Restructuring Ordered Binary Trees *

William Evans' David Kirkpatrick!

Abstract

We consider the problem of restructuring an ordered binary tree 7', preserving the in-order
sequence of its nodes, so as to reduce its height to some target value h. Such a restructuring
necessarily involves the downward displacement of some of the nodes of T. Our results, fo-
cusing both on the maximum displacement over all nodes and on the maximum displacement

over leaves only, provide (i) an explicit tradeoff between the worst-case displacement and the
height restriction (including a family of trees that exhibit the worst-case displacements) and (ii)
efficient algorithms to achieve height-restricted restructuring while minimizing the maximum
node displacement.

1 Introduction

Suppose we are given an ordered binary tree 7', perhaps a binary search tree for some set S of
keys (or perhaps an alphabetic prefix code tree for a set S of symbols). Tree T' might have been
constructed, either through explicit use of known key access frequencies or by some self-adjusting
strategy, to minimize the ezpected cost of key accesses (expressed as the expected depth of the keys
stored in T'). As a consequence, the worst-case cost of key accesses (expressed as the mazimum
depth of a key stored in T'), though improbable, may be unacceptably large. The general question
that we address is: in the absence of explicit information concerning key access frequencies, to
what extent can we improve the worst-case behavior of a given search structure without unduly
compromising its expected-case behavior? We focus, in fact, on the more stringent requirement of
minimizing the (local) degradation in the access cost for any key as a consequence of restricting
the (global) worst-case access cost for the entire set of keys.

In order to clarify the question and (perhaps) strengthen the reader’s intuition, the reader is
invited to consider the task of restructuring (while preserving the sequence of nodes encountered
in an in-order tree traversal) the (arguably most unbalanced) L-leaf tree T' in Figure 1. Obviously,
reducing the height of 7" to [lg L] (the minimum possible height) would result in a depth increase
of [lg L] — 1 for some nodes. On the other hand, T' can be restructured to have height [lg L] + 1
without increasing the depth of any node in 7' by more than one. The fact that this can be done (as
the reader, no doubt, has confirmed; otherwise, see Appendix A for a suggestive example) leads to
the question: can such restructuring always be (efficiently) done and, more generally, what, if any,
tradeoff arises between the global height bound and the depth increase experienced by individual
nodes?

The results of this paper are perhaps best appreciated in the context of earlier work on the design
and analysis of optimal (and near-optimal) search and coding trees, and their height-restricted
variants. Given a sequence of symbols A1,..., A with associated frequencies a1, ..., ar, a Huffman
tree [5] is an L-leaf tree T', together with an assignment of symbols to the leaves of T', that minimizes

*This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.
"Department of Computer Science, University of British Columbia, Vancouver B.C. Canada, V6T 1Z4. Email:
will@cs.ubc.ca, kirk@cs.ubc.ca

.

N

Figure 1: Tree T in need of restructuring.

the expression Zz’L:1 a;d;, where d; denotes the depth in T of the leaf to which symbol A; is assigned.
The tree that minimizes ZiL:1 a;d; subject to the additional constraint that the symbols A1,..., A,
are assigned to the leaves of T in left-to-right order is called an alphabetic Huffman tree [4]. If
symbols (or search keys) are assigned to the internal nodes as well (in an order that respects the in-
order listing of 7’s nodes) then the tree that minimizes ZiLzl a;d;, where d; now denotes the depth
of the (possibly internal) node of T' to which A; is assigned, is called an optimal binary search tree
[8, 13]. Near-optimal binary search trees for given [12] or fixed but unknown [15] key distributions
provide provably good approximations to the minimum expected depth (access cost) with lower
construction cost or, as in the case of [15], the ability to adapt to changing access frequencies.

Height-restricted versions of these structures have been extensively studied, particularly with
regard to the efficiency of algorithms for their construction [1, 6, 16, 9, 10, 11, 14]. In particular,
it is known that a height-restricted (restricting height to at most h) Huffman tree (respectively,
alphabetic Huffman tree, optimal binary search tree) for a set of L symbols can be constructed in
O(Lh) (respectively, O(Lhlg L), O(L%h)) time [10] (respectively, [11], [6, 16]).

Few papers address the issue of the increase in the access cost imposed by restricting height.
E. N. Gilbert, in the paper that introduced the study of length-restricted Huffman codes [2], proves
that, for any h > 1 + lg L, the h height-restricted Huffman tree has expected depth (code-length)
at most H + 1+ L2'~"(1g L. — H), where H denotes the entropy of the set of symbol frequencies.
Since H provides a lower bound on the expected depth of any (not necessarily height- or order-
restricted) Huffman tree (by Shannon’s theorem), it follows that the increase in expected depth due
to height restriction is at most 1, when A is as small as Ig L + (Iglg L)“, w > 1 and L is sufficiently
large. (In fact it is easy to demonstrate arbitrarily long sequences, with associated frequencies,
for which the expected depth of the optimal Huffman tree of height 1 + [lg L] exceeds that of the
optimal unconstrained Huffman tree by an amount arbitrarily close to 1.) Milidid and Laber [14]
present an upper bound on the average code length difference between optimal length-restricted
and unconstrained Huffman codes. They assume that the symbol frequencies are fixed, known
quantities.

By way of contrast, our results, which are set out more completely and formally in the next
section, show that any L-leaf tree T, with fixed but unknown leaf access frequencies, can be
restructured into a tree R of height at most 1 + [lg L] such that the expected depth of R exceeds
the expected depth of T' by at most 2. Much of our effort is devoted to understanding the tradeoff
between the height restriction of the restructured trees and the increase in node depth due to
restructuring, and to the construction of trees that realize the worst-case depth increase over the
full range of possible height restrictions.

2 Strict h-leveling Costs

Let 77, denote the set of rooted, ordered binary trees with L leaves. For T € Tz, let v ,vd ... oL, |
be the in-order sequence of nodes in T and ¢, 41 ... ,éz the left-to-right sequence of leaves in T'.

(Of course, EiT = U%;’A-) In general the superscript is omitted when it is clear from context. Let
dr(v) be the depth of node v in T. The depth of the root is 0 and the height of T is just the depth
of its deepest leaf.

We define the h-leveling cost of T' € Ty, to be

A} (T) = min A} (T, R 1
H(T) = min A3(T,R) (1)

where!
00 if height(R) > h,

mMaxi<;<2L—1 [dR(vf) - dT(v]T)] otherwise.

AL (T,R) = {

A} (T, R) measures the maximum “drop”, over all nodes in T' (the node-drop), in going from T' to
a tree R of height at most h. In other words, Ay (7T, R) is an upper bound on the additional cost
to access an item in R versus 7.

We define the leaf h-leveling cost of T' € Ty, to be

Af(T) = min A}(T,R) (2)

where

00 if height(R) > h,

mMaxi<;<I [dR(Ef) - dT(EJT)] otherwise.

