
Simultaneous Visibility Representations
of Plane st-graphs Using L-shapes ?

William S. Evans1, Giuseppe Liotta2, and Fabrizio Montecchiani2

1 University of British Columbia, Canada
will@cs.ubc.ca
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Abstract. Let 〈Gr, Gb〉 be a pair of plane st-graphs with the same vertex set V .
A simultaneous visibility representation with L-shapes of 〈Gr, Gb〉 is a pair of
bar visibility representations 〈Γr, Γb〉 such that, for every vertex v ∈ V , Γr(v)
and Γb(v) are a horizontal and a vertical segment, which share an end-point. In
other words, every vertex is drawn as an L-shape, every edge of Gr is a vertical
visibility segment, and every edge of Gb is a horizontal visibility segment. Also,
no two L-shapes intersect each other. An L-shape has four possible rotations,
and we assume that each vertex is given a rotation for its L-shape as part of the
input. Our main results are: (i) a characterization of those pairs of plane st-graphs
admitting such a representation, (ii) a cubic time algorithm to recognize them, and
(iii) a linear time drawing algorithm if the test is positive.

1 Introduction

Let Gr and Gb be two plane graphs with the same vertex set. A simultaneous embed-
ding (SE) of 〈Gr, Gb〉 consists of two planar drawings, Γr ofGr and Γb ofGb, such that
every edge is a simple Jordan arc, and every vertex is the same point both in Γr and in
Γb. The problem of computing SEs has received a lot of attention in the Graph Drawing
literature, partly for its theoretical interest and partly for its application to the visual
analysis of dynamically changing networks on a common (sub)set of vertices. For ex-
ample, it is known that any two plane graphs with the same vertex set admit a SE where
the edges are polylines with at most two bends, which are sometimes necessary [8]. If
the edges are straight-line segments, the representation is called a simultaneous geomet-
ric embedding (SGE), and many graph pairs do not have an SGE: a tree and a path [1], a
planar graph and a matching [6], and three paths [5]. On the positive side, the discovery
of graph pairs that have an SGE is still a fertile research topic. The reader can refer to
the survey by Bläsius, Kobourov and Rutter [21] for references and open problems.

Only a few papers study simultaneous representations that adopt a drawing paradigm
different from SE and SGE. A seminal paper by Jampani and Lubiw initiates the study
of simultaneous intersection representations (SIR) [16]. In an intersection representa-
tion of a graph, each vertex is a geometric object and there is an edge between two
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vertices if and only if the corresponding objects intersect. Let 〈Gr, Gb〉 be two graphs
that have a subgraph in common. A SIR of 〈Gr, Gb〉 is a pair of intersection represen-
tations where each vertex in Gr ∩Gb is mapped to the same object in both realizations.
Polynomial-time algorithms for testing the existence of SIRs for chordal, comparability,
interval, and permutation graphs have been presented [4, 15, 16].

We introduce and study a different type of simultaneous representation, where each
graph is realized as a bar visibility representation and two segments representing the
same vertex share an end-point. A bar visibility representation of a plane graph G is an
embedding preserving drawing Γ where the vertices ofG are non-overlapping horizon-
tal segments, and two segments are joined by a vertical visibility segment if and only if
there exists an edge in G between the two corresponding vertices (see, e.g., [18, 22]). A
visibility segment has thickness ε > 0 and does not intersect any other segment.

A simultaneous visibility representation with L-shapes of 〈Gr, Gb〉 is a pair of bar
visibility representations 〈Γr, Γb〉 such that for every vertex v ∈ V , Γr(v) and Γb(v) are
a horizontal and a vertical segment that share an end-point. In other words, every vertex
is an L-shape, and every edge of Gr (resp., Gb) is a vertical (resp., horizontal) visibility
segment. Also, no two L-shapes intersect. A simultaneous visibility representation with
L-shapes of 〈Gr, Gb〉 where the rotation of the L-shape of each vertex in V is defined
by a function Φ : V → H = { , , , }, is called a Φ-LSVR in the following.
While this definition does not assume any particular direction on the edges ofGr (resp.,
Gb), the resulting representation does induce a bottom-to-top (resp., left-to-right) st-
orientation. In this paper, we assume thatGr andGb are directed and this direction must
be preserved in the visibility representation. Also, the two graphs have been augmented
with distinct (dummy) sources and sinks. More formally, Gr=(V ∪ {sr, tr}, Er) and
Gb=(V ∪ {sb, tb}, Eb) are two plane st-graphs with sources sr, sb, and sinks tr, tb.

