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ABSTRACT

As computers are increasingly used in contexts where the
amount of available memory is limited, it becomes impor-
tant to devise techniques that reduce the memory footprint
of application programs while leaving them in an executable
form. This paper describes an approach to applying data
compression techniques to reduce the size of infrequently
executed portions of a program. The compressed code is
decompressed dynamically (via software) if needed, prior to
execution. The use of data compression techniques increases
the amount of code size reduction that can be achieved; their
application to infrequently executed code limits the runtime
overhead due to dynamic decompression; and the use of soft-
ware decompression renders the approach generally applica-
ble, without requiring specialized hardware. The code size
reductions obtained depend on the threshold used to deter-
mine what code is “infrequently executed” and hence should
be compressed: for low thresholds, we see size reductions of
13.7% to 18.8%, on average, for a set of embedded applica-
tions, without excessive runtime overhead.

1. INTRODUCTION

In recent years there has been an increasing trend towards
the incorporation of computers into a wide variety of de-
vices, such as palm-tops, telephones, embedded controllers,
etc. In many of these devices, the amount of memory avail-
able is limited, due to considerations such as space, weight,
power consumption, or price. For example, the widely used
TMS320-C5x DSP processor from Texas Instruments has
only 64 Kwords of program memory for executable code [23].
At the same time, there is an increasing desire to use more
and more sophisticated software in such devices, such as
encryption software in telephones, speech/image processing
software in palm-tops, fault diagnosis software in embedded
processors, etc. Since these devices typically have no sec-
ondary storage, an application that requires more memory
than is available will not be able to run. This makes it de-
sirable to reduce the application’s runtime memory require-
ments for both instructions and data — its memory footprint
— where possible. We focus in this work on reducing the
overall memory footprint by reducing the space required for
instructions.

The intuition underlying our work is very simple. Most
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programs obey the so-called “80-20 rule,” which states, in
essence, that most of a program’s execution time is spent in
a small portion of its code (see [17]); a corollary is that the
bulk of a program’s code is generally executed infrequently.
Our work aims at exploiting this aspect of programs by us-
ing compression techniques that yield smaller compressed
representations, but may require greater decompression ef-
fort at runtime, on infrequently executed portions of pro-
grams. The expectation is that the increased compression
for the infrequently executed code will contribute to a sig-
nificant improvement in the overall size reduction achieved,
but that the concomitant increase in decompression effort
will not lead to a significant runtime penalty because the
code affected by it is infrequently executed.

This apparently simple idea poses some interesting im-
plementation challenges and requires non-trivial design de-
cisions. These include the management of memory used to
hold decompressed functions (discussed in Section 2); the
design of an effective compression/decompression scheme so
that the decompressor code is small and quick (Section 3);
identification of appropriate units for compression and de-
compression (Section 4); as well as optimizations that im-
prove the overall performance of the system (Section 6). Our
work combines aspects of profile-directed optimization, run-
time code generation/modification, and program compres-
sion. We discuss other related work in Section 8.

2. THE BASIC APPROACH

2.1 Overview

The basic organization of code in our system is shown
in Figure 1. Consider a program with three infrequently
executed functions,' f, g and h, as shown in Figure 1(a).
The structure of the code after compression is shown in Fig-
ure 1(b). The code for each of these functions is replaced
by a stub (a very short sequence of instructions) that in-
vokes a decompressor whose job is to decompress the code
for a function into the runtime buffer and then to transfer
control to this decompressed code. A function offset table
specifies the location within the compressed code where the
code for a given function starts. The stub for each com-
pressed function passes an argument to the decompressor
that is an index into this table; this argument is indicated
in Figure 1(b) by the label ([0], [1], etc.) on the edge from
each stub to the decompressor. The decompressor uses this

!Our implementation uses a notion of “function” that is
somewhat more general than the usual connotation of this
term in source language programs. We discuss exactly what
constitutes such a “function” in Section 4.
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Figure 1: Code Organization: Before and After Compression

argument to index into the function offset table, retrieve
the start address of the compressed code for the appropri-
ate function, and start generating uncompressed executable
code into the runtime buffer. Decompression stops when the
decompressor encounters a sentinel (an illegal instruction)
that is inserted at the end of the code for each function. At
this point the decompressor (flushes the instruction cache,
then) transfers control to the code it has generated in the
runtime buffer. When this decompressed function finishes
its execution, it returns to its caller in the usual way. Since
the control transfers from the stubs to the decompressor,
and from the decompressor to the runtime buffer do not al-
ter the return address transmitted from the original call site,
no special action is necessary to return from a decompressed
function to its call site.