A)(T,R) = {

A (T, R) measures the maximum “drop”, over all leaves in T' (the leaf-drop), in going from T to
a tree R of height at most h. Clearly, if h < [lg L] no tree of height at most h can have L leaves,
and both A} (T") and AY(T) are infinite.

We seek an algorithm that, given a tree T € 7, and target height h, finds a tree R that realizes
the minimum in equation (1) (or equation (2)). In addition, we seek the worst h-leveling and leaf
h-leveling cost as a function of the number of leaves in T'. Specifically, we seek

Ay (L) = Yr%a%(A} (T) and

ANLD) = max Aj(T).

Explicit tradeoffs that determine both A} (L) and A (L) are developed in Section 6. Our results
are summarized in the following theorems:

Theorem 2.1.

(

0 if L<h+2
1 ifh+2<L <L
ANL)={2 if L < L and [1gL] < h
MgLl—1 if[lgL]=h
| 00 if [lgL] > h

!The multiple definitions of A}() (and similar functions) are intended to minimize notation and highlight the
relations between the associated functions. This should present no cause for confusion since the number and type of
arguments determine which definition applies.

where
I 21 L A1 if1<h<4
T\ Py +3F, -1 ifh >4

and Fy, is the k-th Fibonacci number (Fo =0,F1 =1, and F; = F;_1 + F;_o, fori >1).

Among other things, this theorem states that, when h > [lg L] + 1, restructuring with leaf-drop
at most 2 is always possible, and when h > log,((L + 1)/(3 + ¢)), where ¢ is the golden ratio
(1.61803...), leaf-drop at most 1 is always possible (and these results are essentially tight). This
implies, for example, that an optimal binary search tree (with keys stored at leaves) can be re-
structured to have worst-case search cost within one of the optimal worst-case search cost ([lgL])
without increasing the average search cost (or, for that matter, the search cost of any key) by more
than two. Equivalently, an (optimal) Huffman tree for a sequence of symbols can be restructured
to give codes of maximum length at most one bit more than the optimal maximum code length and
average code length at most two bits more than the optimal average code length. In both cases
this can be done without explicit knowledge of the key or symbol frequencies.

Theorem 2.2.
AG(E) = min{k : (g p(L, h — k)] = k}

where p(L,h) = max{r: Y1 (")(r —4) < L}.

K3

Observation 2.1. By considering certain ranges of h and using straightforward approrimations of
the binomial coefficient, we observe

(

0 if L<h+2

gk +O0(1) if L =O(h¥)

Ap(L) < lglgL if [lgL] < h
gL1—1 if[lgL]=h

| 00 if g L] > h.

Thus, among other things, Theorem 2.2 implies that, when h > [lg L] + 1, restructuring with
node-drop at most lglg L is always possible, and when A > +/L the node-drop is O(1). Hence, even
without explicit knowledge of the key frequencies, a given optimal (or near-optimal) binary search
tree can be restructured to have worst-case search cost within one of optimal at the expense of an
additive increase of at most lglg L in the expected search cost.

3 Near-h-leveling Costs

It happens that considering a slightly different cost function results in solutions to our original
problems. Define the near-h-leveling cost of T' € Ty, to be

(1]

(T) = min Z5 (T, R
h() gél,rfih(a)

where

Eh(T,R) =

Ry _ _ - T
= lijréaz,)l_il [dR(vj) — min{dr(v;), h}] .

2y (T) differs from A} (T) in that the tree R may have height greater than h. However, each node
at depth greater than h in R has cost at least its depth in R minus h. Define the leaf near-h-leveling
cost of T € T, to be

[1]

0 - =0
T) = min = (T, R
(1) = min (T, R)

where

=0 _ R . T
ST R) = s, [dn(e]) — min{dr (6),1}].

We also define

4 Relations of h-leveling to Near-h-leveling

We can translate bounds on Z} (L) into bounds on Aj (L) using the following lemma.
Lemma 4.1. For any pair of trees T and R in Tr,, Ay (T, R) = min{k : E; (T, R) = k} and thus
A} (L) = min{k : E5_,(L) = k}.
Proof. If 2f (T, R) = k then

height(R) lsjn%%)L(_ldR(v]) < 15;‘123%—1 [k + min{dr(v;), h k} <h

and

* _ Ry _ T\ < RY _ i Y h— =k.
A; (T, R) 1§jn%%}L(—1 [dR('uJ) dr (v;)] < lgjn%%)L(_l [dR(’U]) min{dr(vj), h K} =k

If A} (T, R) = k then height(R) < h and

—% _ R 3 T
= k(T,R) = 1§jr%%)L(—1 [dR(vj) — min{dr(v;), h — k}]

_ R T R
= 1§jn%%)L(_lmax{dR(vj) —dr(vj),dr(vj") — (h —k)}

< max{A}(T, R), k}
=k.

The same proof, restricted to leaf nodes, establishes:

Lemma 4.2. For any pair of trees T and R in T, AY(T, R) = min{k : E) (T, R) = k} and thus
AY(L) = min{k :) (L) = k}.

If we have an algorithm Xi*, with inputs 7" and h, that finds a tree that achieves =} (T') then
we can use it to find a tree that achieves Ay (T') as follows:

5

Leveled Tree Algorithm
Input: binary tree T € Ty, integer height h
Output: binary tree R with height(R) < h
that minimizes A} (T, R)
1. Find the smallest 0 < k < A} (L) such that
R=Xi*(T,h—k)and E;_,(T,R) <k.
2. If such k exists then output R.

Correctness. For the sake of contradiction, suppose there exists a tree R’ with height(R') < h such
that ' = A} (T,R') < Ay(T,R) = k. By Lemma 4.1, 27 (T, R') < k. This contradicts the
minimality of k.

Since =5 (T') is monotonically decreasing with increasing h, the smallest k, 0 < k < Ay (L), such
that R = Xi*(T,h — k) and Z;_,(T,R) < k can be found using binary search with O(lg(Aj}(L)))
invocations of algorithm Xi*.

The preceding algorithm with the superscript “x” replaced with “0” performs the analogous
task for the leaf-restricted case.

5 The Alphabetic Minimax Tree Problem

The near-h-leveling cost of a given tree is related to what is known as the alphabetic minimax cost
of an associated weight sequence. If W = wy,ws,...,wer 1 is an odd-length sequence of integer
weights and T' € T, then, for every j, 1 < j < 2L — 1, the W-cost of node v; of T' is given by

ew(v;) = W if v; is a leaf of T
W max{w;,1 4+ cw(vq),1 +cw(vy)} if v; has children v, and vp.

We define the W-cost of T} (the subtree of T rooted at node v;), denoted ¢ (1}), to be cw (v;).
(So ew (T') = ew(r), where r is the root of T'.) Since cw (T') = maxi<j<or—1[dr(vj) + w;], ew(T)
can be interpreted as the maximum weighted path length of T', where the path from the root r to
v; is assigned weighted path length dr(v;) + w;. The (full) alphabetic minimaz cost of the weight
sequence W, denoted a(W), is defined as

(W) = min cw (T)
In the event that the even-indexed elements of W (corresponding to internal nodes of 7') have
values less than or equal to those of all odd-indexed elements (corresponding to the leaves of T'),
the cost ¢y (T') becomes the weighted root-to-leaf path length of 7" and (W) gives the leaf-restricted
alphabetic minimaz cost of the subsequence of leaf weights wy,ws, ..., wor_1.

