Pursuit-Evasion Voronoi Diagrams in ¢;*

Warren Cheung! William Evans'
May 25, 2007

Abstract

We are given m pursuers and one evader. Each pursuer and the evader has an associated
starting point in the plane, a maximum speed, and a start time. We also have a set of line
segment obstacles with a total of n endpoints. Our task is to find those points in the plane,
called the evader’s region, that the evader can reach via evasive paths. A path is evasive if the
evader can traverse the path from its starting point without encountering a pursuer along the
way. The evader and the pursuers must obey their start time and speed constraints, and cannot
go through obstacles. The partition of the plane into the evader’s region and the remaining
pursuers’ region is called the pursuit-evasion Voronoi diagram.

We study pursuit-evasion Voronoi diagrams for the /1 metric. We show that the complexity
of the diagram is O((n + m)?(mn + m)) and that it can be calculated in polynomial time.

1 Introduction

We are given m pursuers and one evader. Let p; be the start position, v; be the velocity, and ¢; be
the start time of the ith pursuer. Let e, v., and t. be the start position, velocity, and start time of
the evader. Let O be the set of line segment obstacles that block the movement of both pursuers
and evaders. Let n be the number of endpoints in O. Our task is to partition the plane into regions
reachable by the evader without any chance of capture by any pursuer, and regions where capture
by the pursuers is possible. This partition is called the pursuit-evasion Voronoi diagram.

The following definitions make this more precise. For a path ¢ and points p and g on the path
¢. Let dy(p,q) be the distance along the subpath of ¢ from p to ¢, where dy(p,q) = oo if the
subpath of ¢ from p to ¢ crosses an obstacle in O. For convenience, let dy = dy(p, q) if ¢ is a path

from p to q. Let d(p,q) = mingcq(p,q) dy(p; ¢), where ®(p,q) is the set of all paths from p to ¢. In

other words, d(p, q) is the length of the shortest obstacle-avoiding path from p to ¢ if such a path
exists, or oo otherwise.
A path ¢ from e to p is an evasive path if and only if for all ¢ € ¢,

dg(e, q)/ve +te < Iél[m} d(pi,q)/vi + ti.

Let d°(p) be the length of the shortest evasive path to p if such a path exists, or oo otherwise.
The evader can reach a point p, and p is in the evader’s region, if d(p) < oo; otherwise p is in the

*This paper is based on the first author’s Master’s Thesis [4]. The research was supported in part by the Natural
Sciences and Engineering Research Council of Canada.

tDepartment of Computer Science, University of British Columbia, Vancouver B.C. Canada, V6T 1Z4. Email:
{wcheung,will}@cs.ubc.ca

Figure 1: A simple example of the pursuit-evasion Voronoi diagram in #¢; for an evader e and a
pursuer p, where the evader has twice the speed of the pursuer. The thick black lines represent
obstacles. Points in the region R, can be reached by the evader taking a straight line path from e
to the point in R.. Points in R; can be reached by the evader taking a path from e to g; and then
to the point in Ry, and so on. Vertices labeled ¢; are evader turning points. Regions labeled R;;
are equidistant from ¢; and g;. The evader region is the union of the shaded regions.

pursuers’ region. See Figure 1 for an example of a pursuit-evasion Voronoi diagram using the ¢;
distance metric.

2 Related Work

The pursuit-evasion Voronoi diagram is a variation of the traditional Voronoi diagram that inte-
grates properties from several Voronoi diagram types. Similar to compoundly weighted Voronoi
diagrams [3, 9], each site in the pursuit-evasion Voronoi diagram has both an additive weight (start
time) and a multiplicative weight (inverse of speed). Compoundly weighted Voronoi diagrams
partition the plane into regions for sites, where the arrival time' to all points in a site’s region
is earliest from that site than from any other. As in the constrained Voronoi diagram [6, 1, 2],
the pursuit-evasion Voronoi diagram allows obstacles (edges in the plane) and uses the shortest
obstacle-avoiding path length as the distance between points.