This method partitions the original program code into
two parts. Infrequently executed functions (such as f, g,
and h) are placed in a compressed code part, while fre-
quently executed functions remain in a never-compressed
part. The stub code that manages control transfers to com-
pressed functions must also lie in the never-compressed part.

It is important to note that when comparing the space
usage of the original and compressed programs, the latter
must take into account the space occupied by the stubs,
the decompressor, the function offset table, the compressed
code, the runtime buffer, and the never-compressed original
program code.

2.2 Buffer Management

The scheme described above is conceptually fairly straight-
forward but fails to mention several issues whose resolution
determines its performance. The most important of these is
the issue of function calls in the compressed code. Suppose
that in Figure 1, the code for f contains a call to g. Since
f is compressed, the call site is in the runtime buffer when
the call is executed. As described above, this call will be
to the stub for g, and the code for g will be decompressed
and executed as expected. What happens when g returns?
The return address points to the instruction following the
call in f. This is a problem: the instructions for £ were
overwritten when g was decompressed. The return address
points to a location in the runtime buffer that now contains
g’s code.

The question that we have to address, therefore, is: If a
function call is ezecuted from the runtime buffer, how can we
guarantee that the correct code will be executed when the call
returns? The answer to this question is inextricably linked
with the way we choose to manage the runtime buffer. We
have the following options for buffer management:

1. We may simply avoid the problem by refusing to com-
press any function whose body contains any function
calls, since these may result in a function call from
within the runtime buffer. We reject this option be-
cause it severely limits the amount of code that can be
subjected to compression.

2. We may choose to ensure that the decompressed code
for a function is never overwritten until after all func-
tion calls within its body have returned. The sim-
plest way to do this is never to discard the decom-
pressed code for a function. In this case, the com-
pressed code for a function is decompressed at most
once—the first time it is called—with subsequent calls
bypassing the decompressor and entering the decom-
pressed code directly. This conceptually resembles the
behavior of just-in-time compilers that translate inter-
pretable code to native code [1, 22].

An alternative is to discard the decompressed code for
a function when it is no longer on the call stack, since
at this point we can be certain that any function called
by it has returned to it already. This is the approach
taken by Lucco [19], though rather than immediately
discarding a function after execution, he caches the
function in the hope that it might be re-executed. The
Smalltalk-80 system also extracts an executable ver-
sion of a function from an intermediate representation
when the procedure is first invoked [8]. It caches the
executable code, and only discards it to prevent the
system from running out of memory.

The main drawback with this approach is that the run-
time buffer must be made large enough to hold all of
the decompressed functions that can possibly coexist
on the call stack. In the worst case, this is the entire
program. The resulting memory footprint — which in-
cludes the space needed for the runtime buffer as well
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Figure 2: Managing Function Calls Out of the Runtime Buffer.

as the stubs, the decompressor, and the function offset
table — will therefore be bigger than that of the orig-
inal program. This approach is therefore not suitable
for limited-memory devices.

3. When a decompressed function f calls a function g
from within the runtime buffer, we may choose to al-
low the decompressor to overwrite f’s code within the
buffer. This is the approach used in our implementa-
tion. This has the benefit that we only need a runtime
buffer large enough to hold the code for the largest
compressed function. As pointed out above, however,
this means that when the call from g returns, the run-
time buffer may no longer hold the correct instructions
for it to return to. This problem can be solved if we can
ensure that the code for f is restored into the runtime
buffer between the point where the callee g returns and
the point where control is transferred to the caller f.
We discuss below how this can be done.

Suppose that a function £ within the runtime buffer calls a
compressed function g. In our scheme, this causes the de-
compressor to overwrite £’s code in the buffer with g’s code.
For correctness, we have to restore f’s code to the buffer
after the call to g returns but before control is transferred
to the appropriate instruction within f. Since we don’t have
any additional storage area where f’s code could be cached,
restoring f’s code to the runtime buffer requires that it be
decompressed again. This means that when control returns
from g, it must first be diverted to the decompressor, which
can then decompress f and transfer control to it. The de-
compressor must also be given an additional argument spec-
ifying to where control should be transferred in the decom-
pressed function, since the program may (re-)enter f at some
instruction other than its entry point.