The alphabetic minimaz problem takes an odd-length weight sequence W as input and asks for
a tree T, an alphabetic minimaz tree for W, whose W-cost realizes a(W). In fact, we will deal
exclusively with strong alphabetic minimax trees, in which every subtree is an alphabetic minimax
tree for its associated weight sequence. The leaf-restricted version of the alphabetic minimax
problem has been extensively studied [3, 7]; many of the results of this section can be viewed as
extensions of earlier leaf-restricted results to the more general problem addressed here.

Observation 5.1. (Optimal substructure)

If T is a (strong) alphabetic minimaz tree for the weight sequence W and if v is any node of
T then the tree T', formed by replacing the subtree of T rooted at v by a single leaf, is a (strong)
alphabetic minimaz tree for the weight sequence W' formed by replacing the subsequence of weights
associated with the nodes in the subtree rooted at v by the weight cyy (v).

Given a weight sequence W = w1y, ws,...,wsr_1, with L > 1, we define the associated contracted
weight sequence W = g, w1, ...,wr by
W = WL, = 00,
and for 1 <j <L -1,
’1ij = max{l + Woj—1, W2y, 1+ w2j+1}.

It follows from the next lemma that two weight sequences with the same associated contracted
weight sequence have the same alphabetic minimax cost.

Lemma 5.1. Suppose that weight sequences W = wi,wa, ..., wor—1 and W' = wi,w),... ,wh
have the same associated contracted weight sequence. Then, for every T € Tr and for every internal
node vo; of T, cw (ve;) = cwr(v2j).

Proof. Let W = W, W1, . .., wr be the contracted weight sequence associated with both W and
W'. First note that, for every leaf vg; 1 of T,
cw (v2j—1) = woj—1 < by — 1
and
ewr (vgj-1) = wIQj—l <y — 1.
We prove that cy (ve;) = cwr(vg;), for every internal node vy, of T, by induction on ht(vy;),
the height of the subtree of T' rooted at vs;.
If ht(vgj) =1 then
CW('UQj) = max{wzj, 1+ W51, 1+ ’ng_H}
= maX{U]IQj, 1 + wl2j_1, 1 + wéj—l—l}
= cw (v2))-

Suppose that ht(vej) = h and cw (vg) = cw(vg) for all internal nodes vy, with ht(vy) < h. Let
ve and vy denote the left and right children of vo; in T'. Then,

cw (v25) = max{wa;, 1 + cw(ve), 1 + cw (vp)}

= max{wy;j, 1 + woj_1,1 +wajt1,1 + cw(va), 1 + cw(vp)} since ¢y (vq) > waj—1

and cw (vp) > waj41
= max{w;, 1 + cw(va),1 + cw(vp)} by defn of ;
= max{w;, 1 + cw(va), 1 + ey (vp) } (*)
= max{wy;, 1 +wy;_1,1+wh; 1,1 +cwr(va), 1+ cwr(vp)} by defn of 0;
= max{wy;, 1 + cwr (ve), 1 + cwr (vs) } since ¢y (vq) > wy; 4

and cyr (vp) > w4y
= Cw (’1)2]').
If v, and v, are internal nodes, line (%) follows by the induction hypothesis. If v, (respectively vp)
is a leaf, line (x) follows since w; > 14 cw (vq) and W; > 14 cwr(v,) (respectively w; > 1+ ey (v)

and ’lflj > 14 cwr (’Ub)).
It follows, by induction, that cy (v2;) = cwr (ve;), for every internal node vy; of T'. O

7

If w; satisfies w;_1 > 10; < wWj41, then the triple (wo;j_1,wa;,wo;41) is called a right locally
minimum triple (abbreviated r.l.m. triple) in W. The following two local replacement operations
on weight sequences can be used iteratively to reduce an arbitrary odd-length weight sequence W
to a weight sequence consisting of the single element a(W).

contraction of a right locally minimum triple. A r.l.m. triple (wo;_1,w2j, w2j+1) in W is replaced
by the single weight ;.

normalization of weights. An internal weight ws; is replaced by wq; + 1 if wg; < w;. A leaf
weight wo;_1 is replaced by woj_1 + 1 if wo;_1 < min{w;_1,w;} — 1.

Lemma 5.2. If W' is formed from W by normalization or contraction then a(W') = a(W).

Proof. First consider the case where weight sequence W' is formed from W by normalization of
any subset of its weights. Then, for every j, 1 < j < |W|,

~1 ! ! /
5 = max{l + wh;_;, wy;, 1 + wy; 1}

< max{min{w;_1,w;}, w;, min{w;, w;1}}

and

! / /
= max{l 4+ wy;_1,wyj, 1 +whj 1}

> max{1 + waj_1,wj, 1 + waji1}

It follows that W’ and W have the same associated contracted weight sequence, and hence, by
Lemma 5.1, a(W') = a(W).

Next, consider the case where the weight sequence W' is formed from W by contraction of the
r.l.m. triple (woj_1,ws;, w2j4+1). Suppose that |W|=2L—1. If T' is any tree in 77,_; then the tree
T formed from T" by attaching a pair of leaves to the j-th leaf of T" satisfies cy (T') = cw(T"), and
hence, taking 7" to be the tree that realizes the minimum ey (T7), it follows that a(W') > a(W).
Conversely, let T' be any tree in 77. It suffices to show that for some tree T in Ty 1, ey (T") <
cw (T), and hence a(W') < a(W).

Suppose first that nodes v9;_1 and vgj41 are siblings in 7. Then ¢y (vej) = w; and so the tree
T' formed from T' by removing nodes v;_1 and vgj41 satisfies ¢y (T') = ew (T). Hence, it suffices
to show that there exists a tree E in 77, in which leaves v2Ej_1 and UQE]- 41 are siblings, that satisfies
cw (F) < ew(T). We proceed by induction on L. If L = 2 there is nothing to show, so suppose
that L > 2 and that the hypothesis holds for trees with fewer than L leaves.

Let v, be the root of T and denote by 7" and T the left and right subtrees of v,. If v2j # Ur
then nodes vg;_1, v9; and vy; 1 lie together in either T or TE. By the induction hypothesis there
exist trees EX and Ef, with nodes v¥,. .. ,vf_l and 'UF_H, . ,’UZEL_l respectively, in which 'Ugj—l and
U2Ej+1 are siblings and ¢y (EF) < ey (TF) and cpyr(ER) < cypr(TR), where WL = wq, ..., w,_1
and W = w,,1,...,wor_1. Hence the tree E with root v, and subtrees E* and E* satisfies

ew (E) = max{wy, 1 + cpr (BY), 1 + cppr(ER)}
< max{wy, 1 4 ¢z (T7), 1 + er(TF)}
=cw(T).

