Choosing a Reliable Hypothesis

(Extended Abstract)

William Evans™*

Sridhar Rajagopalan'

Umesh Vaziranif

Department of Computer Science,
University of California at Berkeley, CA 94720

Abstract

We study the problem of inferring an accurate model
for a stochastic process from its output. We identify
two desirable properties — resoluteness and reliability
— of any identification algorithm. We prove that for
any countable class of stochastic processes, there is an
identification algorithm that has these properties. This
result also formulates an optimization problem whose
solution is sufficent to solve the identification problem.
In this sense, our result provides an analogue to the

Occam principle in a probabilistic setting.

*Supported in part by NSF grant CCR 92-01092.
TSupported by NSF PYI Award CCR 88-96202 and NSF grant
TRI 91-20074.

1 Introduction

We consider the general problem of inferring an ac-
curate model for a stochastic process from its out-
put. For example, the stochastic process could be a
dynamical system. The goal is to infer an accurate
model for the system from a sequence of experi-
mental observations made as the system evolves.
Notice that we cannot assume any reliable reset
on the underlying process. Therefore, the output
sequence does not consist of independent observa-
tions but a single time series.

This situation is naturally expressed in an on-
line setting as follows. We consider a countable
class M of stochastic machines. We are given one
of the machines M* € M in a black box. The
machine M* corresponds to the dynamical system
in the example above. The output of M™ is a binary
string x = x5 - - -. This string corresponds to the
time series of experimental observations. The goal
is to infer the identity of M* (or some M € M
which is a close approximation to M*) from x.

The problem that we have sketched above is
quite different from the corresponding problem of
predicting x in an on-line fashion. The goal in the
on-line prediction problem is to predict the next
bit of x having seen zy24---z;. For this problem,
it is well known that for every class M of stochas-
tic machines, there is a universal prediction mech-
anism Uy usually called the Bayes’ predictor for
M that predicts almost optimally [5, 6, 10]. By
contrast, we wish to find an M € M such that
M is a good predictor for the sequence x. An ob-
vious reason to prefer such an hypothesis M over
the Bayesian predictor Upq is that Upg is typically
much more complex than any stochastic machine

M € M. Furthermore, returning to the example
of inferring a dynamical system [3], our goal is not
simply to predict the output of the system, but also
to formulate an accurate model of the underlying
mechanism. More generally, it can be argued that
the fundamental goal of science is not just to pre-
dict, but also to posit a model that helps to under-
stand the phenomenon being studied. Thus, any
rigorous justification of the methodology of science
must include an understanding of the identification
problem. Such an interest in predictive models was
also proposed in [4].

In the case that machines in M are all deter-
ministic, there is a well known principle, Occam’s
Razor [1, 2], that states that any hypothesis that is
consistent with the output, and whose description
is “short” is a good approximation to the true ma-
chine - thus the criterion is to minimize |M| among
all consistent machines. In the stochastic setting,
consistency is an extremely weak restriction. For
example the machine that outputs the flips of a
coin is consistent with every output.

A closely related setting in which the identifi-
cation problem has been studied is the inference
of finite state Markov sources with arbitrary (real)
transition probabilities [9]. Rudich exhibited an al-
gorithm that (in the limit) converges to the struc-
ture of the minimum state Markov chain that is
equivalent to the target Markov chain. However,
there do not appear to be explicit bounds on the
number of mispredictions made by the working hy-
potheses of the algorithm (in a suitable on line
model). On the other hand, [10] and [5] show
how to predict as well as any Markov source in
the limit using a very efficient algorithm based on
Ziv-Lempel data compression [11]. However, they
do not identify a good predictive hypothesis that
is also a Markov source.

2 The Problem and Results

We are given a black box that contains an unknown
randomized machine M™* chosen from some count-
able class M. x is a string that is generated by
the machine (M*) in the black box. Our goal is to
identify a machine M € M such that the output
distribution of M is the same as the output distri-
bution of M*. Notice that if x began with a 0, then
we get no information about the output distribu-

tion on strings starting with a 1. This is a serious
problem if there are machines whose output distri-
butions are identical conditioned on the first output
bit being 0, and different conditioned on the first
output bit being 1. One way of dealing with this
problem is to place further restrictions on M and
retain the goal of identifying a machine M equiva-
lent to M*. Instead, we will define a weaker crite-
rion that an identification algorithm should satisfy
— resoluteness and reliability. We will prove that
this weaker goal can be achieved for any class of
stochastic machines M. Further, it is possible to
show that the weaker goal implies the stronger one
for any class M that satisfies a reasonable restric-
tion.