The multiplicatively weighted crystal growth Voronoi diagram introduces the constraint that
paths to a point cannot pass through points passed through earlier by another site. Schaudt and
Drysdale[12, 11] describe a numerical expanding wavefront method to construct the crystal Voronoi
diagram in /o, as well as an event-driven expanding wavefront algorithm for computing the crystal
Voronoi diagram for convex polygon distance functions, including ¢;. Schaudt[11] shows that the
multiplicatively weighted crystal Voronoi diagram has polygonal boundaries in ¢;, but was unable
to show a bound on the size of the diagram. He conjectured that the size of the diagram for n sites
is O(n). In the pursuit-evasion Voronoi diagram, the paths taken by the evader must avoid points

!Given a speed v and a starting time t, the arrival time for a path of length d is d/v + t.

already reached by pursuers, as in the crystal Voronoi diagram, however, pursuers are allowed to
move freely through the evader’s region and the pursuers’ region.

The pursuit-evasion Voronoi diagram can be viewed as the diagram obtained by growth of an
agent, such as the commonly-used examples of bacteria or crystals[12, 11, 2]. However, in the
case of the pursuit-evasion Voronoi diagram, we have two asymmetric types of agents: predators
(i.e. pursuers), limited only by terrain and growth rate, and prey (i.e. evaders), only able to grow
into empty space. The pursuit-evasion Voronoi diagram can also be applied to worst-case motion
planning applications, such as camera control in telesurgery|[7, 8], with the evasiveness being a
guarantee against collision with uncertain pursuer motion. Another application is motion planning
with both fixed obstacles and growing impediments (i.e. the pursuers), such as a spreading forest
fire[10].

3 Turning Points

The points of interest in a pursuit-evasion Voronoi diagram are the points that restrict the movement
of pursuers and the evader. Pursuer paths are restricted only in that they cannot cross obstacles,
but evader paths cannot cross obstacles or the pursuers’ region. We define the points at which
pursuer paths and evader paths might be forced to bend as turning points. We also associate
a velocity and arrival time with these points since different pursuers (or the evader) might have
different shortest path lengths to the points.

Definition 1. The set of pursuer turning points is

S=PU U U {(0,vi,d(pi, 0) /vi +1;)}

i=1 0€O*
where P = Ui~ (pi,vi, t;) and O* is the set of obstacle endpoints.

Definition 2. An evader turning point is a triple (p, ve, d°(p)/ve +t.) where p is an extreme point
on the boundary of the evader’s region that is an intermediate point of a shortest evasive path, i.e.,
there exists a point g # p such that a shortest evasive path ¢ from e to ¢ has p € ¢.

Notice that there is a shortest evasive path to any point in the evader’s region that bends only
at evader turning points (by the triangle inequality). This path can be specified by the sequence
of evader turning points it visits. Between evader turning points, the path is a straight line.

Our definition of an evader turning point requires knowledge of the evader’s region. However,
we want to determine the evader’s region by calculating all evader turning points. Since the evader
must avoid the pursuer, the evader is forced to “run around” regions of the plane that pursuers
can reach first. These regions are obstacles to the evader and running around them increases the
evasive path length. Thus, evader turning points can be obtained by calculating a succession of
compoundly weighted Voronoi diagrams. We calculate the region of the plane that can be reached
via a straight-line evasive path from an existing evader turning point, and then repeat this process
from the evader turning points found on the boundary of this region.

Definition 3. Voronoi-Region(p,S) is the Voronoi region for the triple p = (p,v,t) in the com-
poundly weighted Voronoi diagram (with obstacles) for p and the set of triples in S.

Voronoi-Region(p, §) = {z|d(p,z)/v+t < min {d(p',z)/v' +t'}}
(p' ' t")ES

™ A

R, q2 Ry

Figure 2: Pursuit-evasion Voronoi diagram in ¢o for an evader e and a pursuer p, where the evader
is twice as fast as the pursuer. The region R, consists of points whose shortest evasive path is a
straight line path from e. The region R; (resp. Ry) consists of points whose shortest evasive path
contains ¢ (resp. g2). The dashed circle is the circular boundary of the multiplicatively weighted
Voronoi diagram, for comparison with the evader’s boundary which is composed of two logarithmic
spirals starting at ¢; and ¢o, and intersecting at the boundary between R; and Ra.