So, it remains to consider the situation where L > 2 and v9; is the root of T. We consider two
cases:

Case 1: vy is the right child of vy; in T'; equivalently, j = L — 1.
In this case, we construct E from T by removing the root (vo;) and its right child (v9;41) and
adding a left and right child to the leaf vo;_1 (see Figure 2). It is straightforward to confirm that

E

Figure 2: (Case 1) vy; is root and j = L — 1.

dE('UE) < dr(vy), for k < 2L — 3, and dE(’Ufo?’) = dE(U%EL—l) = dE(’UQEIﬁZ) + 1 =dr(vep—4) + 1.
Hence,

dr (vt d :
L onax ldp(vy) +we] < | max [dr(vg) + wy]

Furthermore,

max{dg(vy;_3) + war—3,dE(vly,_o) + wor—2,dr (vdy, 1) + wor—1}
=dp(vE) + max{wyy_o,1 4+ wyr_3,1 +wop_1}
< dg@l o) +max{wsr_4,1+wor_5,1 4 wor_3}
since (war,—3,war—2,w2r—1) is a r.L.m. triple
= dr(vor—4) + max{wor_4,1 +wor_5,1 + wor_3}

< max{dr(var.—s5) + war—5, dr(var—4) + war—4,dr(var—3) + war—3}.

Hence,

E) = F
cw (E) 15]?%%%_1[dE(Uk)+wk]

<
< 131?%32%71[@(”’“) + wy]

= Cw(T).

Case 2: v9j41 is not the right child of vg; in T'; equivalently, j < L — 1.

In this case, we construct £ from T by removing leaf vy;_1, replacing vo;_o (assuming j > 1)
by its left subtree (if j = 1 then the root vo is simply removed), and adding a left and right child
to leaf v9; 11 (see Figure 3). It is straightforward to confirm that dp(vZ) < dr(v), for k < 25 — 2
or k> 2j+2, and dp(v};_)) = dp(vf;,,) = dp(v;) + 1 < dp(vaji2) + 2. Hence,

E
< .
e [dE(vg) + wi] < R [dr(vk) + w]

or k>2j+2 or k>2j+2

Figure 3: (Case 2) wy; is root and j < L — 1.

Furthermore,

max{dpg(vy; 1)+ woj—1,dr(v]]) + waj, dp (vl) + waji1}
= dE(szj) + max{ws;,1 + woj_1,1 + wojt1}
< dE('UQEj) + max{wyjt2,1 + wojt1,1 +wojys} — 1
since (wgj—1,wsj, woj+1) is a r.lm. triple
< dr(vgjr2) + max{wajt2, 1 + wojt1,1 + wojy3}

< max{dr(vajt1) + w41, dr(vajr2) + wajt2, dr(v2j43) + waj43}

Hence,

— E
ow(E) = _max [de(vi) + w]

<
< pax [dr(vs) 4wyl

= Cw(T).
O

Normalization of weights does not change the length of the weight sequence W, nor does it
change the cost 1; associated with any triple (woj—1,wo;, w2j41); in particular it does not change
any r.l.m. triple of W. Normalization serves as a tool for maintaining a structural invariant of the
weight sequences that we will encounter in our applications. On the other hand, each application
of contraction reduces the length of the weight sequence W by 2. Each such application also
corresponds to a join operation in the construction of an alphabetic minimax tree associated with
W. In particular, if 7" is an alphabetic minimax tree for the weight sequence W' formed from W
by contraction of the r.l.m. triple (wgj—_1,ws;, w2j41), and the tree T' is formed from 7" by adding
two leaves to the node UQTJ-'_I, then ey (T) = ey (T") = a(W') = a(W). Hence T is an alphabetic
minimax tree for W. Thus the construction of an alphabetic minimax tree for W is implicit in any
algorithm for reducing the sequence W to a singleton sequence by application of normalization and
contraction operations.

Theorem 5.1. The alphabetic minimaz problem has a linear time solution.

10

Proof. Successive r.l.m. triples in a given weight sequence can be located and contracted in amor-
tized constant time using a simple stack-driven procedure. This is a direct generalization of previ-
ously presented linear-time leaf-restricted alphabetic minimax tree algorithms (c.f. [7]). O

The iterative algorithm implicit in the proof of the above theorem uses contraction operations
only. It not only produces the alphabetic minimax cost a(W') of a given weight sequence W, but also
lends itself to the construction of an upper bound on «(W) as a function of the multiset of weights
in W. Specifically, if W = wy,...,wser—1 and W = g, - .., W, is the associated contracted weight
sequence then we can define ¥(W) = ZZL:EI 2% If Wy denotes the initial weight sequence and W,
denotes the (length 3) weight sequence prior to the final contraction, then it is straightforward to
confirm that:

L U(Wo) <43 ew, 2%

2. U(W;) = 22W0) | and

3. If sequence W' is formed from W by contraction then U(W') < U(W).
As an immediate consequence we have the following:

2.

Lemma 5.3. If Wy is any weight sequence then ao(Wo) <2 +1g) e,

6 Applications to Tree Restructuring

The motivation for developing results about alphabetic minimax trees is their close connection
with near-h-leveling costs of binary trees.
For T € 7T, we define the h-leveled weight sequence associated with T to be the sequence
w1, ..., Wwsr—1, where
wj = — min{dT('ujT), h}.

Similarly, we define the h-leveled leaf-restricted weight sequence associated with T to be the
sequence w1, . .., Wsr,_1, where

—min{dr(vT),h} ifjis odd
w; = J
! —h if 7 is even.

Lemma 6.1. For T € Tg, if W is the h-leveled weight sequence associated with T and W' is the
h-leveled leaf-restricted weight sequence associated with T, then Zf(T) = a(W) and E)(T) = a(W").

Proof. From the definitions of =} (T'), w;, cw (R), and a(W):

[1]

(T — mi By _ T
A(T) = min | max |dr(v) — minfdr(v;), h}]

— mi dp (vl .
ReT 13?%%%—1 [(v]) +w;]
= min cy (R
ReTL W()
= a(W).
The leaf-restricted case is similar, since for h-leveled leaf-restricted weight sequences cy (R) is

realized by one of its leaves. O

11

Lemma 6.1 allows us to re-express our results on alphabetic minimax trees from Section 5 in
terms of the near-h-leveling of an arbitrary tree T'. Specifically, using Lemma 6.1 together with
Theorem 5.1, we obtain

Corollary 6.1. For T € Ty, both E;(T) and EX(T) (and their realizations) can be determined
in time linear in L. Furthermore, using the Leveled Tree Algorithm, A} (T) (respectively AY(T)),
together with its realization, can be determined in O(L1g(A7(L))) (respectively, O(L1g(A%(L))))
time.