An identification algorithm outputs a hypothesis
machine G(zy - --z;) € M after observing the first
¢ bits of output from the black box. We require
that the expected number of times the identifica-
tion algorithm changes its hypothesis is finite. Here
the expectation is taken over the distribution on x,
the output of the black box. This distribution de-
pends on the choice of M*. Thus the expectation
should be finite regardless of the choice of M*. We
shall call algorithms that have this property reso-
lute. This formalizes our notion of identification.
It implies that with probability 1, after a finite
number of outputs the identification algorithm will
never change its hypothesis. However, we cannot
demand that the identification algorithm “know”
when it has converged, since the distribution of
two machines in M may agree on arbitrarily long
strings.

We now formalize what it means for the algo-
rithm to identify a reliable model of M*: We imag-
ine running a prediction tournament between the
true machine M* and the algorithm’s current hy-
pothesis G'(z; - - - z;) for each value of 7 from 1 to n.
Let a(n) be the expected number of mispredictions
of M* on z, and 3(n) be the expected number of
mispredictions when we use G/(z - - -z;) to predict
bit 2;41. We say that the algorithm identifies good
predictive hypotheses if 3(n) — a(n) = o(n). Note
that this condition is equivalent to saying that the
prediction rate of the identification algorithm ap-
proaches the optimal rate; moreover, bounding this
quantity (by say n!=¢) gives a bound on the con-
vergence rate.

We prove that for any class M, there is an iden-

tification algorithm in the above sense - the num-
ber of times the identification algorithm changes
its hypothesis depends only upon the index of the
target machine M™ in the enumeration of M. Also,
the expected number of mispredictions of the hy-
potheses for the first n bits is within (an additive)
O(n?/3) of the number of mispredictions of M*.

The algorithm is based on a Bayesian approach,
where we pick the machine with the highest poste-
rior probability; however, the choice of the prior is
of crucial importance. We must pick a prior so that
small machines are favored sufficiently to guarantee
convergence, but not so much that we lose predic-
tive power. In addition, to achieve convergence, we
modify the algorithm so that it only switches its hy-
pothesis if the current machine is significantly less
likely (a posteriori) than the most likely machine.

We first describe our identification algorithm,
which we call the Stubborn algorithm. We then
bound the expected number of times that this algo-
rithm switches its guess. We bound the number of
mispredictions of our identification algorithm via a
series of reductions - the first reduction shows that
the number of mispredictions of the Stubborn al-
gorithm can be bounded in terms of the number
of mispredictions of an algorithm that simply picks
the machine with the highest a posteriori proba-
bility (we call this the Max algorithm). Next, we
introduce the notion of an e-Bayes algorithm. Re-
call that Bayes’ algorithm just predicts the most
likely outcome (one with probability at least 1/2)
for the next bit, based on the weighted average, ac-
cording to the prior, of all the machines in M. The
e-Bayes algorithm is similar, except that instead
of always using 1/2 as the threshold, an adversary
gets to choose the threshold from {1, 1 1=} We
relate the error rate of the Max algorithm to that
of ¢-Bayes for a suitable choice of ¢, and finally
analyze the error rate of -Bayes to complete our
analysis.

3 Model

Since we make no assumptions about the random-
ized algorithms in the class M, it is natural to
model a source M € M by an infinite binary tree
with probabilities on its edges. For every vertex v
in the tree, the probabilities of the left and right
edges descending from v sum to 1. A source pro-

duces a sequence by starting at the root and choos-
ing a path down the tree according to the edge
probabilities. Whenever the walk traverses a left or
right edge, the source outputs 0 or 1 respectively.

Alternatively M may be viewed as a probabil-
ity distribution on [0,1). This source produces a
sequence by choosing x € [0,1) according to its
distribution and revealing the binary expansion of
x (following the decimal point) one bit at a time.

Let M[z] be the probability that M € M gen-
erates a string x which has z as a (finite) prefix.
Let |M| be the size of the index of M. Hence, if
M ={Mgy, My - -} then |M;| = [log1].

4 The Stubborn algorithm

We now introduce our identification algorithm - the
Stubborn algorithm. The algorithm is defined by a
function G : {0,1}" — M, where G(z) is the ma-
chine that is chosen by the algorithm after seeing
x. Let,

(M,)| M| + log <ﬁ)

One way to view ¢ is as the length of an encoding
of z (MDL principle [8]). We define GG inductively.

