
SEFE without Mapping via
Large Induced Outerplane Graphs in Plane

Graphs?

Patrizio Angelini1, William Evans2, Fabrizio Frati1, Joachim Gudmundsson3

1 Dipartimento di Ingegneria, Roma Tre University, Italy
{angelini,frati}@dia.uniroma3.it

2 Department of Computer Science, University of British Columbia, Canada
will@cs.ubc.ca

3 School of Information Technologies, The University of Sydney, Australia
joachim.gudmundsson@sydney.edu.au

Abstract. We show that every n-vertex planar graph admits a simulta-
neous embedding without mapping and with fixed edges with any (n/2)-
vertex planar graph. In order to achieve this result, we prove that every
n-vertex plane graph has an induced outerplane subgraph containing at
least n/2 vertices. Also, we show that every n-vertex planar graph and
every n-vertex planar partial 3-tree admit a simultaneous embedding
without mapping and with fixed edges.

1 Introduction

Simultaneous embedding is a flourishing area of research studying topological and
geometric properties of planar drawings of multiple graphs on the same point set.
The seminal paper in the area is the one of Braß et al. [7], in which two types of
simultaneous embedding are defined, with mapping and without mapping. In the
former variant, a bijective mapping between the vertex sets of any two graphs G1

and G2 to be drawn is part of the problem’s input, and the goal is to construct a
planar drawing of G1 and a planar drawing of G2 so that corresponding vertices
are mapped to the same point. In the latter variant, the drawing algorithm is
free to map any vertex of G1 to any vertex of G2 (still the n vertices of G1

and the n vertices of G2 have to be placed on the same n points). Simultaneous
embeddings have been studied with respect to two different drawing standards:
In a geometric simultaneous embedding, edges are required to be straight-line
segments. In a simultaneous embedding with fixed edges (also known as Sefe),
edges can be arbitrary curves, but each edge that belongs to both G1 and G2

must be represented by the same curve in the drawing of G1 and in the drawing
of G2.

? Research partially supported by NSERC Canada, by the Australian Research Coun-
cil grant FT100100755 and by ESF project 10-EuroGIGA-OP-003 GraDR “Graph
Drawings and Representations”. A preliminary version of this paper appeared at
ISAAC 2013 [3].



Many papers deal with the problem of constructing geometric simultaneous
embeddings and simultaneous embeddings with fixed edges of pairs of planar
graphs in the variant with mapping. Typical considered problems include: (i) de-
termining notable classes of planar graphs that always or may not always admit a
simultaneous embedding; (ii) designing algorithms for constructing simultaneous
embeddings within small area and with few bends on the edges; (iii) determining
the time complexity of testing the existence of a simultaneous embedding for a
given set of graphs. We refer the reader to the recent survey by Bläsius et al. [4].

In contrast to the large number of papers dealing with simultaneous em-
bedding with mapping, little progress has been made on the without mapping
version of the problem. Braß et al. [7] showed that, for any k ≥ 1, planar
graphs G1, . . . , Gk admit a geometric simultaneous embedding without mapping
if G2, . . . , Gk are outerplanar. They left open the following attractive question:
Do every two n-vertex planar graphs admit a geometric simultaneous embed-
ding without mapping? Cardinal et al. [8] have shown that a constant number
of graphs is the most we could hope for by demonstrating a collection of 7,393
n-vertex planar graphs (n = 35) that do not admit a simultaneous geometric
embedding without mapping.

In this paper we initiate the study of simultaneous embeddings with fixed
edges and without mapping, called SefeNoMap for brevity. In this setting, the
natural counterpart of the Braß et al. [7] question reads as follows: Do every two
n-vertex planar graphs admit a SefeNoMap?

Since answering this question seems to be an elusive goal, we tackle the
following generalization of the problem: What is the largest k ≤ n such that every
n-vertex planar graph and every k-vertex planar graph admit a SefeNoMap?
That is: What is the largest k ≤ n such that every n-vertex planar graph G1

and every k-vertex planar graph G2 admit two planar drawings Γ1 and Γ2 with
their vertex sets mapped to point sets P1 and P2, respectively, so that P2 ⊆ P1

and so that if edges e1 of G1 and e2 of G2 have their end-vertices mapped to the
same two points pa and pb, then e1 and e2 are represented by the same curve
between pa and pb in Γ1 and in Γ2? In this paper we prove that k ≥ n/2, that
is:

Theorem 1. Every n-vertex planar graph and every dn/2e-vertex planar graph
have a SefeNoMap.

Observe that the previous theorem would be easily proved if dn/2e were
replaced with dn/4e: First, consider an dn/4e-vertex independent set I of any
n-vertex planar graph G1 (which always exists, as a consequence of the four color
theorem [14,15]). Then construct any planar drawing Γ1 of G1, and let P (I) be
the point set on which the vertices of I are mapped in Γ1. Finally, construct a
planar drawing Γ2 of any dn/4e-vertex planar graph G2 on point set P (I) (e.g.
using Kaufmann and Wiese’s technique [13]). Since I is an independent set, any
bijective mapping between the vertex set of G2 and I ensures that G1 and G2

share no edges. Thus, Γ1 and Γ2 are a SefeNoMap of G1 and G2.
In order to get the dn/2e bound, we study the problem of finding a large

induced outerplane graph in a plane graph. A plane graph G is a planar graph
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Fig. 1. (a) A 10-vertex planar graph G1 (solid lines) and a 5-vertex planar graph G2

(dashed lines). A 5-vertex induced outerplane graph G1[V ′] in G1 is colored black.
Vertices and edges of G1 not in G1[V ′] are colored gray. (b) A straight-line planar
drawing Γ (G2) of G2 with no three collinear vertices, together with a straight-line
planar drawing of G1[V ′] on the point set P2 defined by the vertices of G2 in Γ (G2).
(c) A SefeNoMap of G1 and G2.

together with a plane embedding, that is, an equivalence class of planar drawings
of G, where two planar drawings Γ1 and Γ2 are equivalent if: (1) the rotation
systems of G in Γ1 and in Γ2 coincide, i.e., the clockwise order of the edges
incident to each vertex of G is the same in Γ1 and in Γ2; (2) each face has
the same facial boundaries in Γ1 and in Γ2, i.e., for each face f the lists of
vertices determined by clockwise traversing the walks delimiting f are the same
in Γ1 and in Γ2; and (3) Γ1 and Γ2 have the same outer face. Observe that,
for planar drawings of connected graphs, condition (2) is implied by condition
(1). An outerplane graph is a graph together with an outerplane embedding,
that is a plane embedding where all the vertices are incident to the outer face.
An outerplanar graph is a graph that admits an outerplane embedding; a plane
embedding of an outerplanar graph is not necessarily outerplane. Consider a
plane graph G and a subset V ′ of its vertex set. The induced plane graph G[V ′]
is the subgraph of G induced by V ′ together with the plane embedding inherited
from G, i.e., the embedding obtained from the plane embedding of G by removing
all the vertices and edges not in G[V ′]. We show the following result.

Theorem 2. Every n-vertex plane graph G(V,E) has a vertex set V ′ ⊆ V with
|V ′| ≥ n/2 such that G[V ′] is an outerplane graph.

Theorem 2 and the results of Gritzmann et al. [10] yield a proof of Theorem 1,
as follows.