One option is to create a stub at compile time that con-
tains the function call to g followed by code to call the de-
compressor to restore f to the runtime buffer and transfer
control to the instruction after f’s call to g. This stub obvi-
ously cannot be placed in the runtime buffer, since it may be
overwritten there; it must be placed in the never-compressed
portion of the program. Since every call from a compressed
function requires its own stub, these restore stubs amount

to a large fraction of the final executable’s size (e.g., if we
only compress code that is never executed during profiling,
we create restore stubs that occupy 13%, on average, and
for some programs 20% of the never-compressed code; if we
compress code that accounts for at most 1% of the instruc-
tions executed during profiling, the average percentage rises
to 27%).

Rather than creating all restore stubs at compile time,
we instead create at runtime, when g is called, a temporary
restore stub that exists only until g returns. The transfer to
g is prefaced with code that generates the restore stub and
makes the return address of the original call point to this
stub. Then an unconditional jump or branch is made to g.

If every control transfer from compressed code created a
restore stub, we would, in effect, be maintaining a call stack
of calls from compressed code. If the compressed code is
recursive, this could require an arbitrarily large amount of
additional space. Instead, we create only one restore stub
for a particular call site in compressed code and maintain a
usage count for that restore stub to determine when the stub
is no longer needed. When asked to create a restore stub,
we first check to see if a stub for that call site already exists
and, if it does, increase its usage count and use its address
for the return address; otherwise we create a new restore
stub with usage count equal to 1. In effect, this implements
a simple reference-count-based garbage collection scheme for
restore stubs. The text area of memory for a program now
conceptually consists of three parts: the never-compressed
code; the runtime stub list; and the runtime decompression
buffer (Figure 2(b)).

On return from g, the restore stub invokes the decompres-
sor which recognizes that it has been called by a restore stub,
decrements the stub’s usage count, restores f to the runtime
buffer, and transfers control to the appropriate instruction.

This runtime scheme never creates more restore stubs
than the compile-time scheme, though it does require an
additional 8 bytes per stub in order to maintain the count.
In fact, the maximum number of restore stubs that exist at
one time in our test suite is 9 for a very aggressive profile
threshold of 8 = 0.01, i.e., where the code considered for
compression accounts for 1% of the total dynamic instruc-
tion count of the profiled program (see Section 5).



Figure 2 illustrates how this is done. Figure 2(a) shows
a function f whose body contains a function call, at call-
site cs0, that calls g. The instruction ‘bsr r, Label’ puts
the address of the next instruction (the return address) into
register r and branches to Label. Callsite cs0 is at offset 96
within the body of £ (relative to the beginning of £’s code),
and the return address it passes to its callee is that of the fol-
lowing instruction, which is at offset 97. Figure 2(b) shows
the result of transforming this code so that the decompressor
is called when the call to g returns. The function call to g at
cs0 is replaced by a function call to CreateStub using the
same return address register $ra. CreateStub creates a re-
store stub for this call site (or uses the existing restore stub
for this call site if it exists) and changes $ra to contain the
stub’s address. It then transfers control to an unconditional
branch at offset 97 that transfers control to g. Note that the
single original instruction bsr $ra, g becomes two instruc-
tions in the runtime buffer. To save space in the compressed
code, these two instructions are created by the decompressor
from the single bsr $ra, g when filling the runtime buffer.

When g returns, the instructions in the restore stub are
executed. This causes the decompressor to be invoked with
the argument pair <index(f), 98>, where index(f) is f’s
index within the function offset table, and 98 is the offset
within f’s code where control should be transferred after
decompression. The overall effect is that when control re-
turns from the function call, £’s code is decompressed, after
which control is transferred to the instruction following the
function call in the original code.