In terms of readability, this kind of simultaneous representation has the following
advantages: (i) The edges are depicted as straight-line segments (as in SGE) and the
edge-crossings are rectilinear; (ii) The edges of the two graphs are easy to distinguish,
since they consistently flow from bottom to top for one graph and from left to right for
the other graph. Having rectilinear crossing edges is an important benefit in terms of
readability, as shown in [14], which motivated a relevant amount of research on right-
angle crossing (RAC) drawings, see [9] for a survey.

Our main contribution is summarized by the following theorem.

Theorem 1. Let Gr and Gb be two plane st-graphs defined on the same set of n ver-
tices V and with distinct sources and sinks. Let Φ : V → H = { , , , }. There
exists an O(n3)-time algorithm to test whether 〈Gr, Gb〉 admits a Φ-LSVR. Also, in the
positive case, a Φ-LSVR can be computed in O(n) time.

This result relates to previous studies on topological rectangle visibility graphs [20]
and transversal structures (see, e.g., [12, 13, 17, 19]). Also, starting from a Φ-LSVR of
〈Gr, Gb〉, we can compute a simultaneous RAC embedding of the two graphs with at
most two bends per edge, improving the general upper bound by Bekos et al. [3] for
those pairs of graphs that can be directed and augmented to admit a Φ-LSVR.

The proof of Theorem 1 is based on a characterization described in Section 3, which
allows for an efficient testing algorithm presented in Section 4. Due to space restrictions,
some proofs are omitted or only sketched in the text; full proofs can be found in [11].
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2 Preliminaries

A graph G = (V,E) is simple, if it contains neither loops nor multiple edges. We
consider simple graphs, if not otherwise specified. A drawing Γ of G maps each vertex
of V to a point of the plane and each edge of E to a Jordan arc between its two end-
points. We only consider simple drawings, i.e., drawings such that the arcs representing
two edges have at most one point in common, which is either a common end-vertex
or a common interior point where the two arcs properly cross. A drawing is planar
if no two arcs representing two edges cross. A planar drawing subdivides the plane
into topologically connected regions, called faces. The unbounded region is called the
outer face. A planar embedding of a graph is an equivalence class of planar drawings
that define the same set of faces. A graph with a given planar embedding is a plane
graph. For a non-planar drawing, we can still derive an embedding considering that the
boundary of a face may consist also of edge segments between vertices and/or crossing
points of edges. The unbounded region is still called the outer face.

A graph is biconnected if it remains connected after removing any one vertex. A
directed graph (a digraph for short) is biconnected if its underlying undirected graph
is biconnected. The dual graph D of a plane graph G is a plane multigraph whose
vertices are the faces of G with an edge between two faces if and only if they share an
edge. If G is a digraph, D is also a digraph whose dual edge e∗ for a primal edge e is
conventionally directed from the face, leftG(e), on the left of e to the face, rightG(e),
on the right of e. Since we also use the opposite convention, we let D� (resp., D�) be
the dual whose edges cross the primal edges from left to right (resp., right to left).

A topological numbering of a digraph is an assignment,X , of numbers to its vertices
such that X(u) < X(v) for every edge (u, v). A graph admits a topological numbering
if and only if it is acyclic. An acyclic digraph with a single source s and a single sink
t is called an st-graph. In such a graph, for every vertex v, there exists a directed path
from s to t that contains v [22]. A plane st-graph is an st-graph that is planar and
embedded such that s and t are on the boundary of the outer face. In any st-graph, the
presence of the edge (s, t) guarantees that the graph is biconnected. In the following
we consider st-graphs that contain the edge (s, t), as otherwise it can be added without
violating planarity. Let G be a plane st-graph, then for each vertex v of G the incoming
edges appear consecutively around v, and so do the outgoing edges. Vertex s only has
outgoing edges, while vertex t only has incoming edges. This is a particular transversal
structure (see Section 3) known as a bipolar orientation [18, 22]. Each face f of G is
bounded by two directed paths with a common origin and destination, called the left
path and right path of f . For all vertices v and edges e on the left (resp., right) path of
f , we let rightG(v) = rightG(e) = f (resp., leftG(v) = leftG(e) = f ).

Tamassia and Tollis [22] proved the following lemma.