If p is an evader turning point then the evader may not have an evasive path to all points in

~

Voronoi-Region(p, S) but it will have an evasive path to all points = such that the line segment pz
lies entirely in Voronoi-Region(p, S). We call this set of points the Visible-Voronoi-Region(p, S’)

We should point out that our discussion up to this point holds for any distance function that
is a metric on points in the plane. However, the number of evader turning points, even for a
single pursuer and evader without obstacles, can be infinite. This is the case for the Euclidean
or {5 metric. A similar problem occurs in calculating the multiplicatively weighted crystal growth
Voronoi diagram of Schaudt and Drysdale [12], which is closely related to the pursuit-evasion
Voronoi diagram in f5. (They are the same if there is a single pursuer who is slower than the
evader and starts at the same time as the evader.)

We restrict ourselves to the study of pursuit-evasion Voronoi diagrams using the ¢; metric
(though our results generalize to other metrics that have polygonal unit balls). The ¢; metric has
the property that Visible-Voronoi-Region(p, S) is a polygon and that the evader turning points are
vertices of this polygon. The Visible-Voronoi-Region in 5 may involve curves such as arcs of the

Apollonius circle and logarithmic spirals[12, 11] (see the example in Figure 2).

Lemma 1. For the {1 metric, an evader turning point is the evader’s starting point, an obstacle
endpoint, or a vertex on the Visible-Voronoi-Region of an evader turning point and the set of
pursuer turning points.

Proof. An evader turning point, p = (p, ve, t), lies in the evader region and thus there is an evasive
path ¢ from e to p that is a sequence of straight-line segments between evader turning point
locations. Let § = (g, ve,t") be the evader turning point whose location precedes p in ¢. We claim

N

that Visible-Voronoi-Region(g, S) has p as a vertex on its boundary. Since ¢ is an evasive path with

a straight-line from ¢ to p, p lies in Visible-Voronoi-Region(q, S) and on its boundary. Suppose p

A~

lies on the interior of a boundary edge of Visible-Voronoi-Region(g, S), then the path ¢ cannot be
extended beyond p, i.e., p is not a turning point, which is a contradiction.]

In the next section, we bound the complexity of the pursuit-evasion Voronoi diagram in ¢; by
considering the number of evader turning points.

4 Size of the Pursuit-Evasion Voronoi Diagram

Lemma 2. The number of evader turning points in a pursuit-evasion Voronoi diagram with m
pursuers and n obstacle endpoints is O((n + m)(mn + n)).

Proof. We start by counting the number of evader turning points (p,ve,t) that are vertices on
a Visible-Voronoi-Region between another evader turning point (p’,v.,t’) and the pursuers. The
turning point (p,ve,t) is also a turning point on a Visible-Voronoi-Region between (p’, ve,t’) and
some pursuer turning point (o, v, t*) where op is unobstructed. (The point o is the location of the
last pursuer turning point on the shortest obstacle avoiding path that the ith pursuer follows to
reach p at the same time as the evader.) Since p is visible from p’, the line segment p/p is also
unobstructed. Thus (p,ve,t) is a vertex of the (compoundly weighted) bisector between (p/, ve,t’)
and (o, v;,t*) without obstacles. In ¢;, vertices of this bisector occur on the z- or y-axis centred at
either p’ or o. If p lies on an axis centred at p/, the bisector must cross this axis at p, effectively
blocking any continuation of a shortest evasive path that ends with the segment p/p. Thus for p to
be a turning point it cannot lie on an axis centred at p’ and must lie on an axis centred at o.

If the ith pursuer is faster than the evader (i.e. v; > ve) then p is not a turning point since the
faster pursuer, arriving at p at the same time as the evader, can reach any point from p before the
evader. So we know that all turning points are caused by pursuers that are slower than the evader.