It is important to note that, in the scheme described
above, the call stack of the original and compressed pro-
gram are exactly the same size at any point in the program’s
execution. In fact, there is no need to modify the return se-
quence of any function. A function g may be called from
either the runtime buffer or never-compressed code and, in
general, may have call sites in both. If the call site is in a
never-compressed function, CreateStub is not invoked and
g returns to the instruction following the call instruction in
the usual way. If the call site is in compressed code, then
the return address passed to g is that of the corresponding
restore stub, and control transfers to this stub when g re-
turns. It is not hard to see, in fact, that the control transfers
happen correctly regardless of how g uses the return address
passed to it: for example, g may save this address in its en-
vironment at entry and restore it on exit; or keep it in a
register, if it is a leaf function; or pass the return address to
some other function, if tail-call optimization is carried out.

In some cases, such as when longjmp transfers control
into a function, a function may be returned from without a
corresponding call. This means that the usage count for the
callsite’s restore stub may be inaccurate or, even worse, the
restore stub may no longer exist. For this reason, we do not
permit functions that call setjmp to be compressed.

2.3 Decompressor Interface

The decompressor is invoked with two arguments: an in-
dex in the function offset table, indicating the function to be
decompressed; and an offset in the runtime buffer, indicat-
ing the location in the runtime buffer where control should
be transferred after decompression. Rather than pass these
arguments to the decompressor in a register, we put them
in a dummy instruction, called a tag, that follows the call
to the decompressor: the low 16 bits contain the offset and
the high 16 bits the function index. Since the decompressor

never returns to its caller (instead it transfers control to the
function it decompresses into the runtime buffer), this “in-
struction” is never executed. We can, however, access it via
the return address set by the call to the decompressor.
Various registers may be used as the return address reg-
ister on a call to the decompressor. For a restore stub, the
register that was used in the original call instruction can be
used; it is guaranteed to be free. For an entry stub, any free
register will do. (If no register is free, we push the value
of a register $ra, use $ra, and then restore it at the end of
the decompressor.) The decompressor, however, must know
which register contains the return address when it is called.
‘We accomplish this by giving the decompressor multiple en-
try points, one per possible return address register. The
entry point for register r pushes r onto the stack and then
jumps to the body of the decompressor. The decompressor
now knows that the return address is at the top of the stack.
The decompressor then

1. saves all registers that it will use on the stack,

2. places an instruction at the start of the runtime buffer
that unconditionally jumps to the offset provided by
the tag,

3. fills the rest of the runtime buffer by decompressing
the function indicated by the tag,

4. restores all saved registers, and

5. unconditionally jumps to the start of the runtime buffer
(which immediately jumps to the appropriate offset).

By creating the unconditional jump instruction in the run-
time buffer, we avoid the need for a register to do the con-
trol transfer from the end of the decompressor to the offset
within the runtime buffer. We insert one other instruction
before this jump instruction that sets the return register to
the address of a restore stub (when creating a stub) or re-
stores $ra (when an entry stub has no free register). We
note that CreateStub and Decompress are contained in the
same function. This saves having multiple entry points (one
per possible return address register) in two functions, and
it is easy to determine from the return address whether the
function was called from inside the runtime buffer (when it
should act as CreateStub) or outside (when it should act as
Decompress).

3. COMPRESSION & DECOMPRESSION

Our primary consideration in choosing a compression scheme
is minimizing the size of the compressed functions. We
would like to achieve good compression even on very short
sequences of instructions since the functions we may want
to compress can be very small. A second consideration is
the size of the decompressor itself since it becomes part of
the memory footprint of the program. Finally, the decom-
pressor must be fast since it is invoked every time control
transfers to a compressed function that is not already in
the runtime buffer. Since the functions that we choose to
compress have a low execution count, we don’t expect to in-
voke the decompressor too often during execution. A faster
decompressor, however, means we can tolerate the compres-
sion of more frequently executed code which, in turn, leads
to greater compression opportunities.

The compression technique that we use is a simplified ver-
sion of the “splitting streams” approach [9]. The data to be



compressed consists of a sequence of machine code instruc-
tions. Each instruction contains an opcode field and several
operand fields, classified by type. For example, in our test
platform, a branch instruction consists of a 6-bit opcode
field, a 5-bit register field, and a 21-bit displacement field
[2]. In order to compress a sequence of instructions, we first
split the sequence into separate streams of values, one per
field type, by extracting, for each field type, the sequence
of field values of that type from successive instructions. We
then compress each stream separately. For our test plat-
form, we split the instructions into 15 streams. Note that
no instruction contains all 15 field types.