Lemma 1 ([22]). Let G be a plane st-graph and let D� be its dual graph. Let u and v
be two vertices of G. Then exactly one of the following four conditions holds: (i)G has
a path from u to v, or (ii) from v to u; (iii)D� has a path from rightG(u) to leftG(v),
or (iv) from rightG(v) to leftG(u).
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Fig. 1. Vertex sets B(v),
T (v), L(v), and R(v) and
their corresponding regions
of the plane.

Let v be a vertex of G, then denote by B(v) (resp.,
T (v)) the set of vertices that can reach (resp., can be
reached from) v. Also, denote by L(v) (resp., R(v)) the
set of vertices that are to the left (resp., to the right) of ev-
ery path from s to t through v. By Lemma 1, these four sets
partition the vertices ofG\{v}. In every planar drawing of
G, they are contained in four distinct regions of the plane
that share point v. The vertices of B(v) are in the region
delimited by the leftmost and the rightmost paths from s
to v, while the vertices of T (v) are in the region delimited
by the leftmost and the rightmost paths from v to t. Edge
(s, t) separates the two regions containing the vertices of
L(v) and R(v), as in Fig. 1. Refer to [7] for further details.

3 Characterization

A transversal structure of a plane graph G, is a coloring and an orientation of the inner
edges (i.e., those edges that do not belong to the outer face) of the graph that obey some
local and global conditions. Transversal structures have been widely studied and impor-
tant applications have been found. Bipolar orientations (also known as st-orientations)
of plane graphs have been used to compute bar visibility representations [18, 22]. Fur-
ther applications can be found in [12, 13, 17, 19], see also [10] for a survey.

To characterize those pairs of graphs that admit a Φ-LSVR, we introduce a new
transversal structure for the union of the two graphs (which may be non-planar) and
show that it is in bijection with the desired representation. In what follows Gr = (Vr =
V ∪{sr, tr}, Er) andGb = (Vb = V ∪{sb, tb}, Eb) are two plane st-graphs with duals
D�

r and D�
b , respectively.

Definition 1. Given Φ : V → H = { , , , }, a (4-polar) Φ-transversal is a draw-
ing of a directed (multi)graph on the vertex set V ∪{sr, tr, sb, tb} whose edges are par-
titioned into red edges, blue edges, and the four special edges (sr, sb), (sb, tr), (tr, tb),
and (tb, sr) forming the outer face, in clockwise order. In addition, the Φ-transversal
obeys the following conditions:

c1. The red (resp., blue) edges induce an st-graph with source sr (resp., sb) and sink
tr (resp., tb).

c2. For every vertex u ∈ V , the clockwise order of the edges incident to u forms four
non-empty blocks of monochromatic edges, such that all edges in the same block
are either all incoming or all outgoing with respect to u. The four blocks are en-
countered around u depending on Φ(u) as in the following table.

u u u u

fb(u)=rightb(u) fb(u)=rightb(u) fb(u)=leftb(u) fb(u)=leftb(u)
fr(u)=leftr(u) fr(u)=rightr(u) fr(u)=rightr(u) fr(u)=leftr(u)
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c3. Only blue and red edges may cross and only if blue crosses red from left to right.

A pair of plane st-graphs 〈Gr, Gb〉 admits aΦ-transversal if there exists aΦ-transversal
Grb such that restricting Grb \ {sb, tb} to the red edges realizes the planar embedding
Gr and restricting Grb \ {sr, tr} to the blue edges realizes the planar embedding Gb.

Let u be a vertex of V , then the edges of a single color enter and leave u by the same
face in the embedding of the other colored graph. In other words, as condition c2 indi-
cates, Φ(u) defines the face ofGb (resp.,Gr), denoted by fb(u) (resp., fr(u)), by which
the edges of Gr (resp., Gb) incident to u enter and leave u, in the Φ-transversal. Also,
condition c3 implies that edges {(sr, sb), (sb, tr), (tr, tb), (tb, sr)} are not crossed,
because they are not colored.

In the remainder of this section we will prove the next theorem.

Theorem 2. Let Gr and Gb be two plane st-graphs defined on the same set of vertices
V and with distinct sources and sinks. Let Φ : V → H = { , , , }. Then
〈Gr, Gb〉 admits a Φ-LSVR if and only if it admits a Φ-transversal.

