words, the circuit cannot sample afew inputs many timesto make up for neglecting most
of theinputs.

For fixed k, ¢, and 4, theorem 4.2.1 implies that the size of a noisy circuit to compute
afunction with sensitivity s isQ(slogs). In 1991, this asymptotic behavior was proved by both
Gd (for é < 1/4) [9] and independently by Reischuk and Schmeltz [22]. Recently, Gacs and Ga
extended Gal’s result to all values é < 1/2[8]. Theimprovement presented in thisthesisisin the
dependence of the bound on the noise ¢ introduced by each gate. In particular, we show that as ¢
approaches 1/2, the size of the circuit increases unboundedly. See figure 4.1 for a comparison of
the multiplicativefactors of slogs asafunction of ¢.

Theorem 4.2.1 isfundamentally a statement about computation based on noisy samples.
The fact that the computational model is a circuit of £-input gates allows us to transform a lower
bound on the number of samples into a lower bound on circuit size. However, in bounding the
number of samples, the computation can be any probabilistic function. The only requirementsare
that access to the input is exclusively through the noisy samples (in order to apply the 7., data
processing inequality) and that the sampling pattern is fixed, independent of the values obtained
in sampling. Thus, for example, our result extends to the Static Noisy Decision Tree model just
asin[22].
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Figure 4.1: Lower bounds on factor of slog s for noisy circuit size using 3-input gates.

4.2.2 Block Sensitivity

Asin [9], theorem 4.2.1 aso holds when the sensitivity of f is replaced by the block
sengitivity of f.

Forany set B C {1,...,n}, let e be the n-bit vector which is all 0's except that for
every i € B, eg(i) = 1. (ep isthe characteristic vector for the set B.) A function f has block
sengitivity b if b isthe largest number such that there exists digoint sets By, ..., B, C {1,...,n}
andaninputz = z1,...,z, with f(z) # f(x®ep,)fori = 1,...,b. Theblocks B; are sensitive
blocks of f oninput 2. Obviously, the block sensitivity of f isat least the sensitivity of f.

Theorem 4.2.2 For ¢ € (0,1/2] and 6 € [0,1/2), if a Boolean function f is (1 — ¢)-reliably
computed by a circuit with e-noisy, £-input gates then the number of gatesin the circuit isat least

blogb + 2blog(2(1 — 26))
klogt

k
where b isthe block sensitivity of the function f, ¢ = %ﬁ andw = 1_2\/5.

Proof: Asinthe proof of theorem 4.2.1, assume without |oss of generality that the function f has
maximum block sensitivity on the input eo; that f(eg) = 0; and that B; is the :th sensitive block
of input bits(i.e. f(ep,) = 1fori = 1,...,b). Redefine m; to be the number of input wires from
inputsin B;.

The proof followsthat given for theorem 4.2.1 with e g, replacing e;. O
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4.2.3 Using Mutual Information

The proof given in this chapter is based upon lower and upper bounding the 7.; distance
between conditional distributions. The distributions in question are on the input wires to the
circuit; in one case, given that eg is the input, and in the other, given that a randomly chosen e;
isthe input. The obvious question in the context of thisthesisis: Does using mutual information
in place of the I; distance yield a better bound? We obtain a bound using mutual information
that is essentially the same as that obtained using 7; distance (the additive constant is smaller).
In fact, the upper bound on the mutual information comes from the 7,; distance upper bound in
the proof of theorem 4.2.1. The most interesting feature of the proof isits use of the signal decay
theorem for 2-input, m-output channels. Improving the signal decay theorem for the particular
distributionsrequired by the proof, may lead to improved bounds on the size of noisy circuits. See
appendix C for details of the information theoretic proof.
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Chapter 5

Threshold for Noisy Computation

If the components (gates) of a circuit are too noisy then the circuit cannot be used to
compute functions with any degree of reliability. In other words, for some values of ¢, reliable
computation! using e-noisy, k-input gates is impossible. For instance, if ¢ = 1/2 then each gate
(including the output gate of the circuit) produces afair coin flip. A result of chapter 3 (theorem
3.3.1) showsthat if € > 1/2 — 1/2v/k then functions which depend on a sufficiently large number
of inputs cannot be reliably computed. The basic question addressed in this chapter is: what is
the exact threshold above which reliable computation is impossible using e-noisy, k-input gates?

To make the notion of a threshold more precise, let C;, be the unique valuein [0, 1/2]
such that if ¢ < Ci then reliable computation is possible, but if ¢ > Cj, then reliable computation
isimpossible. Let F;. be the analogous quantity when computation is restricted to formulas. The
valuesC;, and F}, are the noise thresholds for reliable computation by circuits and formulas using
noisy, k-input gates. Since aformulaisacircuit, reliable computation by formulaimpliesreliable
computation by circuit. Thus 7, < Cy.

The threshold phenomenon was first noticed by von Neumann, who showed that for
€ < 0.0073, reliable computation is possible using e-noisy, 3-input majority gates. His method
wasto interleave “ computation levels’ of the circuit, i.e. levelswhich correspond to levels of the
original (noiseless) circuit, with “error-correction levels’, in which 3-input majority gatescombine
the output of three separate copies of each computation, in order to obtain an output which ismore
likely to be correct than any single copy.

As von Neumann noted, this idea cannot lead to reliable computation if ¢ > 1/6. If
each input to a 3-input majority gateisincorrect independently with probability a, then an e-noisy,
3-input majority gate will be incorrect with probability

(1—€)(a®+3a%(1—a)) + (1 - a)® + 3a(1 - a)?) (5.1

'Reliable computation refersto the ability to (1 — 6)-reliably computeall Boolean functionsfor somefixed § < 1/2.
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If ¢ < 1/6 then this value can be smaller than . Such error-correction is necessary for von
Neumann'’s argument to work. However, if € > 1/6, then for every a < 1/2, the error probability
of the output is greater than «, i.e. the output of the majority gate is less reliable than its inputs;
and von Neumann’s method fails.

This suggested to von Neumann that perhaps reliable computation is not possible by
e-noisy, 3-input gates if ¢ > 1/6. The first proof of the impossibility of reliable computation
by noisy components came in 1988 from Pippenger’s work on formula depth bounds [16]. He
showed that if ¢ > 1/2 — 1/2k then reliable computation by formulais impossible using ¢-noisy,
k-input gates. Thisimpliesthat 7, < 1/2 — 1/2k (e.g. F3 < 1/3). Soon &fter, Feder extended
this result to general circuits, showing Ci, < 1/2 — 1/2k [7]. In chapter 3, we used more precise
bounds on the information decay caused by noisy componentsto show that C;, < 1/2 — 1/2Vk.