Furthermore, using Lemma 6.1 together with Lemma 5.3 we obtain
Corollary 6.2. If h > [lgL] + 1 then E}(L) < 2+1g(2+1g L) and EY(L) < 2.

Referring to Corollary 6.1, it is natural to ask if A} (T) and AY(T) can also be determined in
time linear in L. The algorithm described above determines AY(T') in linear time (since AY(L)
is constant) except for h = [lg L] when a different linear time algorithm exists. For Aj(T'), the
existence of a linear time algorithm is an open problem.

The bounds on Ej (L) and E)(L) presented in Corollary 6.2 are not tight. To derive exact
values for 25 (L) and Z) (L) (and hence A} (L) and A%(L)) it turns out to be useful to reformulate
the iterative alphabetic minimax algorithm of the preceding section. This less efficient but more
structured alternative makes explicit use of normalization and more constrained applications of
contraction. At its core is a reduction procedure that serves to incrementally reduce a measure
of the spread of weights in a given sequence while preserving its alphabetic minimax cost. When
this measure is reduced to zero the structure of the resulting sequence, and hence its alphabetic
minimax cost, is completely determined. .

If W =wi,..., w1 is a weight sequence, denote by W the set

W= {w;j +1|j odd} U {w;j | j even}.

The thickness of W, denoted 8(W), is defined as (W) = max(W) — min(W).

Reduce

Input: weight sequence W with |W| =2k — 1

Output: weight sequence W' with a(W') = a(W) and either
i)W =6(W)—1or
i) J(W') =0(W) =0and |W'| =2[k/2] — 1

if [IW| =1 then output W

a + min(W)

while there exists a r.l.m. triple (wa;_1,wsj,w2j4+1) in W with @; = a
contract(ng,l,w2]-,w2j+1)

while there exists a weight wy;_; in W with wp;_1 =a -1
normalize(ws;—1)

while there exists a weight wy; in W with wy; = a
normalize(ws;)

output W

©CoNOORWN

The correctness of the procedure reduce is an immediate consequence of the following three
lemmas.

Lemma 6.2. a(W) = a(reduce(W)).

12

Proof. The lemma, follows from Lemma, 5.2 since reduce alters W only by applications of contraction
and normalization. O

Lemma 6.3. If O(W) > 0 then 6(reduce(W)) = 0(W) — 1.

Proof. Let W' = reduce(W). The definitions of W and w; insure that a triple (wo;_1, wa;, woj41)
contracted in line 4 has wo; 1 = woj11 = a —1 and wy; = a. After the contract loop, w; > a for all
j- Thus, during the leaf normalization loop (line 5), any wyj_; with value a — 1 will normalize to
value a. For the same reason, during the internal normalization loop (line 7), any wy; with value
a will normalize to value a + 1. Thus, min(W') = min(W) + 1. Since (W) > 0, max(W) > a + 1
and max(W’) = max(W). O

Lemma 6.4. Let [W| =2k—1 fork > 1. If (W) = 0 and W' = reduce(W) then |W'| = 2[k/2] -1

and min(W') = 1 + min(W).

Proof. Let b=min(W),a=>b—-1,t = [k/2] and 7 = 2t — k (r is either 0 or 1). Since (W) = 0,
it follows that W has the form:

a (b a)k_1 =a(b (1)2'5_’"_1

=a(a)l" (b(aba))t

By the definitions of r.l.m. triple and contraction, after ¢ — 1 repetitions of the contract loop (line
3), W has the form
a(ba)™" (bb)iL.

After 1 — r more repetitions of the contract loop and r repetitions of the leaf normalization loop
(line 5), W has the form
b(bb)l.

After ¢t — 1 repetitions of the internal normalization loop (line 7), we are left with a sequence of the
form

b ((b+1) b1

As a direct consequence of Lemma 6.4, we have

Corollary 6.3. If (W) =0 and [W| =2k -1 (k> 1) then a(W) = [lgk| + min(W) — 1.

Lemma 6.2, Lemma, 6.3 and Corollary 6.3 combine to motivate the notion of a reduction sequence
Wp, p > 0, associated with a weight sequence W, defined as

Wy =W, and
W, = reduce(W,_1) for p > 0.

We refer to each application of procedure reduce as a phase, and the algorithm that takes a weight
sequence W as input and produces a reduction sequence terminating in a sequence of length one
as the Phased Alphabetic Minimax Algorithm. In fact, Corollary 6.3 shows that the alphabetic
minimax cost of W can be directly determined as soon as W), has thickness zero. An example of
the reduction sequence associated with an h-leveled weight sequence is shown in Figure 9.

13

If the input weight sequence W happens to be an h-leveled weight sequence associated with a
tree T' € T, then its special structure can be exploited to derive tight bounds on its alphabetic
minimax cost. For example, if h > height(T) then w; = —dT('UjT) and it is easy to confirm that
the j-th element of W), is just —dg (v;‘-F’), where T denotes the tree formed from T by truncating
at depth height(T) — p (i.e. removing all deeper nodes). It follows that a(WW) = 0, and hence
E;(T) = EY(T) = 0, whenever h > height(T). Thus, Z;(L) = Z)(L) = 0 when h > L — 1. On the
other hand, if h < 1 < height(T) then (W) = 1 and Wi has the form (—h) ((=h + 1) (=h))E~L.
Hence, a(W) = [lgL] — h and Z}(T) = E)(T) = [lgL] — h. Thus E}(L) = E)(L) = [lgL] — h,
when h <1< [lgL].

We summarize the above discussion in the following:

Observation 6.1.
0 if L<h+2

= (7Y — =0 (7Y —
ER(L) =E,(L) = {[]gL] —h ifh<1<[igL].

It remains to consider h-leveled weight sequences with 1 < h < height(T). In this case (W) = h
(since one internal node has associated weight 0 and at least one internal node has associated weight
h). In the reduction sequence associated with W, the sequence W), has thickness h—p, for 0 < p < h,
and the sequence W}, has the form (—1) (0 (—1))*, for some &k > 0.

We are able to construct worst-case families of trees that provide exact bounds for £%(L) and
25 (L) over the full range of possible height bounds h. These results are developed in subsections 6.1
and 6.2 for the case of leaf-h-leveling cost and general h-leveling costs respectively.