Proof of Theorem 1: Consider any n-vertex plane graph G1 and any dn/2e-
vertex plane graph G2 (see Fig. 1(a)). Let Γ (G2) be any straight-line planar
drawing of G2 in which no three vertices are collinear. Denote by P2 the set of
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dn/2e points to which the vertices of G2 are mapped in Γ (G2). Consider any
dn/2e-vertex subset V ′ ⊆ V (G1) such that G1[V ′] is an outerplane graph. Such
a set exists by Theorem 2. Construct a straight-line planar drawing Γ (G1[V ′]) of
G1[V ′] in which its vertices are mapped to P2 so that the resulting drawing has
the same (outerplane) embedding as G1[V ′]. Such a drawing exists by results
of Gritzmann et al. [10]; also it can be found efficiently by results of Bose [6]
(see Fig. 1(b)). Construct any planar drawing Γ (G1) of G1 in which the drawing
of G1[V ′] is Γ (G1[V ′]). Such a drawing exists, given that Γ (G1[V ′]) is a planar
drawing of a plane subgraph G1[V ′] of G1 preserving the embedding of G1[V ′] in
G1 (see Fig. 1(c)). Both Γ (G1) and Γ (G2) are planar, by construction. Also, the
only edges that are possibly shared by G1 and G2 are those between two vertices
that are mapped to P2. However, such edges are drawn as straight-line segments
both in Γ (G1) and in Γ (G2). Thus, Γ (G1) and Γ (G2) are a SefeNoMap of G1

and G2. �

By the straightforward observation that the vertices in the odd (or even)
levels of a breadth-first search tree of a planar graph induce an outerplanar
graph, we know that G has an induced outerplanar graph with at least n/2
vertices. However, since its embedding in G may not be outerplane, this seems
insufficient to prove the existence of a SefeNoMap of every n-vertex and every
dn/2e-vertex planar graph.

Theorem 2 might be of independent interest, as it is related to (in fact it is
a weaker version of) a famous and long-standing graph theory conjecture:

Conjecture 1. (Albertson and Berman 1979 [2]) Every n-vertex planar graph
G(V,E) has a vertex set V ′ ⊆ V with |V ′| ≥ n/2 such that G[V ′] is a forest.

Conjecture 1 would prove the existence of an dn/4e-vertex independent set
in a planar graph without using the four color theorem [14,15]. The best known
partial result related to Conjecture 1 is that every planar graph has a vertex
subset with 2/5 of its vertices inducing a forest, which is a consequence of the
acyclic 5-colorability of planar graphs [5]. Variants of the conjecture have also
been studied where G is further restricted to be bipartite [1] or outerplanar [12],
or where each connected component of the induced forest is required to be a
path [17,18].

The topological structure of an outerplane graph is arguably much closer to
that of a forest than the one of a non-outerplane graph. Thus the importance of
Conjecture 1 may justify the study of induced outerplane graphs in plane graphs
in its own right.

To complement the results of the paper, we also show the following. A plane
3-tree is inductively defined as follows: (1) The complete graph K3 together with
its unique plane embedding is the only plane 3-tree with three vertices; and (2)
every plane 3-tree Gn with n ≥ 4 vertices can be obtained from a plane 3-tree
Gn−1 with n−1 vertices by inserting a vertex w inside an internal face (u, v, z) of
Gn−1 and connecting w with u, v, and z. A planar 3-tree is a graph that admits
a plane embedding as a plane 3-tree. A partial planar 3-tree is a subgraph of a
planar 3-tree. A planar partial 3-tree is a planar graph with tree-width at most
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G G[V1] G[V2] G[V3] G[V4]

Fig. 2. A maximal plane graph G with outerplanarity index 4 and its levels.

three. The class of partial planar 3-trees and the class of planar partial 3-trees
are equal [16]. We, typically, use the latter term for the class.

Theorem 3. Every n-vertex planar graph and every n-vertex planar partial 3-
tree have a SefeNoMap.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 2;
in Section 3 we prove Theorem 3; finally, in Section 4 we conclude and suggest
some open problems.

2 Proof of Theorem 2

In this section we prove Theorem 2, that is, we show an algorithm that receives
as input an n-vertex plane graph G(V,E) and constructs a set V ′ ⊆ V with
|V ′| ≥ n/2 such that G[V ′] is an outerplane graph.

We assume that G is a maximal plane graph, that is, a plane graph whose
faces are all delimited by 3-cycles. If that is not the case, dummy edges can be
added to G in order to make it a maximal plane graph G′. Then the vertex set
V ′ of an induced outerplane graph G′[V ′] in G′ induces an outerplane graph in
G, as well.

Outerplane levels. Our algorithm will use a natural plane graph decom-
position, which consists of “peeling” a plane graph by repeatedly removing the
vertices incident to its outer face and their incident edges. Formally, let G be
a maximal plane graph, let G∗1 = G and, for any i ≥ 1, let G∗i+1 be the plane
graph obtained by removing from G∗i the set Vi of vertices incident to the outer
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Fig. 3. (a) A connected internally-triangulated plane graph G with a 2-coloring ψ, (b)
the block-cutvertex tree BC(G), and (c) the contracted block-cutvertex tree CBC(G,ψ).

face of G∗i and their incident edges. Vertex set Vi is the i-th outerplane level of
G. Denote by k the maximum index such that Vk is non-empty; then k is the
outerplanarity index of G. For any 1 ≤ i ≤ k, graph G[Vi] is a (not necessar-
ily connected) outerplane graph and graph G∗i is a (not necessarily connected)
internally-triangulated plane graph, that is, a plane graph whose internal faces
are all delimited by 3-cycles. See Fig. 2. Since G is maximal, for any 1 ≤ i ≤ k
and for any internal face f of G[Vi], at most one connected component of G∗i+1

lies inside f .

Colorings. In order to define a set V ′ ⊆ V such that G[V ′] is an outerplane
graph, our algorithm will color the vertices in V , in such a way that a vertex is
in V ′ if it is colored white, and it is not in V ′ if it is colored black. Formally, a 2-
coloring ψ = (W,B) of G is a partition of V into two sets W and B. We say that
the vertices in W are white and the ones in B are black. Further, an edge is white
if both its end-vertices are white. We also say that G[W ] is strongly outerplane
if it is outerplane and it contains no black vertex inside any of its internal faces.
Finally, we define the surplus of ψ as s(G,ψ) = |W | − |B|. Observe that the
existence of a set V ′ ⊆ V with |V ′| ≥ n/2 such that G[V ′] is an outerplane
graph is equivalent to the existence of a 2-coloring ψ = (W,B) of G such that
s(G,ψ) ≥ 0 and such that G[W ] is an outerplane graph.

Block decompositions. The outerplane graph G[Vi] induced by an outer-
plane level Vi of G is not necessarily connected; we will handle the decomposition
of each connected component of G[Vi] into 2-connected components with the aid
of a well-known data structure, called the block-cutvertex tree, and of a suitably-
defined variation of it, which we call the contracted block-cutvertex tree.

A cutvertex in a connected graph G is a vertex whose removal disconnects G.
A maximal 2-connected component of G, also called a block of G, is an induced
subgraph G[V ′] of G such that G[V ′] is 2-connected and there exists no V ′′ ⊆
V (G) where V ′ ⊂ V ′′ and G[V ′′] is 2-connected.

The block-cutvertex tree BC(G) of G is a tree that represents the arrangement
of the blocks of G (see Figs. 3(a) and 3(b) and refer to [11,19]). Namely, BC(G)
contains a B-node for each block of G and a C-node for each cutvertex of G;
further, there is an edge between a B-node b and a C-node c if c is a vertex of b.
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Given a 2-coloring ψ = (W,B) of G, the contracted block-cutvertex tree
CBC(G,ψ) of G is the tree obtained from BC(G) by identifying all the B-nodes
that are adjacent to the same black cut-vertex c, and by removing c and its
incident edges (see Fig. 3(c)). Each node of CBC(G,ψ) is either a C-node c or a
BU-node b. In the former case, c corresponds to a white C-node in BC(G). In the
latter case, b corresponds to a maximal connected subtree BC(G(b)) of BC(G)
only containing B-nodes and black C-nodes. The subgraph G(b) of G associated
with a BU-node b is the union of the blocks of G corresponding to B-nodes
in BC(G(b)). We denote by H(b) the outerplane graph induced by the vertices
incident to the outer face of G(b).