Let us assume for notational convenience that o is at the origin. We count all the evader
turning points (p, ve,t) that occur on the positive z-axis (the same argument applies to the other
three axes). One might assume that the ith pursuer can cause at most one turning point on this
axis, since the evader is faster than the pursuer and once they meet (at p) every point on the axis
farther from o than p must be reachable by the faster evader before the pursuer. This ignores the
possibility that the evader may be forced to deviate from the axis to “run around” a pursuer region,
allowing the ith pursuer (that can run through the other pursuer’s region) to follow a shorter path
and overtake the evader.

For a pursuer turning point location ¢ and i € [m], let

Ti(z) = t; + d(pi, q) /vi + dgp/vi

be the arrival time of the ith pursuer to the point p that is on the z-axis at distance x from o when
the pursuer follows a shortest obstacle-avoiding path to ¢ and then a straight line to p. Note if
gp intersects an obstacle then T} (x) is infinity, if not then dgp = |yq — yo| + |24 — (2o +)| Where
(xq,vq) (resp. (zo,Yo)) are the coordinates of g (resp. o). Figure 3 shows an example of a function
T{(x). The function is linear with slope —1/v; for z < x4 and is linear with slope +1/v; for z > z,
except for those values of x where it is infinite.

Let T}, (x) = min;ep,) T (x). We are interested in evader turning points, where the evader
reaches a point p on the z-axis at the same time as the earliest pursuer reaches that point via
o. The function T2, (x) is the earliest pursuer arrival time on the z-axis when the pursuers must
arrive via o. Since T?(x) is linear with slope +1/v; (since x, = 0), T2, () is piecewise linear with
positive, non-increasing slope. (See Figure 4 for an example).

Let Tiin(z) = ming T, () be the earliest pursuer arrival time on the z-axis when the pursuers
may arrive via any pursuer turning point. The function T, () is continuous and piecewise linear

arrival time

distance = along axis at o

Figure 3: T/ (z) is the arrival time of the ith pursuer to the point at distance z from o on the
positive z-axis (with origin o), when the pursuer takes a path via the point ¢ = (x4, y,). The slope
is £1/v;.

arrival time
arrival time

(3.0) (2.0} (G.0) (2.0) (4,0)

v

\J

distance x along axis at o distance x along axis at o

Figure 4: The thick black line is T2, (x), the minimum arrival time of any pursuer to the positive
x-axis originating at o, when the pursuers take paths via o. T(x) is the arrival time for the ith
pursuer. On the right, at most one interval labeled (4, ¢) (for j € [m] and ¢ € S) can share its right
endpoint with an interval labeled (i, 0) for i € [m].

and we use it to partition the z-axis into intervals. We label with (i,q) every contiguous interval
of the z-axis where Thin(z) = T} (x). We may label several disjoint intervals with the same label
since T}(z) may achieve the minimum at different intervals of the z-axis.

We only count evader turning points that occur within intervals labeled (i, 0) for i € [m]. If an
interval (7,q) with ¢ # o contains an evader turning point it will be counted when we consider the
axis originating at gq. Each interval labeled (i,0) contains at most one evader turning point since if
p is the location of an evader turning point in that interval, all points p’ farther than p from o will
be reached by the evader before pursuer i. (Recall that pursuer ¢ must be slower than the evader
in order to create an evader turning point, and, in the interval labeled (,0), no other pursuer can
create a region that the evader must “run around”.)

We count the number of (i,0) intervals by counting the number of values x that can be the
left endpoint (or lower bound) of such an interval. If z* is the left endpoint of an (i,0) interval,
it is the right endpoint of a (j,¢) interval. 7}9(33) has increasing slope at z* since z* is the right
endpoint of the (j,¢) interval and T]g (x) intersects T\, (z) at «*. Since T2, (x) has non-increasing
slope, qu (x) cannot equal Tiyin(x) for any x > x* (since it is greater than T2, (x) for all x > z*).
Thus (4, q) can be adjacent (on the left) to at most one (i,0) interval. Thus the number of (i, 0)
intervals on the positive z-axis (with origin o) is at most mn+m (the number of pairs (j, ¢)). Since
there are m + n pursuer turning point locations, there are m + n possible origins o and at most
4(m + n)(mn + m) such evader turning points (counting the four axes).