In1991, Hajek and Weller used acompl etely different techniqueto proveatight threshold
for reliable computation by formulaswith noisy 3-input gates[11], showing that 73 = 1/6. Inthis
chapter, we extend thework of Hajek and Weller to prove atight threshold for reliable computation
by formulas using noisy, k-input gates (£ odd). The main result of the chapter is summarized in
the following

Theorem 5.0.3 For £ odd and
2k—2
HED

2

NI =

Br =

there exists 6 < 1/2 such that all Boolean functions can be (1 — §)-reliably computed by noisy
formulasif and only if € < G.

Observe that the theorem impliesthat 7. = §r and Ci. > .

Using Stirling’s approximation, 3y =~ 1/2 — \/7/2\/2k. Thisis only dlightly smaller
than the upper bound on C;, we obtained using information theoretic tools in chapter 3. The fact
that the bounds are so close reflects the precision of our information theoretic bounds. Seefigure
5.1 for a comparison of these threshold bounds.

5.1 Threshold Value

To calculate the threshold for reliable computation, we consider a generalization of von
Neumann’s expression for the error of a 3-input majority gate (5.1). Let

mex(a) = (1- €)pp(a) + €(1 - ¢r(a)) (5.2)
where

k20 7, o
gbk(a): Z (i)(l—a)lak—z

=0
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Figure 5.1: Bounds on the threshold for noisy computation.

Equation 5.2 representsthe probability that an e-noisy, k-input majority gateisincorrect
given that itsinputs are incorrect independently with probability «.

For k£ = 3, if ¢ > 1/6 then m3(a) > a for dl a € [0,1/2). Thisisvon Neumann's
observation that the output of a noisy, 3-input majority gate is lessreliable than itsinputs, if ¢ is
large. In this section, we generalize von Neumann's observation to noisy, k-input gates.

Lemmab.1.1 For £ odd,

1 ife > gy thenm, x(a) > aforall a € [0,1/2)
2. ife < By thenthereexists v, ;. € [0,1/2) such that m ;(ve ) = v, and
o ifa < v pthenmp(a) > a
o ifa>v pthenm p(a) <a
Seefigure 5.2 for an example of m. ; whene = 3 and € < 3.
Proof: Rewritea as(1— «)/2 (i.e. a istwicethebias of « from 1/2) and let

1-«
2

file;a) = mep((1-a)/2) -

(l.e. fx(e, a) isthe difference between the unreliability of the output and the unreliability of the
inputs.)

We first show that mox(a) < @« and mg, x(a) > a for a € [0,1/2). This and the
linearity of m. x(a) in ¢ prove thefirst statement in the lemma.
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Figure 5.2: Error of e-noisy, 3-input majority gate as afunction of input error for ¢ = 83 and for
€< Pa.

mo,x(a) is the probability that the noiseless majority of £ inputsis incorrect given that
each input is incorrect with probability . To show mq x(a) < a, we show

& [k i = [k o
=0

i=0 \!

which for k£ odd is equivalent to

Lk/2) /. o k72 7y o N
2 (-)ﬂ—a)’a’“‘l <a ( )((1—a>2a’“-2+(1—a)’“—2a2>
t=0

=0 \! t
Thisinequality holdsterm by term.

Since f (8%, 0) = 0,toshow mg, x(a) > afora € [0,1/2)it sufficesto show fi( 5k, «)
isanincreasing function of a € [0, 1] (i.e. dfix(fBk,a)/da > 0),

dfy(e,a) d
o 1/2+(1- Ze)%qbk (5.3
Since,
d kEfk-1 o\ k=1
@@e: _Z_k( k;zl )(1—a )2
substituting into (5.3) yields,
dfi(c, o) k (k-1 it
o :1/2—(1—26)2—]6(,%1)(1—a)2
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For ¢ = G,
dfi(e, o) _
do
which is non-negative for a € [0, 1].

We now show the second statement of the lemma. The second derivative of fi (¢, o) is

P fi(e, 0 k(k—1) (k-1 ks
71[5(22’ )20 (2k )(u>a(l—a2)7
' 2

which is non-negative for al a,¢ € [0,1/2]. Thus fi(e, @) is convex in a € [0,1/2]. Since
fx(e,0) = 0and fi(e,1) = ¢, the convexity of fi(e, ) will imply the lemma if we can show
dfi(e,a)/da < Oata = 0. For e < fy,

dfi(c,0) 1 (1-a?)7
da — 2
with equality if and only if & = 1, and thusat a = 0O, dfy (¢, a)/da < O. O

5.2 Negative Result

Suppose we simply wish to “remember” an input bit for 7, computation steps. That is,
to design anoisy circuit of depth 7 with oneinput z whose output is = with high probability. This
would seem to be aprerequisite for computing complex functions. If the computation components
are e-noisy, k-input gates, the obvious method is to take the majority of £ independent copies
of the best circuit for remembering the input bit for 7, — 1 steps. This construction resultsin a
depth 7 formula of majority gates which has error probability m”, (0) where m”, is the L-fold
composition of m. ;. By lemma5.1.1, if € > 34, thistechnique will not work for arbitrarily large
L. Infact, for £ odd,

if ¢ > f then lim ml(0) = 1/2.

Thisistheintuitive reason why 5, (whichisderived from the behavior of noisy, k-input majority
gates) isthe noise level threshold for computation using any noisy, k-input gate.

To make this intuition precise, we show that if ¢ > /3, then, for any fixed § < 1/2, there
are Boolean functions which cannot be computed by formulawith error . In particular, theorem
5.2.1 shows that al functions which depend on » variables cannot be computed with error ¢, for
arbitrarily large n.2

Theorem 5.2.1 For k odd, if ¢ > f; then any formula using e-noisy, k-input gates for computing
a Boolean function which depends on at least k"~ + 1 variables errswith probability > m”, (0)
on some input.

2Recal| that afunction depends on an argument « if there exists asetting of the other arguments such that the function
restricted to that setting is not a constant.
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Note that this implies reliable computation is impossible if ¢ > G (since limg_
mgk(O) = 1/2) and hence 7, < (.

Proof: Let f be a Boolean function which depends on at least £~1 + 1 variables. Let /' bea
formulafor f composed of e-noisy, k-input gates. Since f depends on k~1 + 1 variables, there
exists some variable = which isan input to only gatesat depth > £ in #'.3 Thusany path from the
input z to the output of the formula must pass through at least . gates. Fix the inputs other than
x sothat either f = 2 or f = 1 — z; without loss of generality say f = =. Let F,. betheformula
F with inputs other than z fixed as above.