Proof outline and main lemma. We now prove Theorem 2, that is, we
show how to construct a 2-coloring ψ = (W,B) of any plane graph G so that
s(G,ψ) ≥ 0 and G[W ] is an outerplane graph. The proof works by induction
on the outerplanarity index of G. If the outerplanarity index of G is one, then
we simply insert all the vertices of G in W . Otherwise, we remove from G all
the vertices in its first outerplane level V1, together with their incident edges,
thus obtaining a plane graph K with one less outerplane level. Then we color K
inductively and finally we assign colors to the vertices in V1, thus obtaining ψ.

The core of the proof consists of designing a suitable inductive hypothesis that
ensures simultaneously that s(K,ψ) ≥ 0 and that sufficiently many vertices in
V1 can be colored white so that s(G,ψ) ≥ 0. For example, the simple inductive
hypothesis stating that s(K,ψ) ≥ 0 would not ensure that sufficiently many
vertices in V1 can be colored white; in fact, K could contain “a lot of” white
vertices incident to its outer face, hence it might be the case that no vertex in
V1 can be colored white without destroying the outerplanarity of G[W ].

The formalization of our inductive hypothesis is expressed in the following.

Lemma 1. For any connected internally-triangulated plane graph G, there ex-
ists a 2-coloring ψ = (W,B) of G such that:

(1) the subgraph G[W ] of G induced by W is strongly outerplane; and
(2) for any BU-node b in CBC(G,ψ), one of the following holds:

(a) s(G(b), ψ) ≥ |W ∩ V (H(b))|+ 1 (that is, the number of white vertices in
G(b) minus the number of black vertices in G(b) is strictly greater than
the number of white vertices in H(b));

(b) s(G(b), ψ) = |W ∩ V (H(b))| (that is, the number of white vertices in
G(b) minus the number of black vertices in G(b) is equal to the number
of white vertices in H(b)) and there exists a white edge incident to the
outer face of G(b); or

(c) s(G(b), ψ) = 1 and G(b) is a single vertex.

Lemma 1 implies Theorem 2 as follows: If G is an n-vertex maximal plane
graph, it is 2-connected and internally-triangulated. By Lemma 1, there exists
a 2-coloring ψ = (W,B) of G such that G[W ] is an outerplane graph and |W | −
|B| ≥ |W ∩ V1| ≥ 0, hence |W | ≥ n/2.

We emphasize that Lemma 1 shows the existence of a large induced subgraph
G[W ] of G satisfying an even stronger property than just being outerplane;
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namely, the 2-coloring ψ = (W,B) is such that G[W ] is outerplane and contains
no black vertex in any of its internal faces. Although this property is not needed
in order to prove Theorem 2 and it is not even needed in order for the upcoming
inductive proof of Lemma 1 to work, we find it of some graph-theoretical interest,
and hence we explicitly mention it in Lemma 1.

The reminder of the section is devoted to a proof of Lemma 1.
Notation. We introduce some definitions and notation. Let G be a connected

internally-triangulated plane graph. We denote H = G[V1]. Hence, H is a con-
nected outerplane graph. Further, we denote by K the subgraph of G induced
by the internal vertices of G. Consider any internal face f of H. We say that f
is empty if it contains no vertex of K in its interior. If f is not empty, we denote
by Kf the connected component of K in the interior of f (observe that Kf is
connected and internally-triangulated, given that G is internally-triangulated),
and by Df the closed walk delimiting the outer face of Kf . Given a 2-coloring
ψf = (Wf , Bf ) of Kf , we say that f is trivial if Kf is a single white vertex or all
the vertices in Df are black. Also, for any BU-node b in the contracted block-
cutvertex tree CBC(Kf , ψf ), we denote by Df (b) the closed walk delimiting the
outer face of Kf (b).

Characterization. We present a characterization of the 2-colorings inducing
a strongly outerplane graph in G, that will be used later in the algorithm.

Lemma 2. Given a 2-coloring ψ = (W,B) of a connected internally-triangulated
plane graph G, we have that G[W ] is strongly outerplane if and only if, for every
vertex v of G, there exists a path (u0 = v, u1, . . . , uk), for some k ≥ 0, such that
ui ∈ B, for every 1 ≤ i ≤ k, and such that uk is incident to the outer face of G.

Proof: In order to prove the sufficiency, we need to prove that every vertex
v of G is incident to or lies in the outer face of G[W ], assuming that a path
(u0 = v, u1, . . . , uk) exists as in the statement of the lemma. If k = 0, then v is
incident to the outer face of G, and hence it is incident to or lies in the outer face
of G[W ]. Assume that k ≥ 1. Since uk is incident to the outer face of G and since
all the vertices of path (u1, . . . , uk) are black, it follows that all of u1, . . . , uk lie
in the outer face of G[W ]. By planarity and since edge (v, u1) exists in G, it
follows that v is incident to or lies in the outer face of G[W ].

In order to prove the necessity, we need to prove that, for every vertex v of
G, a path (u0 = v, u1, . . . , uk) as in the statement of the lemma exists, assuming
that G[W ] is strongly outerplane. If v is incident to the outer face of G, then the
desired path consists only of vertex v. Otherwise, v is an internal vertex of G.
Denote by s1, . . . , sl the clockwise order of the neighbors of v. We claim that v has
at least one black neighbor si. For a contradiction, suppose that all of s1, . . . , sl
are white. Since G is internally-triangulated, cycle C = (s1, . . . , sl) exists in
G, hence C is a cycle in G[W ] containing v in its interior. This contradicts the
assumption that G[W ] is strongly outerplane. It remains to prove the existence of
a path in G[B] connecting si to a vertex incident to the outer face of G. Indeed,
if the connected component Gi[B] of G[B] containing si does not contain at
least one vertex incident to the outer face of G, then there exists a cycle in
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G[W ] containing Gi[B] in its interior, contradicting the assumption that G[W ]
is strongly outerplane. This concludes the proof of the lemma. �

Coloring algorithm. We now prove Lemma 1 by induction on the outer-
planarity index of G.

In the base case, the outerplanarity index of G is 1; color all the vertices of
G white. Since the outerplanarity index of G is 1, G[W ] = G is an outerplane
graph, thus satisfying Condition (1) of Lemma 1. Also, consider any BU-node
b in the contracted block-cutvertex tree CBC(G,ψ) (which coincides with the
block-cutvertex tree BC(G), given that all the vertices of G are white). All the
vertices of G(b) are white, hence either Condition (2b) or Condition (2c) of
Lemma 1 is satisfied, depending on whether G(b) has or does not have an edge,
respectively.

In the inductive case, the outerplanarity index of G is greater than 1.

First, we inductively construct a 2-coloring ψf = (Wf , Bf ) of Kf satisfying
the conditions of Lemma 1, for each non-empty internal face f of H. The 2-
coloring ψ of G extends these colorings, i.e., a vertex of Kf is white in ψ if and
only if it is white in ψf . Then, in order to determine ψ, it suffices to describe
how to color the vertices of H.