`ucu cu

(a)

sr

tr

Br(v)

v

sb

tb

u
Tb(u)

(b)

Fig. 2. (a) The replacement of the L-shape, `u, for vertex u with its corner point cu and the
drawing of u’s adjacent edges with 2 bends per edge when constructing a Φ-transversal from a
Φ-LSVR. Only `u’s visibilities are shown. (b) Illustration for the proof of Lemma 3: the case
when u is in B(v) and v is in T (u).

The necessity of the Φ-transversal is easily shown. Let 〈Γr, Γb〉 be a Φ-LSVR of
〈Gr, Gb〉 with two additional horizontal bars at the bottommost and topmost sides of
the drawing that represent sr and tr, and two additional vertical bars at the leftmost and
rightmost sides of the drawing that represent sb and tb. From such a representation we
can compute a Φ-transversal Grb as follows. Since the four vertices sr, tr, sb, and tb
are represented by the extreme bars in the drawing, these four vertices belong to the
outer face, and the four edges on the outer face can be added without crossings. Also,
we color red all inner edges represented by vertical visibilities (directed from bottom to
top), and blue all inner edges represented by horizontal visibilities (directed from left to
right). To see that conditions c1, c2 and c3 are satisfied, let Grb be a polyline drawing
computed as follows. Let cu be the corner of the L-shape, `u, representing vertex u. For
every edge (u, v), replace its visibility segment by a polyline from cu to cv that has two
bends, both contained in the visibility segment and each at distance δ from a different
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one of its endpoints, for an arbitrarily small, fixed δ > 0. See Fig. 2(a). Finally, replace
every L-shape `u with its corner cu. Since each bar visibility representation preserves
the embedding of the input graph, c1 is respected. Also, c2 and c3 are clearly satisfied
by the embedding derived from Grb. We remark that, by construction, each edge is
represented by a polyline with two bends and two edges cross only at right angles; this
observation will be used in Section 5.

To prove sufficiency, assume 〈Gr, Gb〉 admits a Φ-transversal Grb. We present an
algorithm, ΦLSVRDrawer, that takes as input Grb and returns a Φ-LSVR 〈Γr, Γb〉 of
〈Gr, Gb〉. We first recall the algorithm by Tamassia and Tollis (TT in the following) to
compute an embedding preserving bar visibility representation of a plane st-graph G,
see [7, 22]:

1. Compute the dual D� of G.
2. Compute a pair of topological numberings Y of G and X of D�.
3. Draw each vertex v as a horizontal bar with y-coordinate Y (v) and between x-

coordinates X(leftG(v)) and X(rightG(v))− ε.
4. Draw each edge e = (u, v) as a vertical segment at x-coordinate X(leftG(e)),

between y-coordinates Y (u) and Y (v), and with thickness ε.

We are now ready to describe algorithm ΦLSVRDrawer.

Step 1: Compute the dual graphs D�
r of Gr and D�

b of Gb.
Step 2: Compute a pair of topological numberings nr of Gr and nb of Gb.
Step 3: Compute a pair of topological numberings n∗r of D�

r and n∗b of D�
b .

Step 4: Compute a bar visibility representation Γr of Gr by using the TT algorithm
with X(u)=Xr(u) = n∗r(u) and Y (u)=Yr(u)=n∗b(fb(u)) + nr(u)δ, for each vertex
u. Also, shift the horizontal segment for each vertex u to the left by nb(u)δ.

Step 5: Compute a bar visibility representation Γ ′b of Gb by using the TT algorithm
with X(u)=Xb(u)=n∗b(u) and Y (u)=Yb(u)=n∗r(fr(u)) + nb(u)δ, for each vertex
u. Then turn Γ ′b into a vertical bar visibility representation, Γb, by drawing every
horizontal segment ((x0, y), (x1, y)) in Γ ′b as the vertical segment ((y, x0), (y, x1))
in Γb. Finally, shift the vertical segment for each vertex u up by nr(u)δ.

Lemma 2 guarantees that Yr and Yb are valid topological numberings, and thus, that
Γr and Γb are two bar visibility representations. Also, Lemma 3 ensures the union of Γr

and Γb is a Φ-LSVR. The shifts performed at the end of Steps 4-5 are to prevent the bars
of two L-shapes from coinciding. The value δ > 0 is chosen to be less than ε and less
than the smallest difference between distinct numbers divided by the largest number
from any topological numbering nr, nb, n∗r , or n∗b . This choice of δ guarantees that all
visibilities are preserved after the shift, and that no new visibilities are introduced.