Consider the two conditional probabilitiesP[F,, = 1|z = OJand P[F, = O|z = 1]. The
maximum of these two quantitiesis alower bound on the error probability of F'.

Following Hajek and Weller, one may view these conditional probabilitiesgeometrically
asthepoint (P[/, = 1|z = 0], P[ [, = 0|z = 1]) intheunit square. In general, if Y isaBoolean
random variable, let

AY = (05 ) = (P[Y =1z =0, P[Y =0jz = 1)).

For example, the e-noisy, k-input majority gate with al inputs equal to z, produces an output
Y described by the point A = (m. (0),m(0)) = (¢, €). Inthis case, the probability that ¥
differsfrom z ise.

The gate whose output is F,. (the top gate in the formula) does not receive = directly as
input. The value of » must pass through at least 7. — 1 noisy gates to reach this top gate. Each
gate adds noise to the value of z, but the computation performed by the gate may compensate for
this noise.

We show that if ¢ > ;. then each gate cannot compensate for the added noise. In fact,
the space of points \¥', describing possible distributions at the gate’s output, contracts as we pass
z through more and more noisy gates. In particular, let S(a) be the convex hull of the points
{(0,1),(1,0),(a,a),(1—a,1— a)}. We show (lemma 5.3.1) that if the inputs to an e-noisy,
k-input gate are described by pointsin S(a), then the output must lie in S(m. r(a)). Seefigure
5.3.

Using this lemma, we show by induction on 7, that the point describing the output of
F lies within S(mgk(O)). This establishes the theorem since the error of any random variable
whose point liesin S(a) isat least .

For I, = 1, theformulaconsists of at least one gate. The points describing inputsto the
top gate of theformula /-, liewithin S(0) (trivially) and thus, by lemma5.3.1, the point describing
the output lieswithin S (m, x(0)).

For I. > 1, theformulaconsists of atop gate with at most & inputs. Each of theseinputs
is either constant with respect to = or the output of aformulain which z is an input to gates at
depth > I — 1. In thefirst case, the point describing the input lies within S(a) for al a. In the

3The depth of a gate is the number gates on the path from itsinput to the output of the formula.
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Figure 5.3: Contraction of 5(a) to S(m. x(a)) caused by one noisy gate.

second, the point describing the input liesin 5(m”;*(0)) by induction. Thus, by lemma5.3.1,
the point describing the output lieswithin S(m”, (0)). ]

5.3 Contraction of S(a)

Lemma5.3.1 If ¢ > 8, and AY1,AY2 .. AYx € §(a) with 0 < a < 1/2 then for all e-noisy,
k-input gates g with inputs Y1, Ya, ..., Yy and output Y, AY € S(m. x(a)).

Proof: Wewill show inlemmas5.4.1 and 5.4.2 that we may assumethat \Y¢ = (a, a) forall 4 and
that ¢ is an e-noisy, k-input threshold gate. A k-input threshold gate outputs 1 if and only if the
number of inputsequal to 1isat least t. Thethreshold ¢ isan integer between 0 and £ inclusive.

We show that the output Y of the gate g has \Y € S(m.x(a)). By symmetry, we
need only consider those threshold gates g with threshold ¢ > [%/2]. We will show that A" lies
within the convex hull of the vertices {(0,1),(1/2,1/2), (mei(a), mx(a))}. Sincet > [k/2],
Ay <AV Also,a < 1- aimpliesAy + A} < 1. Thuswe need only show that,

Ab + mep(a)(A] = Ag) > mei(a) (54)

Let V be the pre-noise output of gate g. Thatis, A} = ¢ + (1 — 2¢)A\} for b € {0, 1}.
Then (5.4) becomes,
Mg+ mer(a)(A] = Ag) > o
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where \y = ¢p(k —t,a), \] = ¢p(t — 1,a),and

N e? S
or(la) = <1> (1-a)ab".

=0
Since e > (3, impliesm, x(a) > q, it sufficesto show A} + a(A] — AY) > ¢y or,

a(A] — éx) > (1—a)(¢x — Ag)
Substituting the values of ¢y, A§, and A} yields,*

a(or(t = 1,a) = $x([k/2], a)) = (1 = a)(¢k([k/2], a) = ¢k (k = 1, a))
The inequality holdsterm by term sincei > [k/2] impliesa(%)(1 - a)'a*~" > (1—a)(,*.)(1 -
a)fi-iai. O

5.4 Reduction lemmas

The above proof relies on two lemmas which are rather straight-forward extensions of
similar lemmasfor &£ = 3 given by Hajek and Weller in [11].

An e-noisy, k-input gate ¢ takes asinput Y1, .. ., Y, described by points AY1, ..., AYx,
and outputs Y described by AY'. Thusthe gate g defines amapping ¢ : [0, 1]%* — [0, 1]2. Lemma
5.3.1 dtates that if ¢ > 3, then the union over al g of g(S(a)*) is contained in S(m. x(a)).
The purpose of the following two lemmas is to show that it suffices to prove that the union
over al threshold gates g of g((a,a)¥) is contained in S(m, 1(a)). (Note: (a,a)* isthe point
(a,a),(a,a),...,(a,a)in[0, 1]%*.) Themethod isto show that the set of image points hasthe same
convex hull in both cases. Thus, since S(m. (a)) is convex, showing containment of either set
implies containment of the other.

Lemma5.4.1 If C isthe convex hull of the union over all g of g(5(a)*) and C, is the convex
hull of the union over all g of g((a, a)*) then

C=0C,

Proof: The mapping from S(a)* to [0,1]? defined by ¢ is affine, [0,1]> — [0, 1] in each
AYi when the others are fixed.  Thus the image of S(a)* is contained in the convex hull of
the image of the set of vertices of 5(a)*. Each vertex is of the form (AY1, AYz ... AYk) with
A€ {(1,0),(0,1),(a,a),(1—a,1—a)}. If A+ € {(1,0),(0,1)} then the same value of \Y
can be obtained with AY: = (a, @) by modifying the gate ¢ to ignore the value of Y;. Similarly, if
A = (1- a,1— a) thenthesame value of ¥ can be obtained with \Y* = (a, a) by modifying
the gate g to negate input Y;. The lemmafollows. O

“If t = [k/2] both sides of the inequality are zero.
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Lemma5.4.2 If C, isthe convex hull of the union over all ¢ of g((a, @)*) and C, ; isthe convex
hull of the union over threshold gates g of g((a, a)*) then

Ca = Ca,t

Proof: Notethat \¥ = (a,a) for al i. To establish the lemma, it suffices to show that for any
congtants~ and s, 7Ay 4 sA)" is minimized when g is some threshold function.