[} G(G) = Ml.

o et H(z) be the smallest such that
S(H(2),2) = min{é(M, z) : M € M)

o G(za) =
{ G(z) If $(G(z),za) < ¢(H(za),za)+ 1
H(za) otherwise.

Notice that the min operation in the computation
of H(z) can be reduced to a finite one assuming
¢ > 0. Also, the quantity 7(M) = 27| can be
viewed as a Bayesian prior in concert with exist-
ing literature (see [7]). The choice of constant c is
critical in obtaining our results.

The Stubborn algorithm guesses the source
G(zq---z;) after seeing the tth output bit. It then
predicts bit 2,41 according to its guess. Predict-
ing according to a source M means predicting 0 if
M]z0] > M[z1] and predicting 1 otherwise.

Theorem 1 The Stubborn algorithm guesses a
source at each step and predicts according to that
source so that,

A. The expected number of times the algorithm
changes its quess is finite.

B. The expected number of mispredictions in ex-
cess of the optimal predictor is O(n2/320|M*|/3)
where ¢ is the aforementioned constant.

We should emphasize that our algorithm de-
pends upon the ability to calculate the minimum
over all M € M of the quantity ¢|M|+log(1/M|z]).
Thus a class of machines M can be efficiently iden-
tified if this optimization problem can be efficiently
solved. This is analogous to Occam’s Razor, which
identifies an optimization problem for the deter-
ministic case - minimizing | M| for an M consistent
with the output - such that efficiently identifying
an unknown M* € M is computationally equiv-
alent to efficiently solving the corresponding opti-
mization problem.

5 Resoluteness

In this section we will focus on the first part of
Theorem 1. Consider a string x = zjzoz3-- -
Here each z; € {0,1}. Let C(x) = {z1---2; :
G(zq1---z;) # G(z1---2;-1)}. The set C(x) con-
tains those prefixes of x on which the Stubborn
algorithm changes its hypothesis. The first part of
Theorem 1 can be precisely stated as,

Theorem 1A. If ¢ > 3 then for any M* € M,

Exm+ |C(x)] € O <%)

The proof of the theorem follows from two lemmas.
Let the active set A(x) C M be defined as,

AX)EYM e M: M =G(2),2 € pref(x)}
where pref(x) = {z122---2; : Vi}. The active set
contains those sources that are the Stubborn algo-
rithm’s guess at some point on seeing x. We obtain
the following surprising lemma about the active set
which in particular implies that the expected size
of the active set is small.

Lemma 2
proby .« (AM € A(x) : M| > t) <
Qt(l—c)
T(M*)(1 = 21-¢)

Proof: Let Fs be the set of & such that ¢(M, z)
minimizes ¢(+, z) and no prefix of z does. Note that
M € A(x) only if some prefix of x is in Fjs. For
every x € I, (M, z) < ¢(M*, z) or equivalently,

7 (M)M]z] > =(M*)M*[z]

Summing the above inequality over all z € Fas, we
obtain

r(M) S M) > n(M%) S M[a]

z€F r€Fy

Since Fy; is prefix free, it follows that

Yowery,M[z] < 1. Also, 37, cp, M*[z] is an up-
per bound on the probability that A(x) contains

M. Therefore,

(M)
m(M*)

proby . ar+ (A(x) contains M) <

Finally, summing over all machines of size more
than ¢, we get the lemma. |

If ¢ is the size of the largest machine in the active
set then the size of the active set is less than 2t+!,
Using this fact and the previous lemma, it is simple
to show that the expected size of the active set is
finite (for ¢ > 2).

We now show how to use the bound on the size
of the active set to bound the number of times the
Stubborn algorithm changes its hypothesis. Call
za an M, M’ switch if G(z) = M and G(za) = M’
(z € {0,1}" and a € {0,1}). An M, M’ switch is
an up switch if M < M’, otherwise it is a down
switch. Each M, M’ down switch has weight M —
M’ (difference of indices in enumeration). We make
the following claim about up and down switches
and their relationship to the active set.

FE(No. of up switches) — E(wt. of down switches)
< E(AX))

The previous lemma upper bounds the expected
size of A(x). The following lemma upper bounds
the expected weight of down switches. Together
the lemmas provide a bound on the number of
up switches. In addition, since the weight of a
down switch is at least one, the following lemma
also bounds the expected number of down switches,
thus proving the theorem.