6.1 Leaf-Restricted Weight Sequences.

Suppose T' € 71, and let W be the h-leveled leaf-restricted weight sequence for T', where h > 1.
Let W, denote the p-th sequence in the reduction sequence associated with W. Let U, denote the
subsequence of W), corresponding to the original leaf weights (i.e. the odd-indexed elements). It
is easy to confirm that the remaining (even-indexed) elements of W), all have value —h + p. We
analyse the effect of applying the phased reduction of W in terms of the potential function ®, where

o(U) =) 2

u€eU;

Since W}, has the form (—1) (0 (—1))*, for some k > 0, U, has the form (—1)¥*+1. Tt follows that
&(Uy) = |Uy|/2 and, by Corollary 6.3,

a(W) = g |[Un|] =1 = [1g[2@(Up)]] - 1. (3)

To determine ®(U}), we determine the potential ®(U;) and the potential increase ®(Uy) — ®(Uy).
Since the first phase in the reduction sequence associated with W affects only the even-indexed
elements (changing their value from —h to —h + 1), U;=Uj. Hence, by several applications of the

14

Kraft equality, we have

®(U1) = @(Uo)

>

u€ly

Z 9—dr (L) + Z 9—h

k: dr (£,) <h k: dr (€g)>h
= Z 9—dr(t) Z (241 _ 2*dT(ék))
1<k<L k:dr(Lg)>h
=1+(L—-ATp)2 7",

where, for any binary tree R, A(R) denotes the number of leaves of R and R, denotes the tree
formed from R by truncation at depth h (removing all deeper nodes).

The potential difference ®(Up,)—®(U;) is bounded by looking at the potential increase associated
with each phase. First note that each application of contraction in phase p > 1 (phase p creates
W,) has no impact on the potential (since it replaces two successive elements of value —h +p — 2
in U, by one new element of value —h + p — 1). Each application of (leaf) normalization in phase
p > 1 replaces an element of value —h + p — 2 by one of value —h + p — 1 thereby raising the
potential of W), by 277+P=2_ We assign the potential increase associated with each such normalized
weight wu;, with ¢ > 1, to its predecessor u;—; in U, (which must have value greater than u;,
since by assumption u; 1 does not belong to a r.l.m. triple, and must correspond to a weight in
the original sequence Uj). The potential increase associated with weight u; is accumulated in a
separate boundary total. We observe that an initial weight u; could be assigned potential increases

in phases h +uj11 +2,...,h +u; + 1, if initial weight u; 1 is less than u;, totalling at most
h+u;+1
Z 27h—|—t72 — 2u]' _ 2u]‘+1
t=h+u;y1+2
Furthermore, the boundary total could receive increments in phases h 4+ u; + 2, ..., h totalling at
most
h
Z 2—h+t—2 — 1/2 _ 2’111
t=h+4+u1+2

Thus, if Uy = uq,...,ur, the total potential increase ®(Uy) — ®(U) is at most

2-2m 4 Y 2w 2w (4)
1<j<L
Note that the monus operation, -, is defined as z -y = max{z—y,0}. Since u; = — min{dT(E?), h},
this bound on the total potential increase can be re-expressed as
1/2 -2 dr(€f) + Z [2—‘11%(3?) s 9~ dR(£J+1)] : (5)
1<j<A(R)

where R = T, (the truncation of T" at level h). Notice that the summation in (4) is over the leaves
of T while in (5) it is over the, typically fewer, leaves of R. Equations (4) and (5) are equivalent

15

since consecutive —h values in the leaf h-leveled weight sequence Uy (i.e. where dr(£]) > h) make
no contribution to the potential increase.
It follows that

®(Un) = @(Uh) + [2(Un) — 2(U1)]
<1+ (L—AR)2"+1/2—27%ED
+ Z [Z*dR(Kf) - Q*dR(KﬁH)]
1<G<A(R)
where R="T,,.

So, to establish an upper bound on ®(Uj) as a function of L and h, it will suffice to determine,
among all trees R of height h, one that maximizes the function f(R) given by:

FR)=-2" —XR)2"+ > [2% 2% (6)
1<j<A(R)

where z; = —dR(E?).

We begin by showing that any tree R that maximizes f(R) can be assumed to have a particular
structure. Two recursively defined families of trees play a role in this argument. A k-chain is
defined as follows: a 0-chain is just an isolated vertex and, for £ > 0, a k-chain is the binary tree
whose left subtree is a singleton leaf and whose right subtree is a (k — 1)-chain. A Fibonacci tree
of height k > 0, Fj, is defined as follows: for 0 < k < 4, F, is just a k-chain and, for k > 4, Fi is
the binary tree whose left subtree is ;1 and whose right subtree has a leaf as its left subtree and
Fr—o as its right subtree. Figure 4 illustrates this construction. A tree of height h is said to be

Fr

Fict (B

Figure 4: A Fibonacci tree of height k > 4.

k-fringed if each of its subtrees rooted at a node of depth h — k is either a singleton node (leaf) or a
k-chain. (Note that every binary tree is 0-fringed, every tree of height h < k is (trivially) k-fringed,
and every Fibonacci tree of height h > 4 is 4-fringed.)

By straightforward induction on h, we get the following:

Lemma 6.5. For 0 < h <3, f(Fr) = —(h+2)27", and for all h > 4, f(Fp) =1~ (Fppo+3Fpi1—
1)27", where Fy, is the k-th Fibonacci number (Fy =0,F; =1,...).

We first observe that, for 0 < h < 3, F; maximizes f(R), and, for every h > 4, there is a
4-fringed tree that maximizes f(R). (This is proved by demonstrating, for ¢ running from 2 to 4,
that if there exists an (¢ — 1)-fringed tree that maximizes f(R) then there is an i-fringed tree that
maximizes f(R). In each step the rightmost node at level h — i that is neither a leaf nor the root
of an i-chain, while such a node exists, has its subtree replaced by an ¢-chain. It suffices to observe
that each such replacement does not decrease f(R).) Thus,

®(U) <3/2+ (L-—h—-2)2"" (7)

16

when 1 < h < 3.

Continuing with hA > 4, we observe that if R is a 4-fringed tree that maximizes f(R) then the
tree S = R;,_, (formed by removal of the 4-fringe) can be assumed to satisfy the additional three
properties:

1. min{y;,yj+1} = —h+4 for 1 < j < A(S),
2. y1 =—h+4, and
3. y)\(s) =—h + 4,

where y; = —ds(éf).

Suppose that S has two consecutive shallow (depth less than h — 4) leaves, or a shallow first
or last leaf. Let £* denote the deeper of a consecutive pair of shallow leaves (or a shallow first or
last leaf) and let k& denote the depth of £* in S. (Note that £* must be a leaf of R as well.) It is
straightforward to confirm that the tree R’ formed from R by replacing leaf £* by the subtree Fj_
satisfies

FR) > f(R)+ 27 f(Fui) +27" + 2773 > F(R).
The first inequality expresses the change in equation (6) due to the removal of £* (27") and its
replacement by Fy_ (27%f(Fn_x)). The value 27"*3 represents the minimum additional con-
tribution to f(R') arising from the first leaf in Fj_;. The second inequality is equivalent to
f(Fn_p) > —9-27** which follows from Lemma, 6.5.

A tree R is said to be an h-comb for h > 4 if R is a k-chain, for 0 < k < 3, or R is a 4-fringed
tree of height h whose associated (unfringed) tree S = R;,_, satisfies property 1. (Note that an
isolated node is an h-comb for all h.) Thus, when h > 4, it suffices to find an h-comb R, whose
associated tree S = R;,_, has both of its extreme leaves at depth h — 4, and which maximizes g(R)
defined by:

g(R) = —AR)27"+ Y [2% = 2%H] (8)
1<j<A(R)

(note the change in summation boundary) where
o {—dR(e;-“‘) if j < A(R)
Tl -h+3 ifj=AR)+1.
If Aj, denotes this maximum value then
®(Uy) <3/2+ L27" — 273 1 4, (9)

for all T € T;,, when h > 4.