To reconstruct the instruction sequence, we decompress
an opcode from the opcode stream. This tells us the field
types of the instruction, and we obtain the field values from
the corresponding streams. We repeat this process until the
opcode stream is empty.

We compress each stream by encoding each field value in
the stream using a Huffman code that is optimal for the
stream. This is a two-pass process. The first pass calculates
the frequency of the field values and constructs the Huffman
code. The second pass encodes the values using the code.
Since the Huffman code is designed for each stream, it must
be stored along with the encoded stream in order to permit
decompression.

We use a variant of Huffman encoding called canonical
Huffman encoding that permits fast decompression yet uses
little memory [5]. Like a Huffman code, a canonical Huffman
code is an optimal character-based code (the characters in
this case are the field values). In fact, the length of the
canonical Huffman codeword for a character is the same as
the length of the Huffman codeword for that character. Thus
the number N3] of codewords of length ¢ in both encodings
is the same. The codewords of length 7 in the canonical
Huffman code are the NTi], i-bit numbers b;, b; +1,...,b; +
Nli] — 1 where by = 0 and b; = 2(b;j—1 + N[i — 1]) for ¢ > 2.

For example, if N[2] = 3, N[3] = 1, and N[5] = 4 (and
NTi] = 0 otherwise) then

b1 =0, by =0, bs =6, by = 14, bs = 28
and the codewords are
00,01, 10,110, 11100, 11101, 11110, 11111.

Notice that the codewords are completely determined given
the number of codewords of each length, i.e., the N[i]’s.

We store the n characters to be encoded in an array
D[0...n — 1] ordered by their codeword value. The ad-
vantage of the canonical Huffman code is that a codeword
can be rapidly decoded using the arrays N[¢] and D[j].

DECODE()
v 0,00,7+0,2«<0
do
v + 2v + NEXTBIT()
b« 2(b+ NI[i))
j 4§+ NI[i|
1 1+1
while (v > b+ NJi])
return D[j + v — b]

The compressed program consists of the codeword se-
quence, code representation (the array NJi]), and value list
(the array D[j]) for each stream. In fact, since every in-
struction begins with an opcode that completely specifies
the remaining fields of the instruction, we can merge the

codeword sequences of the individual streams into one se-
quence. We simply interpret the first bits of the codeword
sequence using the Huffman code for the opcode stream, and
use the decoded opcode to specify the appropriate Huffman
codes to use for the remaining fields. For example, when de-
coding a branch instruction, we would read a codeword from
the sequence using first the opcode code, then the register
code, and finally the displacement code. The total space
required by the compressed program is approximately 66%
of its original size.

We can achieve somewhat better compression for some
streams using move-to-front coding prior to Huffman coding.
This has the undesirable affect of increasing the code size
and running time of the decompression algorithm. Other
approaches that decompress larger parts of an instruction,
or multiple instructions, in one decompression operation
may result in better and faster decompression, but these
approaches typically require a more complex decompression
algorithm, or one that requires more space for data struc-
tures.

4. COMPRESSIBLE REGIONS

The “functions” that we use as a unit of compression and
decompression may not agree with the functions specified by
the program. It is often the case that a program-specified
function will contain some frequently-executed code that
should not be compressed, and some infrequently-executed
(cold) code that should be compressed. If the unit of com-
pression is the program-specified function then the entire
function cannot be compressed if it contains any code that
cannot be considered for compression. As a result, the
amount of code available for compression may be signifi-
cantly less than the total amount of cold code in the pro-
gram.

In addition, the runtime buffer must be large enough to
hold the largest decompressed function. A single large func-
tion may often account for a significant fraction of the cold
code in a program. Having a runtime buffer large enough
to contain this function can offset most of the space-savings
due to compression.

To address this issue, we create “functions” from arbi-
trary code regions and allow these regions to be compressed
and decompressed. This means that control transfers into
and out of a compressed region of code may no longer fol-
low the call/return model for functions. For example, we
may have to contend with a conditional branch that goes
from one compressed region of code to another, different,
compressed region. Since the runtime buffer holds the code
of at most one such region at any time, a branch from one
region to another must now go through a stub that invokes
the decompressor. This is not a terrible complication. A
compressed region might have multiple entry points, each
of which requires an entry stub, but in all other ways it
is the same as an original function. For instance, function
calls from within a compressed region are still handled as
discussed in Section 2.