Lemma 3 Let M > M'.
w(M')
m(M*)

Ex~n+(No. of M, M' switches in x) < 4

Proof: Let By be the set of strings z such that z
is an M, M’ switch and z has exactly & — 1 proper
prefixes that are M, M’ switches. Let Ay be the
set of strings z such that z is the longest prefix of
some y € By that is a -, M switch. The following
facts about A and Bj are easily established.

1. B and Ay are prefix free sets (i.e. if € Ay
(Bg), then no prefix y of z is in Ay (Byg)).

2. Every = in By has a prefix y in Aj.
3. Every y in Aj has a prefix z in Bp_;.

The heart of the lemma is an inductive proof that
Z M[z] < 27F+1
IEBk

For k = 1, the result follows since By is prefix free.
For k > 1, since strings in By are M, M’ switches,
and fact 2.

) (M)
%D;kM[] < I;k QF(M)M[y]
i1 T (M)

But since strings in Ay are -, M switches, and fact
3,

IRUTEC D SRR W TE
yeA

YyEAL 2€B)_1

And this completes the induction. Fact 3, can now
be used to show that

Y. Mw] <) :
wEAL4 wEAL4 ﬂ()
(M) ki1

< TM*)Q i

(M)

Mw]

which tells us that the number of M, M’ switches
is at best a geometric random variable and implies
the lemma. |

The lemma bounds the number of M, M’ down
switches. Multiplying by M — M’ and summing
over all pairs M > M’ bounds the expected weight

of down switches (for ¢ > 3, the sum converges).
This bound and the bound on the expected size of
A(x) imply that the expected number of switches
(both up and down) is finite which proves theorem

1.A.

6 Reliability

To facilitate the following discussion, we consider
the Stubborn algorithm from a Bayesian viewpoint.
The quantity 2=#(M:%) corresponds to the Bayesian
probability of M given z using prior 2—clM| (up
to some normalizing constant). The machine that
minimizes ¢(-, z) also maximizes 2-¢(+%) Whence,
minimizing ¢(-,) corresponds to identifying the
most likely machine in the Bayesian setting. Notice
also that the Stubborn algorithm changes its mind
only when the Bayesian probability of its current
hypothesis is less than half the maximum.

Let F'(A,z) be the number of mispredictions
made by algorithm A on sequence z. Therefore,

F(A,2)E [{i: Aer, 20 2i01) # 22}

The following theorem says that predicting accord-
ing to the hypotheses of the Stubborn algorithm is
almost as good as predicting according to the true
source M* (optimal prediction).

Theorem 1B. If ¢ > 3 then for any M* € M,
E[F(Stubborn, x)—F(M*,z)] € O(n?/32¢M"1/3)(1)

where the expectation is taken over z € {0,1}" pro-

duced by M*.

One implication of the theorem is that the rate
of misprediction approaches the optimal rate in the
limit. Results of this kind have been shown in the
case where the optimal predictor is based on a fi-
nite state Markov source ([10, 5]). However, for
our model, in which the optimal predictor is based
on a general random source, these results do not
apply. In addition, we require that our algorithm
predict according to a hypothesis from the set M.
It is worth noting that if prediction were the only
goal, then we can show a bound of ©(, /n log W)

(following lemma 3). Thus, we pay a price in order
to accomplish both inference and prediction.

6.1 The Max algorithm

The Max algorithm guesses the most probable
source (in the Bayesian sense). The Max algorithm
lacks the stubbornness that was essential to obtain
the first half of the theorem. We will see now that
as far as the competitive error difference is con-
cerned, the two algorithms are similar. Partition
{0,1}" into (disjoint) sets X; where X; is the set
of strings on which the Stubborn algorithm picks
M;. Consider the world where only two machines
M = M, and M* exist. Let

— QF(M) 'ﬂ'/(M*) —

w w
be the prior probabilities used by the Max
algorithm®. W is a normalizing factor and is
27 (M) 4 m(M*). For z € X;, we notice that

. m(M7)

' (MYM[z] > «' (M*)M*[z]

Therefore, the Max algorithm will choose M on X;.
View the total error of the Stubborn algorithm as a
sum of individual contributions of machines M; €
M. The error of the Max algorithm in the two
machine world M;, M* exceeds the contribution of
M; to the total error of Stubborn. Therefore, if we
bound the error of the Max algorithm in each two
machine world, we are done since we just sum over
all the worlds.