To determine Ap, it helps to consider two related optimizations. Let B, denote the maximum
value of g(R) over all h-combs R at least one of whose extreme leaves has depth h, and let Cj
denote the maximum value of g(R) over all h-combs without constraints on their extreme leaves.

Lemma 6.6.
Ap =1~ (Fhio + 3Fp — 9)27",
By =1— (Fhy1 +3F,)2°", and
Ch=1-9.27"

for all h > 4, where Fy, is the k-th Fibonacci number (Fy =0,F; =1,...).

17

Proof. (by induction on h) For h = 4, the unique 4-comb of height 4 gives Ay = By = 273. The
4-comb of height 0 (an isolated node) gives Cy = 7-27%. Suppose that A > 4 and denote by A

(respectively, A), (@., &) an h-comb of height h whose associated unfringed tree has
both (respectively, at least its left, at least its right, possibly neither) extreme leaf at depth h — 4.

Then by the comb property we have (for x = h — 1):

N must be ey or .
A) must be m or @
AN N AN/ ANVAYAN
N must be /S or fSodA, or a single node.

Hence,
Ap = Ap-1/2+ Bp-1/2
By =max{Bp_1/2+ Bp_1/2,Cp_1/2 + Ap_1/2}
Cp = max{Bp_1/2 + Ch_1/2,1 = 9-27"}.
The result follows by straightforward calculation. O

We conclude from Lemma 6.6 and equation (9) that
®(U) <5/2+ (L — Fhyg —3Fp 1 +1)270 (10)

for h > 4.

By choosing T' € T, arbitrarily and considering particular ranges of h, we can extend the results
of Observation 6.1. Specifically, if 1 < h < 3 and L < 2h* —2h 4+ 4 1 for some integer k > 1,
then it follows from equation (7) that

20(U,) < 3+ (L — h —2)27hH1
< 3+ (2h+k _ 2h _ 1)2—h+1

and so, by Lemma 6.1 and equation (3),
EN(T) < a(W) = [1g[20(Ux)]] ~ 1 < k.

Similarly, if b > 4 and L < 2"(2%¥ —2) + Fj,, 9 +3F,,1 — 2, for some integer k > 1, then it follows
from equation (10) that

28(Uy) <5+ (L — Fhyp — 3Fpq1 +1)27"
<5422k —2) —1)2 0!
— 2]C-|-1 _|_ 1— 2—h—|—1

and so E)(T) <k, as above.

18

In summary, if

oo (t+1)2h + h+2 if1<h<4
PP Fuyo +3Fh1 — 14128 ifh >4
then
0 ifL<h+2
_ 1 ifh+2<L< Ly
Ep(L) < . (11)
k lf Lh72k—1,2 S L S Lh,Qk,Q and k > 1

[lgL]—h ifh<1<[lgL].

In all cases, the Fibonacci trees introduced earlier can be used to construct examples of trees
that realize our upper bounds on Z(L). Since £2(L) is monotonically non-decreasing it suffices
to demonstrate, for each h > 1 and k > 1, a tree T, whose number of leaves A\(T') satisfies
MT) = Ly, o5, for which E) (T') = k + 1.

An extended Fibonacci tree of height h > 1 and potential ¢ > 0, denoted F(t), is defined as
follows: for 1 < h < 4, F;(t) is just a ((t+1)2" + h+1)-chain and, for h > 4, F;(t) is the binary tree
whose left subtree is F;_;(0) and whose right subtree has a leaf as its left subtree and Fj_,(4t)
as its right subtree. Figure 5 illustrates this construction. See Figures 7 and 8 for examples of
extended Fibonacci trees.

Fi(t)

Figure 5: An extended Fibonacci tree of height h > 4.

By straightforward induction on h, we have:

Lemma 6.7. For all h > 1 and t > 0, A(F}(t)) = Lp,.
Furthermore,

Lemma 6.8. For every h > 1 and k > 1,) (F;(2F - 2)) =k + 1.

Proof. 1t suffices to confirm, by induction on h, that for every h > 1, if W is the h-leveled weight
sequence associated with F; (t) then W), (the h-th weight sequence in the reduction sequence asso-
ciated with W) has the form
(=1)(0 (=1))**>.
Thus, by Lemma 6.1 and Corollary 6.3, E) (F;(2F —2)) = [lg(2**! +1)] - 1=k + 1. O
Thus the upper bounds on Eg(L) given in equation (11) are tight. Using Lemma 4.2, these

bounds translate into the following exact bounds on the leaf h-leveling cost (thereby establishing
Theorem 2.1):

(0 if L<h+2
1 ifh+2§L<Lh_1,0
AY(L) =<2 if L> Lp_10and [IgL] <h
[lgL] -1 if[lgL]=nh
[oo if [lg L] > h.

19

6.2 General h-leveled Weight Sequences.

For any given ¢ > 1 and h > 0 we are interested in determining the size of the smallest tree T’
satisfying 2} (T) = c¢. By Lemma 6.1 this is equivalent to asking for the smallest tree T' whose
h-leveled weight sequence W satisfies «(W) = ¢. Let W, be the weight sequence in the reduction
sequence associated with W that has min(VF[};) = 1. The thickness of W, is zero and by Corollary 6.3,
a(W) = [lgr] where |W,| = 2r — 1. Let A(r,h) equal the minimum L such that there exists an
h-leveled weight sequence W with |W| = 2L — 1 whose associated sequence W, has length 2r — 1.
Then

27 (L) = ¢, for all L satisfying A(2°~" + 1,h) < L < A(2%,h). (12)

The action of the Phased Alphabetic Minimax Algorithm on an h-leveled weight sequence
associated with a tree T" can be understood in terms of its action on the weight sequences associated
with the left and right subtrees of T'. This gives rise to the following recurrence for A(r, h).

Lemma 6.9.

and forr > 2 and h > 1,

A(r,h) = i A(a,h — 1) + A(b,h — 1
()= min, {Mah=1) +Abh—1)}

Proof. If h = 0 then any h-leveled weight sequence W has the form 022~!, thus min(V,[/V'l) =1 and
|W1| = 2L — 1 which implies A(r,0) = 7.

If r =1 then A(1,h) = 1 since W = (0) has min(V[A/'I)) =1and |Wy| = 1.