Second, we look at the internal faces of H one at a time. For a face f of
H, denote by Cf the simple cycle delimiting f . When we look at a face f , we
determine a subset Xf of the vertices in Cf that we will color black in ψ. We
choose Xf in such a way that, for every vertex v in Kf , there exists a path
(u0 = v, u1, . . . , uk) in G such that ui ∈ Bf , for every 1 ≤ i ≤ k − 1, and such
that uk ∈ Xf . By Lemma 2 the existence of such a path implies that G[W ] is
strongly outerplane. We remark that, when the vertices in a set Xf ⊆ V (Cf ) are
colored black, the vertices in V (Cf ) \ Xf are not necessarily colored white, as
a vertex in V (Cf ) \Xf might belong to the set Xf ′ of vertices that are colored
black for a face f ′ 6= f of H. In fact, only after the set Xf of vertices of Cf are
colored black for every internal face f of H, are the remaining uncolored vertices
in H colored white.

We now describe in more detail how to color the vertices of H. We show an
algorithm, that we call algorithm cycle-breaker, that associates a set Xf to each
internal face f of H as follows.

Empty faces: For any empty face f of H, let Xf = ∅.
Trivial faces: While there exists a vertex v1,2 incident to two trivial faces

f1 and f2 of H to which no sets Xf1 and Xf2 have been associated yet, let
Xf1 = Xf2 = {v1,2}. When no such vertex exists, for any trivial face f of H
to which no set Xf has been associated yet, let v be any vertex of Cf and let
Xf = {v}.

Non-trivial non-empty faces: Consider any non-trivial non-empty internal
face f of H. By induction, for any BU-node b in the contracted block-cutvertex
tree CBC(Kf , ψf ), it holds s(Kf (b), ψf ) ≥ |Wf∩V (Df (b))|+1, or s(Kf (b), ψf ) =
|Wf ∩ V (Df (b))| and Df (b) contains a white edge.

We consider the BU-nodes of CBC(Kf , ψf ) one at a time, in any order. When
considering a BU-node b, we insert some vertices of Cf in Xf , based on the

9



u
u′

Kf (b)

Kf (b
′)

Cf

r(u, b′) r(u, b)

Fig. 4. The rightmost neighbors of u in Cf from b and from b′. Observe that, if
s(Kf (b), ψf ) = |Wf ∩ V (Df (b))|, it might be the case that r(u, b) is white.

structure and the coloring of Kf (b). We now describe how to perform such an
insertion in more detail.

For every white vertex u in Df (b), we define the rightmost neighbor r(u, b)
of u in Cf from b as follows (see Fig. 4). Denote by u′ the vertex following u
in the clockwise order of the vertices along Df (b). Vertex r(u, b) is the vertex
preceding u′ in the clockwise order of the neighbors of u. Observe that, since
G is internally-triangulated, r(u, b) belongs to Cf . Also, r(u, b) is well-defined
because u is not a cutvertex (in fact, it might be a cutvertex of Kf , but it is not
a cutvertex of Kf (b), since such a graph contains no white cut-vertex).

Suppose that s(Kf (b), ψf ) ≥ |Wf ∩ V (Df (b))| + 1. Then, for every white
vertex u in Df (b), we add r(u, b) to Xf .

Suppose that s(Kf (b), ψf ) = |Wf ∩ V (Df (b))| and Df (b) contains a white
edge (v, v′). Assume, w.l.o.g., that v′ follows v in the clockwise order of the
vertices along Df (b). Then, for every white vertex u 6= v in Df (b), we add
r(u, b) to Xf .

After the execution of algorithm cycle-breaker, a set Xf has been defined
for every internal face f of H. Color black all the vertices in

⋃
f Xf , where the

union is over all the internal faces f of H. Also, color white all the vertices of H
that are not colored black. Denote by ψ = (W,B) the resulting coloring of G.

We have the following lemma, that completes the induction, and hence the
proof of Lemma 1.

Lemma 3. Coloring ψ satisfies Conditions (1) and (2) of Lemma 1.

Proof: We prove that ψ satisfies Condition (1) of Lemma 1. By Lemma 2,
it suffices to prove the following claim: For every vertex v in G, there exists a
path (u0 = v, u1, . . . , uk) in G such that ui ∈ B, for every 1 ≤ i ≤ k, and such
that uk is incident to the outer face of G.

Denote by f any internal face of H such that v lies in the interior of f or is
in Cf . If v is in Cf , then the desired path consists only of vertex v. Otherwise,
v belongs to Kf . This implies that f is not an empty face.

If f is a trivial face and Kf consists of a single white vertex (which is v by the
assumption that v is in Kf ), then by construction there exists a black neighbor
u1 of v in Cf , hence the desired path is (v, u1).
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u`

v

u`

uk−1
z

r(z, b)=uk r(z, b)=uk

vw
z uk−1

(a) (b) (c)

Fig. 5. Illustration for the proof that ψ satisfies Condition (1) of Lemma 1. The thick
path is (v, u1, . . . , uk). (a) The case in which f is a trivial face and all the vertices in
Df are black. The graph whose interior is gray is Kf . (b)-(c) The case in which f is a
non-trivial non-empty face. The graph whose interior is filled gray is Kf (b). In (b) v is
not in Df , while in (c) v is a white vertex in Df and w is black.

If f is a trivial face and all the vertices in Df are black, as in Fig. 5(a),
then by Lemma 2 applied to Kf there exists a path (v = u0, u1, . . . , u`) in Kf

such that ui ∈ Bf ⊆ B, for every 1 ≤ i ≤ `, and such that u` is in Df . Then,
Df can be traversed until a vertex uk−1 is found that has a black neighbor
uk in Cf ; vertices uk−1 and uk exist by construction and since G is internally-
triangulated. This defines an open walk (v = u0, u1, . . . , u`, . . . , uk−1, uk), where
u1, . . . , u`, . . . , uk−1, uk are black vertices. Removing cycles in such a walk de-
termines the desired path.

If f is a non-trivial non-empty face and v is not in Df , as in Fig. 5(b), or
if v is a black vertex in Df , then by Lemma 2 applied to Kf there exists a
path (u0 = v, u1, . . . , u`) in Kf such that ui ∈ Bf ⊆ B, for every 1 ≤ i ≤ `,
and such that u` is in Df . Let b be any node of CBC(Kf , ψf ) such that Kf (b)
contains u`. Counterclockwise traverse Df (b) until two consecutive vertices uk−1
and z are encountered such that uk−1 is black and z is white. Observe that a
black vertex in Df (b) exists by assumption (u` is one such vertex) and a white
vertex in Df (b) exists since f is non-trivial. Since G is internally-triangulated,
uk−1 and z are both neighbors of vertex r(z, b). By construction uk = r(z, b)
is a black vertex. This defines an open walk (v = u0, u1, . . . , u`, . . . , uk−1, uk),
where u1, . . . , u`, . . . , uk−1, uk are black vertices. Removing cycles in such a walk
determines the desired path.

If f is a non-trivial non-empty face and v is a white vertex in Df , then let
b be any node of CBC(Kf , ψf ) such that Kf (b) contains v. If r(v, b) is black,
then (v, r(v, b)) is the desired path. If r(v, b) is white, then denote by w the
vertex following v in counter-clockwise direction in Df (b). By construction there
is at most one white vertex in Df (b) whose rightmost neighbor in Cf from b
is not black. Hence, if w is white, then vertex r(w, b) is black; moreover, since
G is internally-triangulated, r(w, b) is adjacent to v, hence (v, r(w, b)) is the
desired path. If w is black, as in Fig. 5(c), then let u1 = w and determine a path
(u1, . . . , uk) as in the case in which v is not in Df . Namely, counterclockwise
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traverse Df (b) from u1 until two consecutive vertices uk−1 and z are encountered
such that uk−1 is black and z is white. Since G is internally-triangulated, uk−1
and z are both neighbors of black vertex uk = r(z, b). This defines an open
walk (v = u0, u1, . . . , u`, . . . , uk−1, uk), where u1, . . . , u`, . . . , uk−1, uk are black
vertices. Removing cycles in such a walk determines the desired path.