Againlet V be the pre-noise output of gate g, S0 Y = ¢ + (1 — 2¢)A) for b € {0, 1}.
Thusto minimize rA} + sAl, weminimizer\J + sAY.

Ay = > P[(Y1,Y2, ..., Yy)|z = O]
(Yl,Yz,...,Yk)ES]_

M= > P[(Y1,Y2, ..., Yy)[z = 1]
(Yl,Yz,...,Yk)ESo

where 5 is the set of k-bit vectors representing inputs for which V- = 4. A gate g which
minimizes r\§ + sAY has (Y1,Yz,...,Y;) € Sp if and only if rP[(Y1,Yz,...,Yi)|z = 0] <
sP[(Y1,Y2,...,Y3)|z = 1]. Fromthefactthat \Y: = (a, a),

P[(Y17Y27 7Yvk)|‘r = 0] = at(l_ a)k_t
P[(Y17Y27 7}/1€)|‘r = 1] = ak_t(l - a)t

wheret is the number of onesin the vector (Y1, Y2, ..., Y%). Thustherelation rP[(Y1, Yo, ..., Yi)-
|z = 0] < sP[(Y1, Yo, ..., Yr)|z = 1] holds monotonically in ¢ and the lemmafollows. O

5.5 Positive Result

The preceding section shows that the ability of an e-noisy, k-input majority gate to
decrease error probability is necessary for reliable computation using k-input gates. In this
section, we show that this is also a sufficient condition.

For ¢ < [, we show that there exists § < 1/2 such that given any Boolean function, we
can construct aformulausing e-noisy, k-input gateswhich (1 — §)-reliably computes the function.
Oneobviousideaisto use von Neumann’stechnique of taking the noisy majority of % independent
copies of acomputation in order to decrease the error probability. This process can be repeated to
decrease the error probability still further, but thereisalimit. It will decrease error if and only if
the original error isin theinterval (v, 1/2) where

Ve = L”m mgk(a)

— 00

(By lemma5.1.1, the limit exists and isthe same for any « € [0,1/2).)
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Oncethe error probability is back to areasonable level, more computation can be done.
Such a scheme works as long as computation can be performed at the “reasonable” error level
achieved by the mgjority gates. In other words, computation at thislevel of error must result in an
output which is correct on al inputs with probability strictly greater than 1/2.

Hajek and Weller found a noisy, 3-input gate which computes reliably given very noisy
inputs. Strangely, it requires the error of all of itsinputs to be close to v, not just close to or less
than v. Infact, the probability of an incorrect output bit can increase from below 1/2 to above 1/2
by decreasing the error of some of the inputs. Thus, if we know only that the noise at each gateis
at most ¢, an adversary could decrease the noise of some gatesto below ¢ and ruin thereliability of
the output. The construction takes advantage of the precise ¢ noise at the gatesto obtain areliable
formula.

Hajek and Weller’'s noisy, 3-input computation gate is used to simulate the computation
of anoiseless 2-input NAND gate. Itiscalled an XNAND gate. A noiseless XNAND gate outputs
1 for inputs (0,0,0), (1,0,0), (0,0,1), and (0,1,1); and outputs O otherwise.

Let z and y be theinputsto aNAND gate. Let X be anoisy version of z; and Y7 and
Y> independent noisy versions of y. The output of XNAND oninput (X, Y1, Y2) isintended to be
areliable version of NAND oninput (z, y). The following lemma makes this connection precise.

Lemmab5.5.1(Lemma3.1from [11]) For ¢,v € [0,1/2) thereisa § < 1/2 and an open
interval 7 with » € I C [0,1/2] so that the following is true. If P[X # z], P[Y1 # y],
PlY2 # y] € I, and if Z is the output of an e-noisy XNAND gate with input (X, Y1, Y2), then
P[Z # NAND (z,y)] < é.

Proof: If P[X # z] = P[Y1 # y] = P[Y2 # y] = v then P[Z # NAND (z,y)] equals
(1-v)(2¢ = 1)+ 1—cif (z,y) = (0,0) or (1,1) and equals (2v% — 2v 4+ 1)(2c — 1) + 1 — ¢
if (z,y) = (1,0) or (0,1). In either casg, if ¢,v € [0,1/2) then P[Z # NAND (z,y)] < 1/2.
Since P[Z # NAND (z, y)] isacontinuous function of (P[X # z]|, P[Y1 # y], P[Y2 # y]), the
proof is complete. O

We use the XNAND gate in conjunction with k-input majority gates (£ odd) to show
that reliable computation by precisely e-noisy, k-input gatesispossibleif € < .

Theorem 5.5.1 For £ oddand 0 < € < 3, thereexists § < 1/2 such that any Boolean function
can be (1 — ¢)-reliably computed by a formula using e-noisy, k-input gates.

Note that thisimplies 7, > 0.

Proof: The proof is a simple extension of Proposition 3 from Hajek and Weller [11]. For £ odd
(k > 3), an e-noisy XNAND gate can be implemented by an e-noisy, k-input gate which ignores
all but three of itsinputs. Use é and I with v = v, ; from the proof of lemma5.5.1 and choose L
large enough so that [m”,(0), m%,(6)] C 1.
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Start with a formula composed of 2-input NAND gates which computes the function.
Theideaisto replace the noiseless formulawith aformula composed of e-noisy, k-input majority
gatesand XNAND gates. Thereplacement isperformed inductively. If theformulaistrivial,i.e. a
singleinput or constant, then we are done. Otherwise, suppose the top NAND gate has two inputs
z and y. By induction, replace the formulas computing = and y with three noisy formulas: one
which computes anoisy version U of z, and two which compute independent noisy versions, V;
and V>, of y. Theinduction insures that the error probabilities of these noisy versions lie within
[0, 6].