Lemma 2. Yr is a valid topological numbering of Gr and Yb is a valid topological
numbering of Gb.

Proof. Let (u, v) be a red edge from u to v. We know that nr(u) < nr(v). Let e0, e1,
. . . , ek be the blue edges crossed by (u, v) inGrb. Due to conditions c2 and c3, there ex-
ists a path {fb(u) = rightb(e0), leftb(e0) = rightb(e1), . . . , leftb(ek−1) = rightb(ek),
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leftb(ek) = fb(v)} in D�
b . Thus, we also know that n∗b(fb(u)) ≤ n∗b(fb(v)). Since

Yr(u) = n∗b(fb(u)) + nr(u)δ and δ > 0, it follows that Yr(u) < Yr(v). A symmetric
argument shows Yb(u) < Yb(v) if (u, v) is a blue edge.

Lemma 3. Each vertex u of V is represented by an L-shape `u in 〈Γr, Γb〉 as defined
by the function Φ. Also no two L-shapes intersect each other.

Proof. Suppose Φ(u)= , as the other cases are similar. Then, fb(u)=rightb(u) and
fr(u)=leftr(u). The horizontal bar representing u in Γr is the segment [p0(u), p1(u)],
where the two points p0(u) and p1(u) are p0(u) = (n∗r(leftr(u))+nb(u)δ, Yr(u)), and
p1(u) = (n∗r(rightr(u)) + nb(u)δ, Yr(u)). Note that, n∗r(leftr(u)) < n∗r(rightr(u)).
The vertical bar representing u in Γb is the segment [q0(u), q1(u)], where the two points
q0(u) and q1(u) are q0(u) = (Yb(u), n∗b(rightb(u)) + nr(u)δ), and q1(u) = (Yb(u),
n∗b(leftb(u)) + nr(u)δ). Note that, n∗b(rightb(u)) < n∗b(leftb(u)). Since Yr(u) =
n∗b(fb(u)) + nr(u)δ = n∗b(rightb(u)) + nr(u)δ, the bottom coordinate of the verti-
cal bar representing u matches the y-coordinate of the horizontal bar representing u.
Since Yb(u) = n∗r(fr(u))+nb(u)δ = n∗r(leftr(u))+nb(u)δ, the left coordinate of the
horizontal bar representing u matches the x-coordinate of the vertical bar representing
u. Thus the two bars form the L-shape .

We now show that no two L-shapes properly intersect each other. Suppose by con-
tradiction that the vertical bar of a vertex u, properly intersects the horizontal bar of a
vertex v. Based on Φ, the vertical bar of u involved in the intersection is either a left ver-
tical bar or a right vertical bar, and it is drawn at x-coordinate n∗r(leftr(u))+nb(u)δ or
n∗r(rightr(u)) + nb(u)δ, respectively. Suppose it is a left vertical bar, as the other case
is symmetric. Since u’s vertical bar properly intersects v’s horizontal bar, we know by
construction that n∗r(leftr(v)) + nb(v)δ < n∗r(leftr(u)) + nb(u)δ < n∗r(rightr(v)) +
nb(v)δ. Proper intersection implies that these inequalities are strict, that there is a path
in the red dual D�

r from leftr(v) to leftr(u) to rightr(v), and that the three faces
are distinct. This implies that u belongs either to Br(v) or to Tr(v), and it lies in the
corresponding regions of the plane, with fr(u) (and hence the start/end of curves rep-
resenting blue edges incident to u) inside the region. Similarly, by considering the blue
dualD�

b , n∗b(rightb(u))+nr(u)δ < n∗b(fb(v))+nr(v)δ < n∗b(leftb(u))+nr(u)δ, we
know that v belongs either toBb(u), or to Tb(u), and it lies in the corresponding regions
of the plane, with fb(v) (and hence the start/end of curves representing red edges inci-
dent to v) inside the region. No matter which region,Br(v) or Tr(v), vertex u lies in, or
which region, Bb(u) or Tb(u), vertex v lies in, the directed boundary of the blue region
(Bb(u) or Tb(u)) containing v crosses the directed boundary of the red region (Br(v)
or Tr(v)) containing u from right to left. This either violates condition c3 (if edges of
the boundaries cross) or it violates condition c2 (if the boundaries share a vertex). See
Fig. 2(b) for an illustration.