We prove that ψ satisfies Condition (2) of Lemma 1. Consider any BU-node
b in the contracted block-cutvertex tree CBC(G,ψ). Recall that H(b) denotes the
outerplane graph induced by the vertices incident to the outer face of G(b).

We distinguish three cases. In Case A, graph H(b) contains at least one non-
trivial non-empty internal face; in Case B, all the faces of H(b) are either trivial
or empty, and there exists a vertex v1,2 incident to two trivial faces f1 and f2
of H(b); finally, in Case C, all the faces of H(b) are either trivial or empty, and
there exists no vertex incident to two trivial faces of H(b). We prove that, in the
first two cases Condition (2a) of Lemma 1 is satisfied, while in the third case
Condition (2b) of Lemma 1 is satisfied.

In all cases, the surplus s(G(b), ψ) is the sum of the surpluses s(Kf , ψ) of
the connected components Kf of K inside the internal faces of H(b), plus the
number |W∩V (H(b))| of white vertices in H(b), minus the number |B∩V (H(b))|
of black vertices in H(b), which is equal to |⋃f Xf |. Denote by na the number
of trivial faces of H(b) and by nb the number of non-trivial non-empty faces of
H(b).

We first discuss Case A. Note that, the number of vertices inserted in
⋃

f Xf

by algorithm cycle-breaker when looking at trivial faces of H(b) is at most na,
since at most one vertex is inserted into Xf for every trivial face f of H(b).
Also, the sum of the surpluses s(Kf , ψ) of the connected components Kf of K
inside trivial faces of H(b) is at least na, given that each connected component
Kf inside a trivial face is either a single white vertex, or it is such that all the
vertices incident to the outer face of Kf are black (hence by induction s(Kf , ψ) ≥
|W ∩ V (Df )|+ 1 = 1).

Next, we will prove the following

Claim 1. For every non-trivial non-empty face f of H(b) containing a connected
component Kf of K in its interior, algorithm cycle-breaker inserts into Xf at
most s(Kf , ψ)− 1 vertices.

We first show that Claim 1 implies that Condition (2a) of Lemma 1 is satisfied
by G(b). In fact:

1. the sum of the surpluses of the connected components ofK inside the internal
faces of H(b) is na +

∑
f s(Kf , ψ), where the sum is over every non-trivial

non-empty internal face f of H(b);
2. the number of white vertices in H(b) is |W ∩ V (H(b))|; and
3. the number of black vertices in H(b) is at most na+

∑
f (s(Kf , ψ)−1), where

the sum is over every non-trivial non-empty internal face f of H(b).

Hence, s(G(b), ψ) ≥ na+
∑

f s(Kf , ψ)+|W∩V (H(b))|−na−
∑

f (s(Kf , ψ)−1) =
|W∩V (H(b))|+nb. By the assumption of Case A, we have nb ≥ 1, and Condition
(2a) of Lemma 1 follows.
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We now prove Claim 1. Consider any non-trivial non-empty face f of H(b)
containing a connected component Kf of K in its interior. Let nc and nd re-
spectively denote the number of C-nodes and the number of BU-nodes in the
contracted block-cutvertex tree CBC(Kf , ψ) of Kf . Let b1, b2, . . . , bnd

be the
BU-nodes of CBC(Kf , ψ) in any order.

We prove that, when algorithm cycle-breaker deals with BU-node bi, for any
1 ≤ i ≤ nd, it inserts into Xf a number of vertices which is at most s(Kf (bi), ψ)−
1. Namely, if s(Kf (bi), ψ) ≥ |W ∩V (Df (bi))|+1, then it suffices to observe that,
for each white vertex in Df (bi), at most one vertex is inserted into Xf ; further, if
s(Kf (bi), ψ) = |W ∩ V (Df (bi))| and there exists a white edge e in Df (bi), then,
for each white vertex in Df (bi), at most one vertex is inserted into Xf with the
exception of one of the end-vertices of e, for which no vertex is inserted into Xf .
Hence, the number of vertices inserted into Xf by algorithm cycle-breaker is at
most

∑nd

i=1(s(Kf (bi), ψ)− 1) =
∑nd

i=1 s(Kf (bi), ψ)− nd.

In order to complete the proof of Claim 1, it remains to prove that∑nd

i=1 s(Kf (bi), ψ) − nd = s(Kf , ψ) − 1. Roughly speaking, this comes from
the fact that white cutvertices in Kf belong to more than one graph Kf (bi),
hence they give a contribution greater than 1 to

∑nd

i=1 s(Kf (bi), ψ), while they
give a contribution equal to 1 to s(Kf , ψ). More precisely, every vertex in Kf

which is not a white cutvertex contributes +1 or −1 to s(Kf , ψ) if and only
if it contributes +1 or −1, respectively, to

∑nd

i=1 s(Kf (bi), ψ). Further, every
white cutvertex in Kf gives a +1 contribution to s(Kf , ψ); hence, the contri-
bution of the white cutvertices in Kf to s(Kf , ψ) is equal to nc. Finally, every
white cutvertex in Kf gives a contribution to

∑nd

i=1 s(Kf (bi), ψ) equal to its
degree in CBC(Kf , ψ); hence, the contribution of the white cutvertices in Kf

to
∑nd

i=1 s(Kf (bi), ψ) is equal to the number of edges of CBC(Kf , ψ), which is
nc + nd − 1. Thus,

∑nd

i=1 s(Kf (bi), ψ)− s(Kf , ψ) = (nc + nd − 1)− nc = nd − 1.

We now discuss Case B. First, the sum of the surpluses s(Kf , ψ) of the
connected components Kf of K inside the internal faces of H(b) is at least na,
given that each connected component Kf is either a single white vertex, or it is
such that all the vertices incident to the outer face of Kf are black (hence by
induction s(Kf , ψ) ≥ |W ∩ V (Df )|+ 1 = 1).

Second, by the assumptions of Case B and by construction, algorithm cycle-
breaker defines Xf1 = Xf2 = {v1,2} for two trivial faces f1 and f2 of H(b)
sharing a vertex v1,2. Thus, |B ∩ V (H(b))| = |⋃f Xf | < na. In fact, each trivial
face contributes at most one vertex to

⋃
f Xf and at least two trivial faces of

H(b) contribute a total of one vertex to
⋃

f Xf .

Hence, s(G(b), ψ) ≥ na + |W ∩ V (H(b))| − (na − 1) = |W ∩ V (H(b))| + 1,
thus Condition (2a) of Lemma 1 is satisfied.

We finally discuss Case C. As in the previous case, the sum of the surpluses
of the connected components Kf of K inside the internal faces of H(b) is at least
na.

Further, |B ∩ V (H(b))| = |⋃f Xf | = na, as each trivial face contributes one
vertex to

⋃
f Xf . (Notice that, since no two trivial faces share a vertex, no two

trivial faces contribute the same vertex to
⋃

f Xf .)
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Hence, s(G(b), ψ) = na + |W ∩ V (H(b))| − na = |W ∩ V (H(b))|. Thus, in
order to prove that Condition (2b) of Lemma 1 is satisfied, it remains to prove
that there exists a white edge incident to the outer face of G(b) or, equivalently,
to the outer face of H(b). In the reminder of the proof, to simplify the notation,
we denote the graph H(b) by L.