It remains to bound the competitive difference

of Max using the prior 7’ in the two machine world
M, M*.

6.2 The ¢-Bayes algorithm

The competitive difference of the Max algorithm is
hard to bound directly. So we introduce yet an-
other algorithm, the ¢-Bayes algorithm. We begin
by comparing the Max algorithm to the e-Bayes al-
gorithm and then analyzing the latter.

Instead of guessing one of M or M™*, the e
Bayes algorithm takes the weighted average of the
two and predicts according to that average. Let

Bl2] X =" (M*)M*[2] + =" (M) M[z]

where 7' are the prior probabilities used by the e
Bayes algorithm. (B is just the Bayesian “average”

"This technique of boosting the relative weight of M is a
very useful technique and will appear again later.

machine.) Let §(z) be the Bayesian (conditional)
probability that the next bit is a 0 after seeing the
string x.

def B[z0]
B[]

p(x)

In the classical Bayesian world, one would predict
0 iff B(z) > 1/2. In the e-Bayes world, this rigid
threshold is relaxed somewhat. Philosophically, the
e-Bayes algorithm asserts that if (z) is large, then
predict 0, if it is small, then predict 1 but if 3 is
roughly %, then what we predict is not important.
We define e-Bayes’s prediction after string z to be,

0 if B(z) > T

1 otherwise

e-Bayes(z) = {

where T}, is chosen from {135, %, 155}. Indeed, the
careful choice of ¢, T, and 7" is essential to the

final result. Let
wr' (M) 7' (M*)

w wr
be the prior probabilities used by ¢-Bayes. Here,
W' is a normalizing factor and is wr'(M)+='(M™*).
This definition of 7”7 boosts the relative weight of
M by afactor of w. Also, we have reduced the issue
of choosing 7" to one of choosing w. This choice of
7' has an immediate consequence expressed in the
claim below.
Claim? If #/(M)M[z] >
B(z) = M[0]z]| < 1/w

ﬂ_//(M) — ﬂ_//(M*) —

7' (M*)M*[z] then

Proof:
18(z) — M[0]z]| =
(M) M*[z] [M*[0]z] — M[0|]]

Ble] < 1w
The claim states that whenever Max picks M, the
Bayesian belief that the next bit is 0 is close to
the probability M places on 0 (using 7”). If §(z)
and M[0|z] are both less than 1/2 or both greater
than 1/2 then we choose T, = 1/2 and Max and
e-Bayes make the same prediction. Otherwise, the
claim implies that we can choose T, = {%, %
(for ¢ = 2/w) so that Max and e-Bayes make the
same prediction.

We have reduced the task of choosing ¢, T, and
7" to choosing a single parameter w. The choice

“Here M[0|z] has the obvious meaning. It is J\J/\I}[ZO]].

of w will be made following the analysis of the e
Bayes algorithm. We are left with the task of
bounding the performance of the e-Bayes algo-
rithm.

Lemma 4 For any pair of sources M* and M, for
any prior distribution 7" on M* and M, for any
choice of T, € {1F¢, L 1=€Y for every z € {0,1}",

2 12172
E[F(e-Bayes,z) — F(M*, z)]
1

where the expectation is taken over x € {0,1}" pro-

duced by M*™.

Once the lemma is shown, theorem 1B follows
easily. We choose w = {/2n7(M*)/x (M), Com-
posing the reductions and applying the lemma and
then summing over all M € M gives the theorem
for ¢ > 3.

Proof (lemma 4):(Sketch) Since we are only con-
cerned with sequences of length n, we truncate each
source at a finite depth ». The sources are com-
pletely defined by the probability they place on se-
quences z € {0,1}" (the leaves). So each source
is a probability distribution on 2" sequences. Our
plan is to delineate the structure of the worst case
machines M and M*.

We claim that the worst case is achievable even if
we assume that T, = (1+¢)/2 for all z € {0, 1}<".

We also claim that there exists a worst case pair
M, M* which is e-balanced with respect to ="' (M)
and 7" (M*). By e-balanced we mean that for z €
{07 1}<n7

fple) = (3)

If every T, = (1 + €)/2, e-Bayes always predicts
1 in an e-balanced pair. To obtain the worst case
bound, we assume that M* always predicts 0.