We now face the problem of how to choose regions to
compress. We want these regions to be reasonably small so
that the runtime buffer can be small, yet we want few control
transfers between different regions so that the number of
entry stubs is small. This is an optimization problem. The
input is a control flow graph G = (V, E) for a program
in which a vertex b represents a basic block and has size |b|
equal to the number of instructions in the block, and an edge



120 1204

1.10 - 1104

1.004

3
8
I

0.90 -

Normalized code size
°
8
I

Normalized code size

o

2

8
I

Normalized code size

N
S
]

H

B

5
I

3
8
I

o

g

8
I

o

*

8
I

o
3
3

o
3
3

EA 64 128 256 512 1024 2048 4096 £ 64 128

Buffer sizebound

(a) 6 =0.0

1.00

0.90 +

0.80 -

Normalized code size

0.70
£ 64 128 256 512 1024 4096

Buffer size bound

2048

(d) mean

256 512
Buffer size bound

—%— 0.0
—a— 0.00001
—a— 0.00005

1024

(b) 6 = 0.00001

2048

409

Key:

256 sl2 1024
Buffer size bound

(c) 6 = 0.00005

adpem
epic
9721 _dec
g721_enc
gsm
jpeg-dec
Jjpeg_enc

mpeg2dec
mpeg2enc
pgp

rasta

e e A0 Ot

Figure 3: Effect of Buffer Size Bound on Code Size

(a,b) represents a control transfer from a to b. In addition,
the input specifies a subset U of the vertices that can be
compressed. The output is a partition of a subset S of the
compressible vertices U into regions Ri, Ro, ..., Ry so that
the following cost is minimized:

> bl

never-compressed code

beEV\S
k
+ Z s(Ri) compressed code
i=1
+ k function offset table
+ 2|Y| entry stubs

runtime buffer

+ m?X{Ci + Z b/}

bER;

where s(R;) is the size of the region R; after compression,
Y is the set of blocks requiring an entry stub, i.e.,

Y ={b:(a,b) € E,b € R;, and a ¢ R; for some i},

the constant 2 is the number of words required for an entry
stub, and ¢; is the number of external function calls within
R; (the decompressor creates an additional instruction for
each such call). Note that we have not included the size
of the restore stub list (calculating its size, even given a
partition, is an NP-hard problem).

In practice, we cannot afford to calculate s(R) for all pos-
sible regions R, so we assume that a fixed compression fac-

tor of y < 1 applies to all regions (i.e., s(R) =7,z b))
Unfortunately, the resulting simplified problem is NP-hard
(PARTITION reduces to it). We resort to a simple heuristic
to choose the compressible regions.

We first decide which basic blocks can be compressed.
Our criteria for this decision are discussed in more detail
in Section 5. We also fix an upper bound K on the size of
the runtime buffer (our current implementation uses an em-
pirically chosen value of K = 512 bytes; this is determined
as described below). We create an initial set of regions by
performing depth-first search in the control flow graph. We
limit the depth-first search so that it produces a tree that
contains at most K instructions and is composed of com-
pressible blocks from a single function. If it is profitable to
compress the set of blocks in the tree, we make this tree
a compressible region; otherwise, we mark the root of the
tree so that we never re-initiate a depth-first search from it
(though it might be visited in a subsequent depth-first search
starting from a different block). We continue the depth-first
search until all compressible blocks have been visited.

To decide if a region containing I instructions is profitable
to compress, we compare (1 — «y)I, the number of instruc-
tions saved by compressing the region, with the number of
instructions E added for entry stubs. If E < (1 —)I, the
region is profitable to compress.

As mentioned above, we use an empirically determined
upper bound K on the size of the runtime buffer to guide
the partitioning of functions into compressible regions. If
we choose too small a value for K, we get a large num-
ber of small compressible regions, with a correspondingly
large number of entry stubs and function offset table entries.