We first show how to restrict the attention to the case in which L is 2-
connected. Let c be a cutvertex of L and let L(b′) be a block of L corresponding
to a B-node b′ of the block-cutvertex tree BC(L) of L. We say that c belongs to
L(b′) if c is a vertex of L(b′) and either (i) c is only incident to empty faces of
L or (ii) the only trivial face incident to c belongs to L(b′). Observe that each
cutvertex belongs to at least one block of L. Consider an orientation of BC(L)
such that an edge (c, b′) is oriented from the C-node c to the B-node b′ if c belongs
to b′, otherwise it is oriented from b′ to c. This orientation is acyclic (as it is
an orientation of a tree), and it hence has a sink. However, each cutvertex has
out-degree at least one. Thus, there exists a B-node b′ that is a sink; hence, every
cutvertex of L in L(b′) belongs to b′. It follows that algorithm cycle-breaker does
not insert any vertex of L(b′) into a set Xf for a face f not in L(b′). Hence, a
white edge incident to the outer face of the 2-connected graph L(b′) implies the
existence of a white edge incident to the outer face of L.

We can hence assume that L is 2-connected. Then there are at most b |V (L)|
3 c

trivial faces in L, given that each of them has at least three vertices, and that
no two of them share any vertex. Thus, algorithm cycle-breaker colors black at

most b |V (L)|
3 c vertices in L. Further, the outer face of L is delimited by a cycle

with |V (L)| edges; hence, there have to be at least d |V (L)|
2 e black vertices in L in

order for all these edges to be black. However, d |V (L)|
2 e > b |V (L)|

3 c for |V (L)| ≥ 2.
Hence, a white edge incident to the outer face of L must exist.

This concludes the proof of the lemma. �

3 Proof of Theorem 3

In this section we prove Theorem 3, that is, we prove that every n-vertex plane
graph G1 and every n-vertex planar partial 3-tree G2 have a SefeNoMap. We
assume that G1 is a maximal plane graph and that G2 is a (maximal) plane
3-tree G2. If that is not the case, then G1 can be augmented to an n-vertex
maximal plane graph G′1 and G2 can be augmented to an n-vertex plane 3-tree
G′2; the latter augmentation can always be performed [16]. Then a SefeNoMap
can be constructed for G′1 and G′2, and finally the edges not in G1 and G2 can
be removed, thus obtaining a SefeNoMap of G1 and G2.

Denote by Ci = (ui, vi, zi) the cycle delimiting the outer face of Gi, for
i = 1, 2, where vertices ui, vi, and zi appear in this clockwise order along Ci.

The outline of the proof is as follows. We start by constructing any planar
drawing Γ1 of G1. In order to construct a planar drawing Γ2 of G2, we map u2
to u1, v2 to v1, and z2 to z1, and we let the closed curve representing C2 in Γ2

coincide with the closed curve representing C1 in Γ1. We construct the rest of Γ2
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by repeatedly performing the following operation: Consider a triangular face f
of the subgraph of G2 drawn so far that is not a face of G2; insert a vertex inside
f in Γ2 and draw curves connecting the inserted vertex with the vertices on the
boundary of f . The main tool we use to perform this operation argues about
the drawability of three curves on top of a planar drawing of a graph. In the
following we formally describe this tool; we will later return to its application
for the construction of a SefeNoMap of G1 and G2.

Two open curves γ1 and γ2 intersect if they share a point; they cross if they
share a point that is an interior point of at least one of them. If γ1 and γ2
represent edges in a drawing, then this definition agrees with the definition that
two edges cross if they share a common point that is not a vertex incident to
both. Analogously, an open curve γ1 and a closed curve γ2 intersect if they share
a point; they cross if they share a point that is an interior point of γ1.

Let G be a 2-connected internally-triangulated plane graph with n−3 internal
vertices. Let C be the simple cycle delimiting the outer face of G and let u, v,
and z be three vertices appearing in this clockwise order along C. Let Puv, Pvz,
and Pzu respectively denote the path composing C that connects u and v, v and
z, and z and u. Further, let nuv, nvz, nzu ≥ 0 be integers with nuv +nvz +nzu =
n− 4. Finally, let ΓC be a planar drawing of C. We have the following:

Lemma 4. There exist a planar drawing Γ of G that coincides with ΓC when
restricted to C, an internal vertex w of G, and three curves suw, svw, and szw
respectively connecting u, v, and z with w such that (see Fig. 6):

– Property (P1): suw, svw, and szw do not cross ΓC and do not cross each
other;

– Property (P2): if G contains edge (u,w) ((v, w), (z, w)), then suw (svw, szw,
respectively) coincides with the drawing of such an edge in Γ ;

– Property (P3): each of suw, svw, and szw intersects each edge of G at most
once and does not contain any vertex of G in its interior;

– Property (P4): the closed curve Cuvw composed of Puv, suw, and svw contains
in its interior nuv vertices of G; the closed curve Cvzw composed of Pvz,
svw, and szw contains in its interior nvz vertices of G; the closed curve Czuw
composed of Pzu, szw, and suw contains in its interior nzu vertices of G;

– Property (P5): if an edge e of G has both its end-vertices inside or on Cuvw
(Cvzw, Czuw), then the interior of e lies inside Cuvw (Cvzw, Czuw, respec-
tively).

Proof: We prove the lemma by induction on nuv + nvz + nzu.
In the base case, nuv +nvz +nzu = 0. Let Γ be any planar drawing of G that

coincides with ΓC when restricted to C. Let w be the only internal vertex of G. If
G contains edge (u,w) ((v, w), (z, w)), then suw (svw, szw, respectively) coincides
with the drawing of such an edge in Γ . Draw the remaining curves among suw,
svw, and szw in the interior of C with a minimum number of crossings. It is
readily seen that, due to the minimality, these curves do not cross each other
and they intersect each edge of G at most once. An algorithm to efficiently draw
suw, svw, and szw can be found in [9].
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Fig. 6. Illustration for the statement of Lemma 4. White circles and squares represent,
respectively, internal and external vertices of G. Curves suw, svw, and szw are thick.
In this example nuv = 1, nvz = 2, and nzu = 4.

In the inductive case, nuv + nvz + nzu > 0. Suppose, w.l.o.g., that nuv > 0,
the other cases being analogous. Initialize Γ as any planar drawing of G that
coincides with ΓC . We perform a modification of G into a graph G′ so that G′

has an internal vertex with at least two neighbors in Puv.

If there exists an internal vertex t of G with two neighbors in Puv, then let
G′ = G and Γ ′ = Γ .

If there is no internal vertex of G with two neighbors in Puv, as in Fig. 7(a),
then G contains some empty chords, where an empty chord e is an edge satisfying
the following conditions: (i) e connects two vertices of C; (ii) one of the two cycles
determined by C and by e contains no vertex in its interior and contains part of
Puv on its boundary. The existence of empty chords might prevent the existence
of an internal vertex of G with at least two neighbors in Puv. We remove from
G and Γ every empty chord. The graph obtained after all the removals has one
non-triangular face g, where g has one incident internal vertex t of G. Triangulate
g by inserting edges from t to every vertex of g. Draw these edges planarly in
Γ , as in Fig. 7(b). Denote by G′ the resulting plane graph and by Γ ′ its planar
drawing. Observe that t has at least two neighbors in Puv.

Consider an internal vertex t of G′ that has at least two neighbors in Puv.
Traverse Puv from u to v; let a and b respectively denote the first and the last
encountered neighbor of t. We say that t is close to Puv if the cycle Ct composed
of edges (t, a) and (t, b) and of the subpath of Puv between a and b contains no
vertex in its interior. A vertex t close to Puv always exists. Namely, among all
the vertices with at least two neighbors in Puv, consider a vertex t such that Ct
contains a minimum number nt of vertices of G′ in its interior. We claim that
nt = 0. Indeed, if nt > 0, then Ct contains in its interior a vertex t′ with at
least two neighbors in Puv, given that G′ is internally-triangulated. However, Ct′
contains in its interior a number of vertices smaller than nt, a contradiction to
the assumed minimality of nt.
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Fig. 7. (a) Drawing Γ of a graph G, which contains some empty chords. (b) Replace-
ment of the empty chords with edges incident to an internal vertex t. (c) Removal
of t and of its incident edges from G′ and insertion of dummy vertices and edges to
triangulate f . Face f is gray. (d) Inductive construction of suw, svw, szw, and Γ ′′. (e)
Reintroduction of t and its incident edges. (f) Reintroduction of the empty chords of
G.