By replicating their formulas, make & independent copies of each of U/, Vi,and Va.
Use I levels of e-noisy, k-input gates to combine the copies of U into one noisy version X of z
whose error probability lies within 7. Do the same with the copies of V7 and V> to obtain Y; and
Y, with error in 1. By lemma 5.5.1, the output of an XNAND gate with these inputs will be a
(1 — 6)-reliable version of the original output. O
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Chapter 6

Future Work

6.1 Information Theory

One of the most obvious open problemsisto extend the upper bound on the fraction of
information that can cross a noisy channel to more general channels. Suppose the random variable
X represents arandomly chosen message, and Y a corrupted version of this message. If 7 isthe
output of a noisy channel on input Y then 7 carries no more information about X than Y did.
What is the maximum fraction of information carried by Y that makesit through? In other words,
we desire an upper boundon I(X; Z)/I(X;Y) over all possiblejoint distributionson X and Y.
The bound then will be solely in terms of the channel between Y and Z.

We obtain atight upper bound on /(X'; Z)/1(X;Y) only inthecasewhen X and Y are
Boolean random variables and 7 is the output of a binary channel on input Y. If 7 isthe output
of a 2-input, m-output channel, we show an upper bound which generalizes the binary channel
bound but is not tight for all channels.

Inthemost general situation, X takesone of r possiblevalues, Y takesone of n possible
values, and 7 is the output of an n-input, m-output channel on input Y. What is the maximum
over joint distributionson X and Y of I(X; Z)/I(X;Y)?

Often thisratio is 1. For example, if X is a Boolean random variable and the » inputs
to the channel can be partitioned so that the outputs of two of the partitions do not overlap, then
the channel will perfectly preserve one bit of information. A joint distributionon X and Y that
achievesthis places Y in one of the two partitionsif X = 0 and in the other if X = 1. Since the
outputs of these two partitions do not overlap, /(X; 7Z) = 1.

We conjecture that when X is Boolean, the distributionson X and Y which maximize
I(X;72)/1(X;Y) place al of their probability on only two of the n values of Y. That is, the
behavior of the genera n-input, m-output channel is governed by the “best” 2-input, m-output
channel.
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6.2 Depth and Size Bounds

Thetechniquesused in thisthesisto obtain lower bounds on the depth and size of reliable
circuits treat circuit components as black boxes. The functions these components compute are
immeaterial totheanaysis. The componentsare simply characterized by the number of their inputs
and their noise. In addition, the function computed by the circuit as a whole is only specified by
the number of itsinputs and, in the case of size bounds, its sensitivity.

Such gross complexity measures are suitable for our analyses, since our arguments are
based on understanding how noise affects measures of correlation. But they place limitations on
the precision of the bounds we can obtain. One potential way to improve these bounds is to use
more detailed complexity measures, particularly on the function computed by the circuit.

6.3 Threshold Bounds

Thetight threshold result of chapter 5 holds only when the number £ of inputsto anoisy
gate is odd, and the computation is performed by aformula. In this case, we can argue that for
noise above a certain threshold, the best way to preserve a single input value through 7. levels of
noisy computationisto feed £ copies of the input into aformulaof noisy, k-input majority gates.
This isthe fundamental idea behind the proof.

For & = 2, there are two possible “magjority” gates: the “and” and “or” gates. Given
inputswith symmetric error, oneintroducesbiastowards1 and the other biastowards0. Repeatedly
using the same one skewsthe error probability moreand more. I1n order to dampenthebias, Valiant
[26] proposed alternating “and” and “or” gates level by level. This scheme decreases error if the
gate noiseisbelow a certain threshold. However, itis not clear that thisis the best way to decrease
error for noise values at and above that threshold.

The second deficiency in the exact threshold results is that they hold only for formulas.
We do not know the exact threshold for reliable circuit computation. We know that since a
formulais acircuit, the exact threshold for formulas provides alower bound on the threshold for
circuits. In addition, we establish in chapter 3 an upper bound on this threshold which has the
same asymptotic dependence on & as the lower bound. The gap is extremely small. Almost
surely, the true threshold for circuits and formulasis the same. It would be very interesting if this
were not true.

6.4 Markov Chains

Markov chains which converge rapidly to their stationary distribution have provided
efficient methods to obtain approximate solutions to many problems whose exact solution is
presumably difficult. In each case, proving a bound on the rate of convergence is the crucial
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step in analyzing the efficiency of the algorithm. See Dyer, Frieze, and Kannan [4] for a specific
example; and Vazirani [27] and Sinclair [24] for a survey of results.

Convergence is typically argued in terms of the 7,; or 1, distance between the current
distribution on the chain and the final stationary distribution. Each step of the Markov chain is
shown to reduce this distance by a multiplicative constant.

Another way to view the convergence of aMarkov chain is as a process of information
loss. Initialy, the system is in a known state, but over time information about the initial state
decays, in exactly the same manner asinformation carried by asignal decaysasthe signal crosses
noisy channels. If, after sometime, the current state of the Markov chain containslittleinformation
about the initial state then, intuitively, the current distribution on states should appear “close” to
the stationary distribution. Sampling according to the current distribution is then approximately
equivalent to sampling according to the stationary distribution. Since both » state Markov chains
and noisy channels with » inputs and n outputs can be viewed as stochastic matrices, one is
tempted to prove rapid information loss by analyzing the factor of information decay of n-input,
n-output channels.

The problem with this approach is that for many n-input, n-output channels (including
those that represent typical Markov chains of interest), there areinput distributionswhich preserve
information perfectly in crossing the channel. Thisobservationwas madein discussing the general
n-input, m-output channel bound above. It appearsthat in order to show rapid information lossin
thisway, one must take advantage of the fact that not all input distributions are possible.

Another possibility is to approach information loss in a more indirect manner; similar
to theway in which convergence rates are bounded by showing bounds on conductance. Roughly,
conductance is the probability of escaping from the most secluded part of the chain in one step.t
Large conductance implies rapid convergence to the stationary distribution: since arandom walk
is never trapped in some small part of the chain, it can reach the stationary distribution quickly.
Oneideaisto derive adirect relation between information loss and conductance. A more exciting
possibility is that a different structural property of the Markov chain (other than conductance)
governs information loss. If such a property is easy to verify, it may prove useful in obtaining
convergence results for Markov chainsin which conductance bounds are unknown.

6.5 Quadratic Dynamical Systems

A dynamical system consists of a fixed function f which maps points from an n-
dimensional space S to 5. The system evolves by applying the function f to the current “con-
figuration” of the system (a point in 5) to obtain a new configuration in 5 (for a more complete
discussion see[21]). Markov chains are one of the simplest examples of adynamical system. For

!Conductance is the minimum over al bipartitions of the chain of the probability of escaping the smaller partition
in one time step (assuming initially the uniform distribution on the smaller partition).
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Markov chainsthe space 5 is the set of all probability distributions on » states and the function f
is represented by the transition matrix of the Markov chain (alinear function).