Theorem 3. Let Gr and Gb be two plane st-graphs defined on the same set of n ver-
tices V and with distinct sources and sinks. Let Φ : V → H = { , , , }. If
〈Gr, Gb〉 admits a Φ-transversal, then algorithm ΦLSVRDrawer computes a Φ-LSVR
of 〈Gr, Gb〉 in O(n) time.

Proof. Lemmas 2 and 3 imply that ΦLSVRDrawer computes a Φ-LSVR of 〈Gr, Gb〉.
Computing the dual graphs and the four topological numberings (Steps 1-3), as well as
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computing the two bar visibility representations and shifting each segment (Steps 4-5),
can be done in O(n) time, as shown in [7, 22].

4 Testing Algorithm

In this section we show how to test whether two plane st-graphs with the same set of
vertices admit a Φ-LSVR for a given function φ. In [11] it is shown a pair of graphs
〈Gr, Gb〉 that does not admit a Φ-LSVR for any function Φ. This emphasizes the need
for an efficient testing algorithm. Our algorithm exploits the interplay between the pri-
mal of the blue (red) graph and the dual of the red (blue) graph. Given the circular order
of the edges around each vertex imposed by the function φ, we aim to compute a suit-
able path in the red dual for each blue edge. Such paths will then be used to route the
blue edges. Finally, we check that no two blue edges cross.

We first introduce a few definitions. Let G and D� be a plane st-graph and its dual.
Let f and g be two faces of G that share an edge e = (x, z) of G, such that e belongs to
the right (resp., left) path of f (resp., g). Let e∗ be the dual edge inD� corresponding to
e. Let w be a vertex on the right path of f (or, equivalently, on the left path of g). Then
w is cut from above (resp., below) by e∗, if w precedes z (resp., succeeds x) along the
right path of f , i.e., all vertices that precede z (including x) are cut from above, while
all vertices that succeed x (including z) are cut from below by e∗.

Let Gr and Gb be a pair of plane st-graphs with the same vertex set V and with
distinct sources and sinks. Let Φ : V → H = { , , , }. Recall that, for a given
vertex u of Gb, with the notation Lb(u), Rb(u), Tb(u) and Bb(u) we represent the set
of vertices to the left, to the right, that are reachable from, and that can reach u in
Gb, respectively (see Section 2). Then consider an edge e = (u, v) of Gb and a path3

πe = {fr(u) = f0, e∗0, f1, . . . , fk−1, e∗k−1, fr(v) = fk} in D�
r , where fi (0 ≤ i ≤ k)

are the faces traversed by the path, and e∗i (0 ≤ i < k) are the dual edges used by the
path to go from fi to fi+1. Path πe is a traversing path for e, if πe = {fr(u) = fr(v)},
or for all 0 ≤ i < k and all vertices w in the right path of fi:

p1. If w ∈ Lb(u) then w is cut from below by e∗i . See Fig. 3(a).
p2. If w ∈ Rb(u) then w is cut from above by e∗i .
p3. If w ∈ Bb(u) and Φ(w) = (resp., Φ(w) = ) then w is cut from above (resp.,

below) by e∗i . See Fig. 3(b).
p4. If w ∈ Tb(u) and Φ(w) = (resp., Φ(w) = ) then w is cut from above (resp.,

below) by e∗i .
p5. If w ∈ Bb(v) and Φ(w) = (resp., Φ(w) = ) then w is cut from above (resp.,

below) by e∗i . See Fig. 3(c).
p6. If w ∈ Tb(v) and Φ(w) = (resp., Φ(w) = ) then w is cut from above (resp.,

below) by e∗i .

We now show that if 〈Gr, Gb〉 admits a Φ-transversal, then for each blue edge (the
same argument would apply for red edges) there exists a unique traversing path.

3 Since D�
r is a multigraph, to uniquely identify πe we specify the edges that are traversed.
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Fig. 3. Illustration for some of the properties of a traversing path πe.

Lemma 4. Let Gr and Gb be two plane st-graphs with the same vertex set V and with
distinct sources and sinks. Let Φ : V → H = { , , , }. If 〈Gr, Gb〉 admits a
Φ-transversal, then for every edge e of Gb there is a unique traversing path πe in D�

r .