Let t be any vertex close to Puv. Remove t and its incident edges from G′.
Let f be the face of G′ in which t used to lie and let Cf be the cycle delimiting
f . Since t is close to Puv, the vertices in Puv appear consecutively along Cf .
Denote by u1, u2, . . . , uy the clockwise order of the vertices along Cf , where
u1, u2, . . . , ux, for some x ≥ 2, are the vertices in Puv. Insert y − x dummy
vertices ry, ry−1, . . . , rx+1 in this order along edge (u1, u2). Insert dummy edges
ex+1, ex+2, . . . , ey inside f , where ei connects ri and ui, for each x+ 1 ≤ i ≤ y.
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Moreover, insert edges inside f between ux+1 and u2, . . . , ux−1, and between ri
and ui+1, for each x + 1 ≤ i ≤ y − 1. See Fig. 7(c). These edges triangulate
the interior of f . Denote by G′′ the resulting 2-connected internally-triangulated
graph.

Inductively construct a drawing Γ ′′ of G′′ that coincides with ΓC when re-
stricted to C, and draw curves suw, svw, and szw so that Properties (P1)–(P5)
are satisfied, where Property (P4) ensures that Cuvw, Cvzw, and Czuw respec-
tively contain nuv − 1, nvz, and nzu internal vertices of G′′ in their interior. See
Fig. 7(d).

Reinsert t at a point arbitrarily close to edge (u1, u2). Reintroduce the edges
incident to t as follows. Draw curves connecting t and u1, u2, . . . , ux inside f
arbitrarily close to Puv. Also, for each x+ 1 ≤ i ≤ y, draw a curve connecting t
and ui as composed of two curves, the first one arbitrarily close to Puv, the second
one coinciding with part of edge ei. Remove all the inserted dummy vertices
and edges from the drawing, thus obtaining a drawing of G′. See Fig. 7(e).
Reintroduce the empty chords of G as edges arbitrarily close to cycle C. See
Fig. 7(f). This determines a drawing Γ of G. We prove that Γ together with the
constructed drawings of suw, svw, and szw satisfy Properties (P1)–(P5).

– Property (P1) directly follows from the fact that Γ ′′ satisfies Property (P1),
by induction.

– Property (P2) directly follows from the fact that Γ ′′ satisfies Property (P2),
by induction, and from the fact that w 6= t (hence edges (u,w), (v, w), and
(z, w) belong to G if and only if they belong to G′′).

– We prove Property (P3). That suw, svw, and szw do not contain any vertex
of G in their interiors follows by induction and by the fact that t is in the
interior of Cuvw. We prove that suw intersects any edge e of G at most once;
analogous proofs hold for svw and szw.
If e is an empty chord, then it intersects suw at most once, given that e is
arbitrarily close to C.
If e is not an empty chord and is not incident to t, then the statement follows
by induction.
Otherwise, e connects t and a vertex ui, for some 1 ≤ i ≤ y. If 1 ≤ i ≤ x,
then e is arbitrarily close to Puv, hence it intersects suw at most once (and
only if ui = u). If x+ 1 ≤ i ≤ y, then e is composed of two curves, the first
one arbitrarily close to (u1, u2) and not incident to u (hence, such a curve
does not intersect suw at all), the second one coinciding with part of edge ei
(hence such a curve intersects suw at most once, since Γ ′′ satisfies Property
(P3), by induction).

– We prove Property (P4). Since Γ ′′ satisfies Property (P4), by induction,
Cuvw, Cvzw, and Czuw respectively contain in their interiors nuv−1, nvz, and
nzu internal vertices of G′′. Since t is inserted inside Cuvw, it follows that
Cuvw, Cvzw, and Czuw respectively contain in their interiors nuv, nvz, and
nzu internal vertices of G.

– We prove Property (P5). Consider any edge e of G.
If e is an empty chord, then it has both its end-vertices inside or on Cuvw if
and only if it connects two vertices on Puv. In this case, e is arbitrarily close
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to Puv, hence the interior of e entirely lies inside Cuvw. Also, if e is an empty
chord, it does not have both its end-vertices in Cvzw or in Czuw.
If e is not an empty chord and is not incident to t, then it satisfies Property
(P5) since Γ ′′ satisfies Property (P5) by induction.
If e is incident to t, then it has at least one of its end-vertices inside Cuvw.
We show that, if the second end-vertex of e is inside or on Cuvw, then the
interior of e is inside Cuvw. If the second end-vertex of e is one of u1, . . . , ux,
then e lies arbitrarily close to Puv, hence the interior of e is inside Cuvw. If
the second end-vertex of e is w, then the interior of e is not inside Cuvw only
if e intersects at least twice suw or svw. However, this would violate Property
(P3) on Γ ′′, given that e is composed of two parts, one of which does not
intersect suw or svw at all, and one of which coincides with the drawing of
an edge of G′′ in Γ ′′. If the second end-vertex of e is not u1, u2, . . ., ux, or
w, then the interior of e is not inside Cuvw only if e intersects one of suw and
svw twice (or any positive even number of times) or it intersects each of suw
and svw once (or any positive odd number of times). However, this would
violate Property (P3) or Property (P5) of Γ ′′, given that e is composed of
two parts, one of which does not intersect suw or svw at all, and one of which
coincides with the drawing of an edge of G′′ in Γ ′′.

This concludes the proof of the lemma. �

We now go back to the proof of Theorem 3. We exploit the construction
for plane 3-trees, which states that G2 can be constructed, starting from the
cycle (u2, v2, z2) delimiting its outer face, by repeatedly performing the following
operation. Select an internal triangular face f of the so far constructed subgraph
of G2. Insert a vertex inside f and connect this vertex to the three vertices
incident to f .

We show how to construct a SefeNoMap of G1 and G2. Construct any
planar drawing of G1. Map cycle (u2, v2, z2) to the closed curve representing
cycle (u1, v1, z1) in the constructed drawing of G1, with u2, v2, and z2 mapped
to u1, v1, and z1, respectively.

If G2 has not been entirely drawn yet, denote by G′2 the subgraph ofG2 drawn
so far. Then there exists a not-yet-drawn vertex d of G2 that has to be inserted
inside an internal face (a, b, c) of G′2. We assume that the already constructed
drawings ∆1 and ∆′2 of G1 and G′2, respectively, form a SefeNoMap of G1 and
G′2 satisfying properties analogous to the ones in the statement of Lemma 4.
Namely, we assume that any two edges of G1 and G′2 intersect at most once and
that no edge contains a vertex in its interior. Moreover, we assume that any face
f of G′2 contains in its interior a number of vertices of G1 equal to the number
of vertices internal to the cycle delimiting f in G2. Finally, we assume that if an
edge e of G1 has both its end-vertices inside or on the border of a face f of G′2,
then the interior of e is inside f . All these properties are trivially satisfied once
G′2 coincides with cycle (u2, v2, z2).