The study of dynamical systems focuses on properties of the trajectory of apoint p in
the space S. Thetrgjectory of p isthesequence p, f(p), f(f(p)), .... Oneof the most fundamental
guestions is whether the trajectory approaches a unique limiting value independent of p and if so
at what rate. In the case of Markov chains, the conditionsunder which thetrgjectory converges are
known and bounds on therate at which this convergence occurs can be obtained from conductance
bounds or eigenval ue methods.

The situation changes dramatically for nonlinear f. Even in the case when f is a
symmetric quadratic function which is known to converge, bounds on the rate of convergence
are still unknown.? Traditional techniques using conductance or eigenvalues have so far failed
to provide bounds on the convergence rate. In this case, as opposed to Markov chains, the only
method known to prove convergence argues that the entropy of the system strictly increases unless
the system isin the stationary configuration. At the heart of the argument, a step of the quadratic
system is broken down into smaller steps, one of which is a linear map that strictly increases
entropy. It may be possible to show that information irrevocably decays at this point by viewing
the linear map as a noisy channel. The hope is that a bound on this decay will translate into a
bound on the rate of convergence.

2An example of such asystem is Maxwell’s (space homogeneous) kinetic gas model. See[21].
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Appendix A

| nfor mation Theory

This appendix is meant as a quick review of some of the properties of entropy and
information. The results presented here should provide the reader with some intuition for the
guantities which play the major rolesin information theory.

A.1 Definitions

The entropy of arandom variable X with distributionpy is

__ZPX )logpx ().

The conditional entropy of arandom variable X given arandomvariableY is

H(X|Y)= - ZPX,Y(mv Y) |09PX|Y:y($)-

(L‘,y
For distributions p and q, the Kullback-Leibler divergence (or relative entropy) fromg top is
p(2)
q(z)

The mutual information between two random variables X and Y is

D(pllg) = ZP )log®?

I(X)Y) = ZPXny)logipX(Y)( E/))

= ZPX(‘r)D(pﬂX:szY)

= D(PX,Y| |poY)
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= H(X)- H(X|Y)
= H(Y)- H(Y|X)

The conditional mutual information between X and Y given 7 is

. Px Y|Z:z($73/)
I(xX;Y|7Z) = p (z,y,z)log ’
a;,zy,:z s pX|Z:Z($)pY|Z:Z(y)
= H(X|Z)- H(X|Y,Z)
= HY|Z)-H(Y|X,Z%)
We can also condition on a particular value of 7,
bx Y|Z:z(~"07’y)
I(X;Y|Z=2)= p —,(z,y)log ’
Z vz Px|7=-(2)Py|7=-(y)

With this definition,
I(X;Y|Z) = sz I(X;Y|Z = 2)

A.2 Propertiesof Entropy and I nformation

52

Perhaps the best way to read this section isto start at the end with Fano’s inequality and
the data processing inequality. Understanding these inequalitiesis crucia to understanding most
of thethesis. Also, their proofstietogether all of the previous resultsin the section. Thefirst part
of the section isprovided asreference for understanding these inequalities and some of the results

inthethesis.

Chain Rulefor Entropy and Information

Theorem A.2.1 (Chain rulefor entropy)
H(Y1,..,YalQ) = Y H(Yi|Y1, ..., Yio1,Q)
=1

Proof: Lee X =Y, andY = Y5,...,Y,.

H(X,Y|Q) = =Y pxyo(r,y,0)109px yi0=q(2,¥)

:E7y7q

1?7y7q

- E Px,0(%, )Py |x=2,0=4(¥)(109P x |0=4(7) + 100Py | x = 0=4(¥))
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= - ZPXQ(?U, 7)109p x|9=4(7)

l‘7q

- E Px o, Q)PY|X:g;,Q:q(Z/) |09Py|X:z,Q:q(y)
:E7y7q

= HX|Q)+ H(Y|X,Q)

The general result follows by repeating the argument on H (Y| X, Q). O

Theorem A.2.2 (Chain rulefor information)
(X510, YalQ) = Y I(X; YilYa, ., Yie1, Q)
=1
Proof:

I(X1Y177}I7%|Q) = H(Y177},71|Q)_H(Y177Yn|X7Q)

= ZH(}filYlv"in—va)_ZH(Yi|Y17"'7}/i—17X7Q)

- ZI(X1}/2|Y177}/Z—17Q)
=1

Non-negativity of Information
A function f(z) isconvex on theinterval (a,b) if for al z1,z2 € (a,b)and p € [0, 1],

f(pz1+ (1 —p)z2) < pf(z1) + (1 - p)f(z2)

The function is strictly convex if, in addition, the preceding inequality is strict for p € (0,1). A
function f(z) isconcaveif — f(xz) is convex.

The concavity of thelog function implies all of theinequalitiesin this section.

Theorem A.2.3 (Divergenceis non-negative) For probability distributionsp and q,

D(pllq) > 0

with equality if and only if p(z) = g(z) for all z.
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Proof: The proof followsfrom the concavity of the log function.

(z)
p(z)

oa (3220}

=0

-D(pllq) = Ep )logd

IN

O

It follows from this theorem and the fact that information can be written as a divergence,
that

Corollary A.2.1 (Information is hon-negative)
I(X;Y)>0
with equality if and only if X and Y areindependent.
From this corollary and thefact that 7(X;Y) = H(X)— H(X|Y), weseethat

Corollary A.2.2 (Conditioning reduces entropy)

H(X)> H(X]Y)

Another implication of the non-negativity of divergenceisthat the entropy of arandom
variable taking one of m possible valuesis at most logm.

Corollary A.2.3 If X isarandomvariabletaking oneof m possiblevaluesthen H (X') < log(m)
with equality if and only if X has distribution % (the uniform distribution on m values).

Pr oof: T
log(m) — H(X) = (pX“E) >0

Data Processing I nequality

The data processing inequality states that functions of a random variable Y carry no
more information about a random variable X than Y does. The functions can be deterministic or
randomized; the only restriction being that they depend on X only through Y. If Z isafunction
of Y then the restriction that the function depend on X only through Y is precisely that 7 is
independent of X givenY'.
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Theorem A.2.4 (Data processing inequality) Let X, Y, and Z be random variables such that
7 isindependent of X given Y. Then

I(X;Y) > I(X; 2)

Ao I(X;Y) > I(X;Y|Z).