These tend to offset the space benefits of having a small run-
time buffer, resulting in a large overall memory footprint. If
the value of K is too large, we get a smaller number of dis-
tinct compressible regions and function offset table entries,
but the savings there are offset by the space required for the
runtime buffer. Our empirical observations of the variation
of overall code size, as K is varied, are shown in Figure 3, for
three different thresholds € of cold code as well as the mean
for each of these thresholds (other values of 6 yield similar
curves). It can be seen that, for these benchmarks at least,
the smallest overall code size is obtained at K = 256 and
K = 512; we prefer the latter value because the larger run-
time buffer means that we get somewhat larger regions and
correspondingly fewer inter-region control transfers; this re-
sults in fewer calls to the decompressor at runtime and yields
somewhat better performance.

The partition obtained by depth-first search, in practice,
typically contains many small regions. This is partly due to
the presence of small functions in user and library code, and
partly due to fragmentation. This incurs overheads from
two sources: first, each compressible region requires a word
in the function offset table; and second, inter-region con-
trol transfers require additional code in the form of entry or
restore stubs to invoke the decompressor. These overheads
can be reduced by packing several small regions into a single
larger one that still contains at most K instructions.

To pack regions, we start with the set of regions created
by the depth-first search and repeatedly merge the pair that
yields the most savings (without exceeding the instruction
bound K) until no such pairs exist. For the pair of regions
{R,R'} (and for R swapped with R’ in the following), we
save an entry stub for every basic block in region R that has
incoming edges from R’ (and possibly from R) but from no
other region. For every call from region R to R', we save a
restore stub. We may also save a jump instruction for every
fall-through edge from region R to R'.

In principle, the packing of regions in this way involves
a space-time tradeoff: packing saves space, but since each
region is decompressed in its entirety before execution, the
resulting larger regions incur greater decompression cost at
runtime. However, given that only infrequently-executed
code is subjected to runtime decompression, the actual in-
crease in runtime cost is not significant.

5. IDENTIFYING COLD CODE

The discussion so far has implicitly assumed that we have
identified portions of the program as “cold” and, therefore,
candidates for compression. The determination of which
portions of the program are cold is carried out as follows.
We start with a threshold 6, 0.0 < 6 < 1.0, that specifies
the maximum fraction of the total number of instructions
executed at runtime (according to the execution profile for
the program) that cold code can account for. Thus, 8 = 0.25
means that all of the code identified as cold should account
for at most 25% of the total number of instructions executed
by the program at runtime.

Let the weight of a basic block be the number of instruc-
tions in the block multiplied by its execution frequency, i.e.,
the block’s contribution to the total number of instructions
executed at runtime. Let tot_instr_ct be the total number of
instructions executed by the program, as given by its execu-
tion profile. Given a value of 8, we consider all basic blocks
b in the program in increasing order of execution frequency,
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Figure 4: Amount of Cold and Compressible Code
(Normalized)

and determine the largest execution frequency NN such that

Z weight(b) <

b:freq(b)< N

0 - tot_instr_ct.

Any basic block whose execution frequency is at most N is
considered to be cold.

Figure 4 shows (the geometric mean of) the relative amount
of cold and compressible code in our programs at different
thresholds. It can be seen, from Figure 4, that the amount
of cold code varies from about 73% of the total code, on av-
erage, when the threshold § = 0.0 (where only code that is
never executed is considered cold) to about 94% at 6 = 0.01
(the cold code accounts for 1% of the total number of in-
structions executed by the program at runtime), to 100%
at # = 1.0. However, not all of this cold code can be com-
pressed: the amount of compressible code varies from about
69% of the program at § = 0.0 to about 90% at 6 = 0.01, to
about 96% at 6 = 1.0. The reason not all of the cold code is
compressible, at any given threshold, is that, as discussed in
Section 4, a region of code may not be considered for com-
pression even if it is cold, because it is not profitable to do
S0.

6. OPTIMIZATIONS

6.1 Buffer-Safe Functions

As discussed earlier, function calls within compressed code
cause the creation, during execution, of a restore stub and
an additional instruction in the runtime buffer. This over-
head can be avoided if the callee is buffer-safe, i.e., if it
and any code it might call will not invoke the decompressor.
If the callee is buffer-safe, then the runtime buffer will not
be overwritten during the callee’s execution, so the return
address passed to the callee can be simply the address of
the instruction following the call instruction in the runtime
buffer: there is no need to create a stub for the call or to
decompress the caller when the call returns. In other words,
a call from within a compressed region to a buffer-safe func-
tion can be left unchanged. This has two benefits: the space
cost associated with the restore stub and the additional run-
time buffer instruction is eliminated, and the time cost for
decompressing the caller on return from the call is avoided.