By Lemma 1, there are at most n + 1 other evader turning points that are not vertices on
a Visible-Voronoi-Region between another evader turning point and the pursuers. The lemma
follows. O

Note that if all the pursuers have the same speed, the number of evader turning points is
O(n +m).

Theorem 1. The pursuit-evasion Voronoi diagram has at most O((n + m)?(mn + m)) vertices
where m is the number of pursuers and n is the number of obstacle endpoints.

Proof. Lemma 2 counts evader turning points. It remains to count vertices that are on the boundary
of the evader’s region that are not turning points. These vertices may be obstacle endpoints (which
have already been counted as potential evader turning points), meeting points on the axes centred
at an evader turning point, or meeting points with a faster pursuer on the axes centred at a pursuer
turning point. Here a meeting point is a point on the boundary of the evader’s region that is
reached at the same time by the evader and a pursuer.

A meeting point on an axis centred at an evader turning point arises from a pursuer intercepting
a shortest evasive path that follows the axis from the evader turning point. This is a point of capture
that blocks the evader from following the axis any further. Thus there are no other meeting points
along this axis centred at this evader turning point. Since each evader turning point has four axes,
the number of these meeting points is at most four times the number of evader turning points,
which is O((n + m)(mn + m)).

A meeting point between the evader and a faster pursuer is not an evader turning point since
once a faster pursuer meets the evader, the evader cannot follow any path from that point that
is evasive. We perform the following conservative analysis to upper-bound the number of such
interactions.

For each pursuer turning point location o, we consider how many times a pursuer taking a path
via o can meet an evader along an axis centred at o. The evader must come in a straight line from

some evader turning point, g, to such a meeting point. Recall from the proof of Lemma 2 that
T?. (x) is the arrival time on the positive z-axis of the earliest arriving pursuer via o, and that it
has positive, non-increasing slope. The arrival time of the evader from ¢ is a function

T(x) = te + d°(q)/ve + dgp/ve

where p is the point at distance z from o on the positive z-axis. As with the functions T} (x), this
function is linear with slope —1/v. for < x, and slope +1/v. for > x,. Hence, it intersects
T r‘;lin(m) at most twice and may cause at most two meeting points. There are m + n pursuer turning
point locations and at most 4(m+n)(mn+m) evader turning points, so the number of such meeting
points is at most 32(n +m)(mn + m)(n +m) = O((n + m)?(mn + m)). As a result, the evader’s

region has O((n +m)?(mn + m)) vertices. O

5 Algorithm

We describe how the pursuit-evasion Voronoi diagram can be computed via construction of a
shortest path tree.

Definition 4. A shortest path tree for the evader is a tree whose root is (e, ve, t.) and whose nodes
are evader turning points. A node (p/,v,,t’) is the parent of (p, v, t) if a shortest evasive path from
e to p contains p/. (If a node has multiple parents according to this definition, any one may be
chosen.)

Thus, if ¢ is in the evader’s region there is a shortest evasive path (e, q1,...,qk, q) where
((e,ve,te), (q1, Ve, d(q1) Ve + te)s -« - (ks Ve, d°(qx) /ve + te)) is a path in the shortest path tree.

To construct the shortest path tree, we maintain an incomplete shortest path tree 7" and a
fringe F of points that can be reached via straight-line paths from the leaves of T and are possible
evader turning point locations. We iteratively add the “closest” fringe point, p, to T" and update
the fringe to include those possible evader turning point locations reachable from p via a straight
line. We repeat this process until no points remain in F'. As each new tree node (p, ve,t) is added
to T, we associate with it the evader region consisting of all evasive paths that end with a straight-
line segment from p, and add this region to the evader region, £. Once the shortest path tree is
complete, we will have obtained all regions reachable via straight-line segments from evader turning
points, identifying the entirety of the evader region.

Let F' denote the set of potential evader turning point locations that are reachable via an evasive
shortest path that ends with a straight-line segment from a leaf node in T. With each p € F, we
keep an earliest estimated arrival time t[p| and parent 7[p]. Initially, F' := {e}, t[e| := t., 7[e] := 0,
T := (), and the evader region & := ().