Proof: We use the chain rule for information to write,
I(X;YZ)=1(X;V)+ I(X;Z2|)Y)=1(X; Z2)+ (X, Y]|Z)

Since X and Z are independent given Y, I(X;Z|Y) = 0. Thus, I(X;Y) = I(X;Z)+
I(X;Y|Z) and, since information is non-negative, I(X;Y) > I(X; Z). The same reasoning
impliesI(X;Y) > I(X,;Y|Z). O

Theorem A.2.5 (Sub-additivity of Information) If Y3,...,Y, are independent random vari-
ables given randomvariable X then
I(X; Y1, V) <Y I(X3Y))
=1

Proof: The chain rule of information implies,

I(X;Yy,...,Y,) =Y I(X;Y1,...,Y)
=1
From the preceding proof (with X = Y;,Y = X,and 7 = X1,..., X;_1) thesthterm in the sum
isbounded by I( X;Y;). O

Fano’sInequality

Suppose two random variables X and Y are very likely to have the same value. Intu-
itively, we would expect the mutual information between X and Y to be large. Fano’s inequality
makes this intuition precise.

Theorem A.2.6 (Fano'sinequality) Let X bearandomvariabletaking m possiblevalues. Let
F and Y be random variables such that

p_Joify=x
11 ifY#£X

Then
I(X;Y)> H(X)- H(E)—P[E = 1]log(m — 1)
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Proof: We use the chain rulefor entropy to write,
H(E,X|Y)=H(E|Y)+ H(X|Y,E)= H(X|Y)+ H(E|Y,X)
Now the mutual information between X and Y can bewritten as,
I(X;Y) = H(X)- H(X|Y)
= H(X)-H(E|Y)-HX|Y,E)+ H(E]Y,X)

Since ¥ is determined by the values of X and Y, H(F|Y,X) = 0. Also, since conditioning
reduces entropy, H(E|Y) < H(FE). Thus,

I(X;Y) < H(X)-H(E)-H(X|Y,E)
= H(X)-H(E)-P[E=0H(X|Y,E=0)-P[E=1H(X|Y,E=1)
If E=0thenX =Y andso H(X|Y,F=0)=0.If £ = 1then X # Y andso, givenY, X can

take one of only m — 1 values. Thus H (X |Y, E = 1) < log(m — 1) which completes the proof.
o

For our applications, X will be a Boolean random variable, and, in addition, we will
only know that P[F = 1] < ¢ (or P[£ = 0] < ¢) for some é < 1/2. Inthiscase, I(X;Y) >
H(X)-H(F)>146élogé + (1—6)log(1l— o).

For background on information theory, the texts of Gallager [10] and Cover and
Thomas [1] as well as Shannon’s original paper [23] are recommended.
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Appendix B

L. Distance

In this appendix, we discuss the use of . distance in place of mutual information for
proving lower boundson noisy formuladepth. This particular application providesthe framework
for presenting several results on the use of 7. distance as a measure of correlation. Some of the
results are also used in chapter 4 to prove lower bounds on the size of noisy circuits.

Let X and Y be Boolean random variables. One measure of the correlation between X
and Y isthemutual information /(X'; Y'). Thisisthe measure used by Pippenger in proving the
first lower bounds on noisy formula depth [16]. Mutual information is an attractive measure for
this purpose because it possesses three properties:

1. If X andY are equal with high probability then 7( X'; V') islarge.

2. If Y is subjected to random noise (unrelated to X') then /(X;Y') decreases by at least a
multiplicative factor related to the noise.

3. If Y1 andY; carry information about X and areindependent given X then /(g(Y1, Y2); X)) <
I(Y1; X)) + 1(Y2; X) for any Boolean function g.

These are the only properties of information needed to prove Pippenger’s noisy formula lower
bound.

Another potential measure of correlation between X and Y isthe . distance between
the conditional distributionson Y given X = Oand X = 1. One can think of the random variable
X asthe outcome of acoin flip and Y as a random variable related to this outcome. Thusif the
coin comes up heads, Y has one distribution, while tails causes Y to have a different distribution.
For X and Y to be highly correlated, these two distributions should be far apart according to their
L. distance. Recall that the L. distance between two vectors p and g of dimension m is

m 1/c
llp—qll. = (Z Ip(i)—q(i)lc) .
=1
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Itistrivial to check that the 7., distance obeysthefirst two properties of mutual informa-
tion stated above. In fact, the multiplicative factor in property two for 7. distanceisidentical to
the bound obtained by Pippenger for mutual information. For noisee = (1— £)/2, thefactor is¢.
Thus, if the I... distance obeysproperty 3, thenit can replace the mutual informationin Pippenger’'s
proof, to yield alower bound on the depth of noisy circuits with the same multiplicative increase
and the same threshold bound obtained by Pippenger. However, the improved depth lower bound
presented in chapter 3, which depends upon a ¢2 drop in information, appears to be beyond the
reach of an argument using 7., distance.

Theremainder of the appendix is devoted to proving that the 7. distance measure obeys
the third property which we call the sub-additivity property.

Thefollowing theorem showsthat 7., distance, for ¢ > 1, hasthe sub-additivity property.
The proof is similar to the proof of the sub-additivity of mutual information (see theorem A.2.5).
Thefirst step isto show that the distance between the distributions py, v, |x=o and py, .y, |x=1
is at most the sum of the distances between py; | x —o and py;|x=1-

LemmaB.0.1 Let X beaBooleanrandomvariable. If Y1, ..., Y} are (not necessarily Boolean)
random variables which are mutually independent given X then

k

||pY1,...,Yk|X:O - le,...,Yk|X:1||c < E ||pY¢|X:O - P}Q|X:1||c
=1

forec > 1.

Proof: The lemma follows from the case £ = 2 by a simple inductive argument. We prove the
case k = 2 using the triangle inequality for 7. distance (line B.1).1

Inparticular, let p; + ¢, = P[Y1 =4|X =0],p;—¢ =PY1=4X =1],¢; + 6; =
P[Y; = i|X =0],and ¢; — §; = P[Y> = {| X = 1]. Observe that the p; (and ¢;) are non-negative
and sum to 1. With this notation,

]

1/L
||PY1,Y2|X:0 - le,Y2|X:l||c = Z |(pi + €)(q; + 6;) — (pi — €i)(qj — 5j)|c)

1/c
= D 12ms; + 2q]’ﬂ|c)

]

1/(1
< D226 + |2qy‘€¢|)c)

]

Thisisaversion of Minkowski’s inequality. See theorem 25 in [13].