Proof. If 〈Gr, Gb〉 admits a Φ-transversal Grb, then for every edge e = (u, v) of Gb

there exists a path πe = {fr(u) = f0, e∗0, f1, . . . , fk−1, e∗k−1, fr(v) = fk} in D�
r ,

which is the path used by e to go from fr(u) to fr(v) in Grb.
If f0 and fk coincide, then πe is a traversing path. Otherwise, we would have a cycle

πe = {f0 = fk, . . . , f0 = fk}, which is not possible since D�
r is acyclic, being the

dual of a plane st-graph.
If f0 and fk do not coincide, let w be a vertex in the right path of fi. First, if w

belongs to Lb(u), then it is cut from below. Otherwise, if w was cut from above, since
edge e = (u, v) cannot cross the right path of fi twice (by condition c3), it would belong
to Rb(u), a contradiction with the fact that the embedding of Gb is preserved. Thus p1
is respected by πe. With a symmetric argument we can also prove p2. Suppose now
that w belongs to Bb(u), then fr(w) = fi = leftr(w), otherwise if fr(w) = fi+1 =
rightr(w), the blue path fromw to uwould violate c3. In other words, either Φ(w) =
or Φ(w) = . Furthermore, if Φ(w) = , then w must be cut from above, while if
Φ(w) = , then w must be cut from below, as otherwise the incoming blue edges to
w must enter a region delimited by the blue path from w to u, the blue edge (u, v), and
part of the (red) right path of fi, which violates the planarity of the embedding of Gb

or condition c2 (see Fig. 3(b)). Thus p3 is respected by πe. With similar arguments one
can prove p4 – p6. Hence, πe is a traversing set. To prove that πe is unique, note that any
possible traversing set for e must start from f0 and leave this face. Hence, any vertex w
on the right path of f0 must be cut from either above or below, according to properties
p1 – p6 (which cover all possible cases for w). The only edge that can satisfy the cut
condition for all vertices on the right path of f0, is an edge e∗0 whose corresponding red
primal edge, denoted by (x, z), is such that all vertices on the right path of f0 above
x must be cut from below and all those below z must be cut from above. Clearly, this
edge is unique. By repeatedly applying this argument for each face fi (0 ≤ i < k), the
traversing path πe is uniquely identified.

The next theorem concludes the proof of Theorem 1.
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Theorem 4. Let Gr and Gb be two plane st-graphs with the same set of n vertices V
and with distinct sources and sinks. Let Φ : V → H = { , , , }. There exists an
O(n3)-time algorithm to test whether 〈Gr, Gb〉 admits a Φ-transversal.

Proof sketch: Our testing algorithm aims to compute (if it exists) aΦ-transversalGrb

for 〈Gr, Gb〉. We fix the circular order of the edges restricted to the blue edges (resp., red
edges) around each vertex u of Grb to satisfy c1 and to maintain the planar embedding
of Gb (resp., Gr). We then fix the circular order of the blue edges with respect to the
red edges around each vertex u of Grb to satisfy c2 (i.e., to obey Φ(u)). Then, we first
check if for every blue edge e there exists a traversing path πe; if so, we verify that
by routing every blue edge e through πe no two blue edges cross each other. If this
procedure succeeds then 〈Gr, Gb〉 admits Φ-transversal, because, by construction, the
resulting embedding of Grb satisfies conditions c1, c2 and c3. Otherwise, either there
exists a blue edge with no traversing path, or two traversing paths are such that the two
corresponding edges of Gb cross if routed through them. In the first case 〈Gr, Gb〉 does
not admit a Φ-transversal by Lemma 4. In the second case, since the traversing paths
are unique, condition c2 cannot be satisfied, and again a Φ-transversal cannot be found.
The testing algorithm works in two phases as follows.

Phase 1. For every edge e = (u, v) ∈ Eb. If fr(u) = fr(v), we have found a
traversing path. Otherwise, we label each vertex on the right path of fr(u), by A if it
must be cut from above or byB if it must be cut from below, according to properties p1
– p6. Then we check if the sequence of labels along the path is a nonzero number ofA’s
followed by a nonzero number of B’s. If so, then the dual edge of the traversing path is
the one whose corresponding primal edge has the two end-vertices with different labels
(which is unique). If this is not the case, then a traversing path for e does not exist. In
the positive case, we add the dual edge we found and the next face we reach through
this edge to πe and we iterate the algorithm until we reach either fr(v) or the outer face
of D�

r . In the former case πe is a traversing path for e, while in the latter case, since
the edges of the outer face of Grb cannot be crossed by definition of Φ-transversal, we
have that again no traversing path can be found.