The shortest path condition for the nodes in the shortest path tree is ensured by the application
of Dijkstra’s algorithm. The node dequeued and added to the tree is the node with the shortest
estimated arrival time (lines 2,3).

For each new tree node p (added to T in line 3), it is necessary to remove all points in F
that are no longer possible evader turning point locations (line 4), i.e., all points ¢ in F' where
tlg] > t[p] + dpg/ve. Some of these points, in particular obstacle endpoints, may be added to F
again (in line 5), but with p as parent.

Once a new evader turning point p is added to 7', the visible Voronoi region R for p is computed.
Let B be the set of vertices forming the boundary of R. We add to F' those vertices of B that are

Algorithm 1 Outline of pursuit-evasion Voronoi diagram computation

1: while F not empty do

2: Dequeue evader turning point location p from F where for all ¢ € F, t[p] < t[q].
3: Add p = (p,ve, t[p]) to T' with parent 7[p].
4
5

Remove from F any point ¢ € F' where t[q] > t[p] + dpg/ve
Add each potential evader turning point location x from R := Visible-Voronoi-Region(p, S)
to F' with parent 7[z] := p and t[z] := t[p] + dpz/ve.

6: E:=EUR

7: end while

potential evader turning point locations and whose arrival time via a straight line from p is less
than the arrival time via a straight line from ¢ for all § in T'. A vertex x of B is a potential evader
turning point if there exists a point y # x such that x € py € R. This can be determined during
the calculation of R.

6 Time Complexity of the Algorithm

Lemma 3. For any evader turning point p, Visible-Voronoi-Region(p, S) has O(mn?) vertices and
can be calculated in time O(mn?log(mn)).

Proof. Let Visible(p, O) be the region visible from point p with respect to obstacles O. Let
Bisector-Region(p, §) be the Voronoi region for p in the (compoundly weighted) Voronoi diagram
of the two triples p and ¢ ignoring obstacles. R := Visible-Voronoi-Region(p, S) can be computed
as follows:

C:= U {Bisector-Region(q, p) N Visible(q, O)}
Ges
R := Visible(p, C U O)

First, the Bisector-Region for each of the mn 4+ m pursuer turning points in S against the evader
turning point p is computed. Each of these regions has size at most 6 vertices, the maximum size of
a two point Voronoi diagram in ¢;, and can be calculated in constant time. Obstacles are ignored
as the intersection with Visible(q, O) will take care of them. Pursuer turning point visibility is only
limited by obstacles, therefore, each Bisector-Region(g, p) N Visible(gq, O) has O(n) vertices and can
be computed in time O(nlogn) [13]. Thus C has a total of O(n(mn + n)) vertices.

The evader turning point visibility treats O and C' as obstacles since both can block the evader.
We treat C'U O as a set of O(n(mn + n)) line segments when calculating the visible region from
the evader turning point. Thus calculating R takes O(n(mn + n)log(n(mn + n))) time and R has
complexity O(mn?). O

Note that this method of computing Visible-Voronoi-Region allows computation of the pursuit-
evasion Voronoi diagram not only for ¢1, but for any distance metric where Bisector-Region results
in a polygonal region (though the complexity may be affected).

Theorem 2. The running time of the algorithm is at most O((n +m)?n*m3log(mn)).

Proof. Let a(n,m) be the cost of the computing the Visible-Voronoi-Region for an evader turning
point and m pursuers among obstacles with a total of n endpoints, and let 7(n,m) denote the
number of evader turning points.

The algorithm has 7(n,m) iterations, with each node of the shortest path tree being dequeued
from F' exactly once.