Let T € Tz, and let ' and T® denote the subtrees of T rooted at the left and right children
of the root of T. If W is the h-leveled weight sequence associated with 7', for some h > 1, then
W has the form (WL —1) 0 (W — 1), where W (respectively W£) denotes the (h — 1)-leveled
weight sequence associated with T (respectively T%).2

Recall that W, is the weight sequence in the reduction sequence associated with W that has
min(W,) = 1. For r > 2 and h > 1, it is straightforward to confirm that the weight sequence
W,_1 has the form (WZLL -1)0 (WZ},{{ — 1), where WZLL (respectively Wﬁg) denotes the sequence

in the reduction sequence associated with W (respectively W#) with min(V[//:ZZL) =1 (respectively
min(Wh) =1). If W] | = 2a — 1 and [W/| = 2b— 1 then W,_; has the form (—1) (0 (—1))eto-1
and, by Lemma, 6.4, W, has length 2[(a+b)/2] —1. Thus, if weight sequence W realizes A(r, h) then

sequences W1 and W2 realize A(a, h—1) and A(b,h—1) for some a and b satisfying [(a+b)/2] = r.
Hence,

A(r,h) =

= min Ala,h — 1)+ A(b,h — 1
a,b: [(a+b)/2]:r{ () ()}

2If S is a sequence of integers then (S — 1) denotes the same sequence with each element decreased by 1.

20

Lemma 6.10.
2 /n .
A(r,h) = Zz:; (Z) (r —1).

Proof. (by induction on r and h) For h = 0, the lemma states

A(r,0) = i (3) (r)

=0

which is r, since (J) = 0 for i > 0.
For r =1, the lemma, states
o (h
A(1,h) = () 1—1
=3 (;)a-
which is 1.
We claim that the minimum of A(a, h—1)4+A(b, h—1) over all values a, b such that [(a+b)/2] =7
is achieved when a = r —1 and b = r (or a = r and b = r — 1). Since A(r, h) is an increasing
function in r, we need only consider a and b such that a + b= 2r — 1.

Le
| f(t)ZtXE(h;1)(t—z’)+2Tit<h;1)(2r—1—t—i).

Our claim, and the lemma, follows if f(¢) achieves its minimum at ¢ = r—1. Consider f(t)— f(t+1).
2r—2—t ¢
h—-1 h—-1
ro-rern=3 ("7 (13)

Ift<r—1then2r —2—1t¢>t¢and f(t) — f(t+ 1) is positive. If ¢t > r — 1 then 2r —2 -t <t
and f(t) — f(t+1) is negative. Thus f(¢) is minimized when t =r — 1. O

By Lemma 6.10 and equation (12), 2} (L) = [lg p(L, h)] where p(L, h) = max{r : 37 _3 (f;) (r—
i) < L}. We then use Lemma 4.1 to obtain Theorem 2.2.
Acknowledgment

The authors wish to express their appreciation to Prosenjit Bose, both for having posed the central
question investigated in this paper and for numerous helpful discussions.

21

References

[1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. R. Garey. Optimal binary search trees with restricted maximal depth. SIAM Journal on
Computing, 3(2):101-110, June 1974.

E. N. Gilbert. Codes based on inaccurate source probabilities. IEEFE Transactions on Infor-
mation Theory, IT-17(3):304-314, May 1971.

T. C. Hu, D. J. Kleitman, and J. K. Tamaki. Binary trees optimum under various criteria.
SIAM Journal on Applied Mathematics, 37:246-256, 1979.

T. C. Hu and A. C. Tucker. Optimal computer search trees and variable length alphabetic
codes. SIAM Journal on Applied Mathematics, 21(4):514-532, 1971.

D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098-1101, 1952.

A. Ttai. Optimal alphabetic trees. SIAM Journal on Computing, 5(1):9-18, March 1976.

D. G. Kirkpatrick and M. M. Klawe. Alphabetic minimax trees. SIAM Journal on Computing,
14(3):514-526, August 1985.

D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-
Wesley, 1973.

L. L. Larmore. Height restricted optimal alphabetic trees. SIAM Journal on Computing,
16:1115-1123, 1987.

L. L. Larmore and D. S. Hirschberg. A fast algorithm for optimal length-limited Huffman
codes. Journal of the ACM, 37(3):464-473, July 1990.

L. L. Larmore and T. M. Przytycka. A fast algorithm for optimal height-limited alphabetic
binary trees. SIAM Journal on Computing, 23(6):1283-1312, December 1994.

K. Mehlhorn. Best possible bounds on the weighted path length of optimal binary search trees.
SIAM Journal on Computing, 6(2):235-239, 1977.

K. Mehlhorn. Volume 1: Sorting and Searching. EATCS Monographs. Springer-Verlag, 1984.

R. L. Miliditd and E. S. Laber. Improved bounds on the inefficiency of length-restricted prefix
codes. Monografias em Ciénciada Computacao 33, Departamento de Informatica, PUC-Rio,
1997.

D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the ACM,
32(3):652-686, July 1985.

R. L. Wessner. Optimal alphabetic search trees with restricted maximal height. Information
Processing Letters, 4(4):90-94, January 1976.

22

A Restructuring Examples

Figure 6: Chain (left) with L = 16 that is restructured (right) to have height at most 5. Nodes
whose depth increased are circled.

— .
< ®
@ @o@o O@o

Figure 7: Smallest tree (top) whose leaf-restricted h-leveling cost is 2 when h = [lg L] +1 (L = 59),
and the resulting restructured tree (bottom) obtained by our algorithm. Leaves are circled a number
of times equal to their depth increase.

23

-oseorout)dop Iy} 09 [enbo sowlr) JO IQUINU ® PI[IIID dIR SOAROT "W ILIOZ[R INO A poure}qo (ur0}joq) odI)
poIn)onIIsor Surynsar oy} pur ‘(¢6z = 7) ¢ + |79 = y uoym g S1 1500 SUI[0Ad[-y PoIILIISOIJes] osoym (do}) 991} Iso[[ewg :Q oINII]

24

Wop-2-1-3-2-4-3-4-4-4-4-40-3-2-4-3-4-4-4-4-4-1-4-3-4-4-4-4-4-2-4-4-4-4-4-3-4-4-4-4-4-4-4-4-4
Wy-2-1-3-2-4-3-4-3-4-3-40-3-2-4-3-4-3-4-3-4-1-4-3-4-3-4-3-4-2-4-3-4-3-4-3-4-3-4-3-4-3-4-3-4
Wo -2 -1 -3 -2 -3 -2 -3 0-3-2 -3 -2 -3 -1 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3
W3z -2 -1 -2 -1 -2 0-2-1 -2 -1 -2 -1 -2 -1 -2
Wsq-1 0 -1 0-10 -1 0 -1
Ws 0 1 0 1 0
We 1 2 1
W 2
@
® C
@
@ @ @ ¢ ® o
@®© ® @® ® @® ® O

Figure 9: An example of near-4-leveling, the resulting weight sequence, the weight sequences pro-
duced by the phased alphabetic minimax algorithm, and the resulting “balanced” tree. The original
tree is a smallest tree (L = 23) whose h-leveling cost is 2 when h = [Ig L] + 1. Nodes are circled a
number of times equal to their depth increase.

25