If M and M* are not e-balanced, let z (|z| < n)
be a longest sequence which violates (3). Let My
and M; (Mg and M7) be the left and right sub-
trees below z in M (M*). The choice of z implies
that the pair My, M is e-balanced with respect
to priors 7"/ (M)M (z0) and 7" (M*)M*(z0). Sim-
ilarly, the pair My, M{ is e-balanced with respect
to 7" (M)M (z1) and 7" (M*)M*(z1).

We can assume without loss of generality that
B(z) < (1 + ¢)/2. This is since we can exchange
the subtrees otherwise. To achieve ¢-balance at =z,
we shift probability from My, M; to My, Mg until
we reach the balance point. The actual process is
to move a fraction f of My to My and a fraction
f of My to M. where f is chosen to balance the
pair M ,M* at x.

Since z is the longest sequence violating (3), the
left and right subtrees below x remain e-balanced
after this process. Consequently, e-Bayes predicts
0 in these subtrees and M™* predicts 1. Since we
increase M*’s probability on sequences starting z0,
the competitive difference can only increase.

Given these properties, the lemma follows eas-
ily. The strategy is for M™ to put as much prob-
ability as possible (without violating e-balance) on
sequences with the most 0’s. The e-balanced prop-
erty implies that

#(M)M*[2] + 7" (M) Mz] =

<1+€)# 0’sin = (1 —6)# 1’sin =
2 2

which bounds the probability M*[z]. It follows
from Chernoff bounds that the expected number
of 1’s in a sequence produced by M™* is at least a
constant times

1+¢ 4 1—|—€1—€1 1
2 T2 T2 B

The lemma follows. [|

7 Open questions and other

work.

There are a couple of interesting open questions
that are not answered by this research. Consider,
for example, the number of times the Stubborn al-
gorithm changes its mind. It can be shown that
this number is essentially tight. However, what is
not clear is whether this number is optimal. Is
there some algorithm that changes its mind only
0] (polylogW) times in expectation?

Another issue that remains open is to close
the gap between the Q(y/n) lower bound and the
O(n?*/?) upper bound for the competitive differ-
ence. (The first result does not appear in this ab-
stract).

8

Acknowledgements

Eddie Grove was involved in the preliminary stages
of this research. Leonard Schulman suggested the
term ‘resoluteness’. He also provided us with some
very valuable criticism about the write up. Thanks
to Manuel Blum, Jim Crutchfield, and David Haus-
sler for useful discussions.

References

[1]

A. Blumer, A. Ehrenfeucht, D. Haussler and
M. Warmuth, Occam’s Razor, Inform. Pro-
cessing Letters 24, 377-380.

R. Board and L. Pitt, On the necessity of
Occam Algorithms, Proceedings, 22nd ACM
Symposium on Theory of Computing, pp. 54-
63.

J. Crutchfield and K. Young, Inferring Statis-
tical Complexity, Phys. Rev. Let., vol. 63, p
105, 1989

A. DeSantis, G. Markowsky, M. Weg-
man, Learning Probabilistic Prediction Func-
tions, Proc. 1988 Workshop on Computational
Learning Theory, pages 312-328, 1988.

M. Feder, N. Merhav, and M. Gutman,
Universal Prediction of Individual Sequences
IEEFE Trans. Inform. Theory, vol. 38(4), pages
1258-1269, July 1992.

D. Haussler, M. Kearns, and R. Schapire,
Bounds on the Sample Complexity of Bayesian
Learning Using Information Theory and the
VC Dimension, Proc. 4th Workshop on
Computational Learning Theory, pages 61-74,
1991.

M. Li and P. Vitanyi, Inductive Reasoning and
Kolmogorov Complexity Journal of Computer
and System Sciences, vol. 44, pages 343-384,
1992.

J. Rissanen, A universal prior for integers and
estimation by minimum description length,
Ann. Statist., vol. 11, pages 416-431, 1982.

[9]

[11]

S. Rudich, Inferring the structure of a Markov
Chain from its output, Proc. 26th IEFE Sym-
posium on Foundations of Computer Science,
pages 321-326, 1985.

J. Vitter and P. Krishnan, Optimal Prefetch-
ing via Data Compression, Proc. 32nd IEFFE

Symposium on Foundations of Computer Sci-
ence, pages 121-130, 1991.

J.Ziv and A. Lempel, Compression of Individ-
ual Sequences via Variable-Rate Coding IFEFE
Transactions on Information Theory, vol. 24,
pages 530-536, September 1978.