During each iteration, the region R := Visible-Voronoi-Region(p, S’) is computed in time a(n, m).
According to Lemma 3, R has size O(mn?). In line 5, it is necessary to compute the straight-line
distance between each vertex in R and every evader turning point currently in the shortest path
tree, which takes O(7(n, m)mn?) time. In line 4, we compute the straight-line distance between the
O(7(n, m)mn?) potential turning point locations in I and the new evader turning point p. Each
distance calculation checks for obstacle intersection and, hence, takes O(logn) time. In line 6,
the region € has complexity O((n + m)?(mn + m)) (by Theorem 1) and thus the update takes
O((n+m)?(mn+m)log(mn)) [5]. Therefore, the cost for each new evader turning point is at most
a(n,m) + O(r(n,m)mn?log(mn)) for a total cost of 7(n, m)(c(n, m) + O(7(n, m)mn?log(mn))).
By Lemmas 2 and 3, this total cost is no more than O((n + m)2n*m3 log(mn)). O

7 Conclusion

We show that, when using the ¢; distance metric, the size of the pursuit-evasion Voronoi diagram
for an evader is polynomial in the number of pursuers and obstacles, and we give a polynomial
time algorithm to compute this diagram. We use a variation of Dijkstra’s algorithm for computing
single source shortest paths to explore the plane, while computing regions reachable by the evader.
This allows us to consider the pursuers and the evader, each with their own starting point, starting
time, and speed, as well as line segment obstacles in the plane.

The pursuit-evasion Voronoi diagram describes the region for a single evader in the presence of
multiple pursuers. Given multiple evaders, the region reachable by all of the evaders is simply the
intersection of the regions reachable by each of the individual evaders separately.

Although the algorithm does not directly generalise to o — the curves in the ¢5 pursuit-evasion
Voronoi diagram would require the equivalent of an infinite number of evader turning points — we
can bound the /> diagram using the ¢; pursuit-evasion Voronoi diagram. Since \%61 distance < /o
distance < ¢; distance, computing the ¢ pursuit-evasion Voronoi diagram with the evader’s speed
multiplied by v/2 gives an evader region that contains the £ evader region. Similarly, multiplying
the pursuers’ speeds by /2 gives an ¢; evader region that is contained in the ¢5 evader region.

References

[1] Takao Asano and Tetsuo Asano. Voronoi diagram for points in a simple polygon. In Proceedings
of the Japan-US Joint Seminar, 1986, Discrete Algorithms and Complezity, pages 5164, 1987.

[2] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data structure.
ACM Computing Surveys, 23(3):345-405, September 1991.

[3] F. Aurenhammer and H. Edelsbrunner. An optimal aglorithm for constructing the weighted
Voronoi diagram in the plane. Pattern Recognition, 17:251-257, 1984.

10

[4]

[5]

[10]

[11]

[12]

Warren Cheung. Constrained pursuit-evasion problems in the plane. Master’s thesis, University
of British Columbia, September 2005.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational
geometry: algorithms and applications, pages 33—40. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, second, revised edition, 2000.

W. Randolph Franklin, Varol Akman, and Colin Verrilli. Voronoi diagrams with barriers and
on polyhedra for minimal path planning. The Visual Computer, 1(2):133-150, 1985.

Kei Kobayashi and Kokichi Sugihara. Crystal Voronoi diagram and its applications to collision-
free paths. In ICCS ’01: Proceedings of the International Conference on Computational
Sciences-Part I, pages 738-747, London, UK, 2001. Springer-Verlag.

T. Li and T. Yu. Planning tracking motions for an intelligent virtual camera. In Proc. IEEE
Int. Conf. on Robotics and Automation, pages 1353-1358, 1999.

Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial tessellations:
Concepts and applications of Voronoi diagrams, pages 128-138. Wiley & Sons, 1992.

Waldir L. Roque and Howie Choset. The green island formation in forest fire modeling with
Voronoi diagrams. Abstract for 8rd CGC Workshop on Computational Geometry, 1998.

Barry Schaudt. Multiplicatively Weighted Crystal Growth Voronoi Diagrams. PhD thesis,
Dartmouth College, 1992.

Barry Schaudt and Robert L. (Scot) Drysdale III. Multiplicatively weighted crystal growth
Voronoi diagrams (extended abstract). In Symposium on Computational Geometry, pages
214-223, 1991.

Subhash Suri and Joseph O’Rourke. Worst-case optimal algorithms for constructing visibility
polygons with holes. In SCG ’86: Proceedings of the second annual symposium on Computa-
tional geometry, pages 14-23, New York, NY, USA, 1986. ACM Press.

11