We now proceed to draw d and edges (a, d), (b, d), and (c, d). Replace each
crossing between an edge of G1 and the edges of cycle (a, b, c) with a dummy
vertex. Denote by C cycle (a, b, c) subdivided by the insertion of the dummy
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vertices. Denote by G′1 the subgraph of G1 whose vertices and edges are those
inside or on C. Also, let Pab, Pbc, and Pca respectively denote the path (of
the three paths that compose C) that connects a and b, b and c, and c and a.
Further, let nab, nbc, and nca be the number of vertices in the subgraphs of
G2 whose vertices and edges are those inside cycle Pab ∪ (a, d) ∪ (b, d), inside
cycle Pbc ∪ (b, d)∪ (c, d), and inside cycle Pca ∪ (c, d)∪ (a, d), respectively. Insert
dummy edges to triangulate the internal faces of G′1. Now G′1 is 2-connected and
internally-triangulated.

By Lemma 4, there exist a planar drawing Γ ′1 of G′1 in which cycle C has
the same drawing as in ∆1, an internal vertex w of G′1, and three curves saw,
sbw, and scw respectively connecting a, b, and c with w satisfying Properties
(P1)–(P5). Namely, saw, sbw, and scw lie in the interior of C and do not cross
each other; further, if G′1 contains edge (a,w) ((b, w), (c, w)), then saw (sbw,
scw, respectively) coincides with the drawing of such an edge in Γ ′1; also, each
of saw, sbw, and scw intersects each edge of G′1 at most once and does not
contain any vertex of G′1 in its interior; moreover, cycles Cabw = Pab ∪ saw ∪ sbw,
Cbcw = Pbc ∪ sbw ∪ scw, and Ccaw = Pca ∪ scw ∪ saw respectively contain in
their interiors nab, nbc, and nca internal vertices of G′1; finally, if an edge e of
G′1 has both its end-vertices inside or on Cabw (Cbcw, Ccaw), then the interior
of e lies inside Cabw (Cbcw, Ccaw, respectively). Thus, the drawing of G′1 in ∆1

can be replaced with Γ ′1, vertex d can be mapped to w, and edges (a, d), (b, d),
and (c, d) can be mapped to saw, sbw, and scw, respectively. This results in a
SefeNoMap of G1 and G′2, where G′2 now includes vertex d and edges (a, d),
(b, d), and (c, d).

Repeating this operation for every internal vertex of G2 eventually results in
a SefeNoMap of G1 and G2. This completes the proof of Theorem 3.

4 Conclusions

In this paper we studied the problem of determining the largest k1 ≤ n such
that every n-vertex planar graph and every k1-vertex planar graph admit a
SefeNoMap. We proved that k1 ≥ n/2. No upper bound smaller than n is
known. Hence, tightening this bound (and in particular proving whether k1 = n
or not) is a natural research direction.

To achieve the above result, we proved that every n-vertex plane graph has
an (n/2)-vertex induced outerplane graph, a result related to a famous conjec-
ture stating that every planar graph contains an induced forest with half of its
vertices [2]. A suitable triangulation of a set of nested 4-cycles shows that n/2 is
a tight bound for our algorithm, up to an additive constant. However, we have
no example of an n-vertex plane graph whose largest induced outerplane graph
has less than 2n/3 vertices (a triangulation of a set of nested 3-cycles shows that
2n/3 is an upper bound). The following question arises: What are the largest k2
and k3 such that every n-vertex plane graph has an induced outerplane graph
with k2 vertices and an induced outerplanar graph with k3 vertices? Any bound
k2 > n/2 would improve our bound for the SefeNoMap problem, while any
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bound k3 > 3n/5 would improve the best known bound for Conjecture 1, via
the results in [12].

A different technique to prove that every n-vertex planar graph and every
k4-vertex planar graph have a SefeNoMap is to ensure that a mapping between
their vertex sets exists that generates no shared edge. Thus, we ask: What is the
largest k4 ≤ n such that an injective mapping exists from the vertex set of any
k4-vertex planar graph to the vertex set of any n-vertex planar graph generating
no shared edge? It is easy to see that k4 ≥ n/4 (a consequence of the four color
theorem [14,15]) and that k4 ≤ n− 5 (an n-vertex planar graph with minimum
degree 5 does not admit such a mapping with an (n − 4)-vertex planar graph
having a vertex of degree n− 5).

Finally, it would be interesting to study the geometric version of our problem.
That is: What is the largest k5 ≤ n such that every n-vertex planar graph and
every k5-vertex planar graph admit a geometric simultaneous embedding without
mapping? Surprisingly, we are not aware of any super-constant lower bound for
the value of k5.

Acknowledgments

We thank the anonymous referees for their comments, which led to simplifica-
tions of the proofs of Theorems 2 and 3.

References

1. J. Akiyama and M. Watanabe. Maximum induced forests of planar graphs. Graphs
and Combinatorics, 3(1):201–202, 1987.

2. M. O. Albertson and D. M. Berman. A conjecture on planar graphs. In J. A.
Bondy and U. S. R. Murty, editors, Graph Theory and Related Topics, page 357.
Academic Press, 1979.

3. P. Angelini, W. Evans, F. Frati, and J. Gudmundsson. SEFE with no mapping
via large induced outerplane graphs in plane graphs. In L. Cai, S.-W. Cheng, and
T. W. Lam, editors, International Symposium on Algorithms and Computation
(ISAAC ’13), volume 8283 of LNCS, pages 185–195. Springer, 2013.

4. T. Bläsius, S. G. Kobourov, and I. Rutter. Simultaneous embedding of planar
graphs. In R. Tamassia, editor, Handbook of Graph Drawing and Visualization.
CRC Press, 2013.

5. O. V. Borodin. On acyclic colourings of planar graphs. Discrete Mathematics,
25:211–236, 1979.

6. P. Bose. On embedding an outer-planar graph on a point set. Computational
Geometry: Theory and Applications, 23:303–312, 2002.

7. P. Braß, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. G.
Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous planar graph embed-
dings. Computational Geometry: Theory and Applications, 36(2):117–130, 2007.

8. J. Cardinal, M. Hoffmann, and V. Kusters. On universal point sets for planar
graphs. In J. Akiyama, M. Kano, and T. Sakai, editors, Proceedings of the Thailand-
Japan Joint Conference on Computational Geometry and Graphs, volume 8296 of
LNCS, pages 30–41, 2013.

21



9. M. Chimani, C. Gutwenger, P. Mutzel, and C. Wolf. Inserting a vertex into a planar
graph. In C. Mathieu, editor, 20th Annual Symposium on Discrete Algorithms
(SODA ’09), pages 375–383. ACM-SIAM, 2009.

10. P. Gritzmann, B. Mohar, J. Pach, and R. Pollack. Embedding a planar triangula-
tion with vertices at specified points. American Mathematical Monthly, 98(2):165–
166, 1991.

11. F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publicationes Math-
ematicae Debrecen, 13:103–107, 1966.

12. K. Hosono. Induced forests in trees and outerplanar graphs. Proceedings of the
Faculty of Science of Tokai University, 25:27–29, 1990.

13. M. Kaufmann and R. Wiese. Embedding vertices at points: Few bends suffice for
planar graphs. Journal of Graph Algorithms and Applications, 6(1):115–129, 2002.

14. A. Kenneth and W. Haken. Every planar map is four colorable part I. Discharging.
Illinois Journal of Mathematics, 21:429–490, 1977.

15. A. Kenneth, W. Haken, and J. Koch. Every planar map is four colorable part II.
Reducibility. Illinois Journal of Mathematics, 21:491–567, 1977.

16. J. Kratochv́ıl and M. Vaner. A note on planar partial 3-trees. CoRR,
abs/1210.8113, 2012.

17. M. J. Pelsmajer. Maximum induced linear forests in outerplanar graphs. Graphs
and Combinatorics, 20(1):121–129, 2004.

18. K. S. Poh. On the linear vertex-arboricity of a planar graph. Journal of Graph
Theory, 14(1):73–75, 1990.

19. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

22