APPENDIX B. Lc DISTANCE 59

I\

1/c 1/c
(Z |2pi(5j|c) + (Z |2(Ij€i|c) (B.1)
i %

(£r)  (2o)

= ||pY1|X:O - PY1|X:1||C + ||pY2|X:O - pY2|X:1||c

IN

O

To follow the method of proving sub-additivity of information, we would have to show
the equivalent of the data processing inequality:
||pg(Y1,...,Yk)|X:O - pg(Yl,...,Yk)|X:l||c < ||pY1,...,Yk|X:O - le,...,Yk|X:l| |,

for any function ¢g. Thisstatement istruefor ¢ = 1, but not for ¢ > 1. Nevertheless, it is sufficient
to know the data processing inequality for ¢ = 1 to establish sub-additivity for any 7. distanceif
g isaBoolean function. We first prove the data processing inequality for ¢ = 1 and then prove
sub-additivity.

Lemma B.0.2 (Data Processing | nequality for 7. distance) Let X beaBooleanrandomvari-
ableand let Y and 7 be random variables such that 7 isindependent of X givenY. Then

lP7z1x=0 — Pzx=1ll1 < [|Py|x=0 — Py|x=1ll1

Proof: The independence of Z and X given Y impliesthat p,y = pzxy. Thuspyx =
>y Pz|y=yPy|x(y). Thisalowsusto write,

||pZ|X:0 - PZ|X:1||1 = Z |pZ|X:O(Z) - PZ|X:1(Z)|
zZ

= > Do Pay=y()pyix=0¥) = D Py =y (2)Py | x=1(¥)

IN

Z ZPZ|Y:y(Z)|pY|X:O(y) - PY|X:1(3/)|

= Z |PY|X:0(’y) - PY|X:1(‘y)|
O

Theorem B.0.7 (Sub-additivity of . distance) Let X be a Boolean random variable. Let ¢
be a Boolean function of £ random variables Y1, .. .,Y; which are independent given X. Let
7 = g(Y]_,...,Yk). Fore> 1,

k

||PZ|X:0 - pZ|X:1||c < E ||Pm|X:0 - pY¢|X:1||c
=1
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Proof: For p and q probability distributions over {0,1}, ||p — q||. = 2Y*~Y||p — q||,. Thusit
suffices to prove the theorem for ¢ = 1.

From lemmaB.0.2,

||PZ|X:0 - PZ|X:1||1 < ||pY1,...,Yk|X:O - le,...,Yk|X:l||l'

The theorem follows using lemma B.0.1. O
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Appendix C

Bounding Noisy Circuit Sizevia
| nfor mation

In this section, we explain how the signal decay theorem is used to obtain a dightly
weaker lower bound on noisy circuit size than the one presented in chapter 4. The purpose of
presenting this proof is to show an application of the signal decay theorem for general 2-input,
m-output channels. The boundsobtained, in this case, are not as strong as those obtained using 7.1
distance. Thisisin contrast to the improved bounds on circuit depth obtained when using mutual
information in place of .1 distance.

Theorem C.0.8 For ¢ € (0,1/2] and ¢ € [0,1/2), if a Boolean function f is (1 — ¢)-reliably
computed by a circuit with e-noisy, £-input gates then the number of gatesin the circuit isat least

slogs + 2slog(24)
klogt

where s isthe sensitivity of the function f, A =14 élogéd + (1 — d)log(1l— ), ¢t = %
1- {/1-2c
andw = =5,

Proof: Without loss of generality, we assume that the function f has maximum sensitivity on the
input eg; that f(eg) = 0; and that on input eq, f is sensitiveto z1, ...,z (i.e. f(e;) = 1for
1 =1,...,8). Let m; be the number of input wiresfrominput z;.

Imagineflipping afair coin to choose one of two possible teststo performon a (1 — ¢)-
reliable circuit for f, and let X denote the outcome of the coin flip. Onetest, when X = 0, isto
give the circuit the input eg. The other test, when X = 1, isto give the circuit the input e; with
probability o; for i = 1,...,s. Sincethecircuit is (1 — é)-reliable, if X = 0 the output Z of
circuit is O with probability > 1 — 4. Similarly, if X = 1then Z = 1 with probability > 1 — 4.
By Fano’'s inequality, /( X; Z) > A.



APPENDIX C. BOUNDING NOISY CIRCUIT SIZE VIA INFORMATION 62

Let Y bethe vector of input values on the noisy input wiresfromtheinputs xq, . . ., zs.
The circuit does not receive the value X. It only sees Y. Thus Z isindependent of X givenY,
and the data processing inequality impliesthat 7(X;Y) > I(X; 7).

We next upper bound /(X ;Y) in order to obtain the theorem. The key observation
is that the relation between X and Y is captured by a 2-input, M -output noisy channel where
M = 2*™i, Therandom variable Y takesone of M possible values depending on the wire noise
and the value of X. Let py g and py; denote the distributionson Y given X = Oand X =1
respectively. These distributions must differ significantly so that 7(X;Y) > A. We show using
the signal decay theorem for 2-input, M -output channels (theorem 2.5.1) that thisinformation is
upper bounded by a function of the wire noise and the number of wires from the inputs.

Since I( X; X ) = 1, theorem 2.5.1 implies that

I(X;Y) ’
I(X;Y) = I(X;X) <1- (Z PY|0(?J)PY|1(’¢J)) :

Theorem 2.5.1 appliesto every 2-input, M -output channel, regardless of the conditiona distribu-
tions on the input to the channel (conditioned on the value of X'). For this application, the input
to the channel isthe actual value X', and thus the conditional distributions on theinput are trivial.
One would expect that in this case a better bound holds, though at the current time, we have not
examined this possibility.

We now show that the bound obtained using theorem 2.5.1 isitself upper bounded by a
function of the L, distance between the distributions py- | and py, . The theorem will then follow
by the reasoning presented in theorem 4.2.1.

Let py + €, = py|o(y) and p, — ¢, = py1(y). Observe that the p, are non-negative
and sumto 1.

2 2
1- (Z \/PY|0(?J)PY|1("J)) = 1- (Z \/(py + ey)(py ey))
2
< 1- (Epy_|€y|>

2
22 ley| — (Z |ey|)

Y Y
The first term in the bound is the 7, distance between py o and py |, and by the argument in

theorem 4.2.1 is at most
R -1/2
Z 1

=1
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The second, negative, term isat most —(1 — 26)2. Taken together, the lower and upper bound on
information imply,

s 1 -1
(A+(1-26)°) < (E tmi)

=1
which implies the theorem. O
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