Phase 2. We now check that by routing every edge e ∈ Eb through its corresponding
traversing path πe, no two of these edges cross each other. Consider the dual graphD�

r ,
which is a plane st-graph. Construct a planar drawing Γ of D�

r . Consider any two
traversing paths πe and π′e, which corresponds to two paths in Γ , and let e = (u, v) and
e′ = (w, z) be the two corresponding edges of Gb. Denote by π̂e = {u} ∪ πe ∪ {v}
and π̂′e = {w} ∪ π′e ∪ {z} the two enriched paths. Enrich Γ by adding the four edges
(x, fr(x)), where x ∈ {u, v, w, z}, in a planar way respecting the original embedding
of Gb. Consider now the subdrawing Γ ′ of Γ induced by π̂e ∪ π̂′e. If e and e′ cross
each other, then πe ∩ π′e cannot be empty. Moreover, the intersection πe ∩ π′e must be
a single subpath, as otherwise the two traversing paths would not be unique. Let f be
the first face and let g be the last face in this subpath. Let eu be the incoming edge of
f that belongs to the subpath of π̂e from u to f ; and let ew be the incoming edge of f
that belongs to the subpath of π̂′e from w to f . Also, let ev be the outgoing edge of g
that belongs to the subpath of π̂e from g to v; and let ez be the outgoing edge of g that
belongs to the subpath of π̂′e from g to z. Then e and e′ cross if and only if walking
clockwise along πe ∪ π′e from f to g and back to f these four edges are encountered
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in the circular order eu, ez , ev , ew. Note that, eu and ew may coincide if u = w, and
similarly for ev and ez .

5 Final Remarks and Open Problems

In this paper we have introduced and studied the concept of simultaneous visibility
representation with L-shapes of two plane st-graphs. We remark that it is possible to
include in our theory the case when the vertices can also be drawn as rectangles. Nev-
ertheless, this would not enlarge the class of representable pairs of graphs. In fact, for
every vertex v drawn as a rectangle Rv , we can replace Rv with any L-shape by keep-
ing only two adjacent sides ofRv in the drawing and prolonging the visibilites incident
to the removed sides of Rv . The converse is not true. Indeed, roughly speaking, L-
shapes can be nested, whereas rectangles cannot. To give an example, if a vertex v must
see a vertex u both vertically and horizontally, this immediately implies that the two
corresponding rectangles need to overlap, while two L-shapes could instead be nested.
Several extensions of the model introduced in this paper can also be studied, e.g., the
case where every edge is represented by a T-shape, or more generally by a +-shape.

Our results can also be used to shed more light on the problem of computing a
simultaneous RAC embedding (SRE) [2, 3]. Given two planar graphs with the same
vertex set, an SRE is a simultaneous embedding where crossings between edges of the
two graphs occur at right angles. Argyriou et al. proved that it is always possible to
construct an SRE with straight-line edges of a cycle and a matching, while there exist
a wheel graph and a cycle that do not admit such a representation [2]. This motivated
recent results about SRE with bends along the edges. Namely, Bekos et al. show that two
planar graphs with the same vertex set admit an SRE with at most six bends per edge in
both graphs [3]. We observe that any pair of graphs that admit a simultaneous visibility
representation with L-shapes also admits an SRE with at most two bends per edge. This
is obtained with the technique used in Section 3 to compute a Φ-transversal from a Φ-
LSVR, see Fig. 2(a). Thus, a new approach to characterize graph pairs that have SREs
with at most two bends per edge is as follows: Given two planar graphs with the same
vertex set, add to each of them a unique source and a unique sink, and look for two st-
orientations (one for each of the two graphs) and a function Φ such that the two graphs
admit a Φ-LSVR. In [11], we show an alternative proof of another result by Bekos et al.
that a wheel graph and a matching admit an SRE with at most two bends for each edge
of the wheel, and no bends for the matching edges [3].

Three questions that stem from this paper are whether the time complexity of the
testing algorithm in Section 4 can be improved; what is the complexity of deciding if
two given plane st-graphs admit a Φ-LSVR for some function Φ, which is not part of the
input; and what is the complexity of deciding if two undirected graphs admit a Φ-LSVR
for some function Φ.
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