We use a straightforward iterative analysis to identify
buffer-safe functions. We first mark all regions that are
clearly not buffer-safe: i.e., those that have been identified as
compressible, and those that contain indirect function calls



Program Profiling Input Timing Input
file name | size (KB) file name | size (KB)

adpem clinton.pcm 295.0 mlk THaveADream.pcm 1475.2
clinton.adpcm 73.8 mlk THaveADream.adpcm 182.1
epic baboon.tif 262.4 baboon.tif 262.4
lena.tif 262.4
9721_dec clinton.g721 73.8 mlk THaveADream.g721 368.8
g721_enc clinton.pcm 295.0 mlk THaveADream.pcm 1475.2
gsm clinton.pcm 295.0 mlk THaveADream.pcm 1475.2
Jpeg_dec testimg.jpg 5.8 rosesl7.jpg 25.1
Jjpeg_end testimg.ppm 101.5 rosesl7.ppm 681.1
mpeg2dec sarnoff2.m2v 102.5 tceh_v2.m2v 2310.7
mpeg2enc sarnoff2.m2v 102.5 tceh_v2.m2v 2310.7
pgp compression.ps 717.2 TI-320-user-manual.ps 8456.6
rasta ex5_cl.wav 17.0 phone.pcmle. wav 83.7

Figure 5: Inputs used for profiling and timing runs
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Figure 6: Code Size Reduction due to Profile-Guided Code Compression at Different Thresholds

whose possible targets may include non-buffer-safe regions.
This information is then propagated iteratively to other re-
gions: if R is a region marked as non-buffer-safe, and R’
is a region from which control can enter R—either through
a function call or via a branch operation—then R’ is also
marked as being non-buffer-safe. This is repeated until no
new region can be marked in this way. Any region that is
left unmarked at the end of this process is buffer-safe.

For the benchmarks we tested, this analysis identifies on
the average, about 12.5% of the compressible regions as

buffer-safe; the gsm and ¢721_enc benchmarks have the largest

proportion of buffer-safe regions, with a little over 20% and
19%, respectively, of their compressible regions inferred to
be buffer-safe.

6.2 Unswitching

If a code region contains indirect jumps through a jump
table, it is necessary to process any such code to ensure that

runtime control transfers within the decompressed code in
the runtime buffer are carried out correctly. We have two
choices: we can either update the addresses in the jump ta-
ble to point into the runtime buffer, at the locations where
the corresponding targets would reside when the region is
decompressed; or we can “unswitch” the region to use a
series of conditional branches instead of an indirect jump
through a table. Note that in either case, we have to know
the size of the jump table: in the context of a binary rewrit-
ing implementation such as ours, this may not always be
possible. If we are unable to determine the extent of the
jump table, the block containing the indirect jump through
the table and the set of possible targets of this jump must
be excluded from compression. For the sake of simplicity,
our current implementation uses unswitching to eliminate
the indirect jump, after which the space for the jump table
can be reclaimed.



7. EXPERIMENTAL RESULTS

Our ideas have been implemented in the form of a binary-
rewriting tool called squash that is based on squeeze, a com-
pactor of Compaq Alpha binaries [7]. Squeeze is based on
alto, a post-link-time code optimizer [20]. Squeeze alone
compacts binaries that have already been space optimized
by about 30% on average. Squash, using the runtime decom-
pression scheme outlined in this paper, compacts squeezed
binaries by about another 14-19% on average.

To evaluate our work we used eleven embedded applica-
tions from the MediaBench benchmark suite (available at
www.cs.ucla.edu/~leec/mediabench): adpcm, which does
speech compression and decompression; epic, an image data
compression utility; ¢721_dec and ¢721_enc, which are refer-
ence implementations from Sun Microsystems of the CCITT
G.721 voice compression decoder and encoder; gsm, an im-
plementation of the European GSM 06.10 provisional stan-
dard for full-rate speech transcoding; jpeg_dec and jpeg_enc,
which implement JPEG image decompression and compres-
sion; mpeg2dec and mpeg2enc, which implement MPEG-2
decoding and encoding respectively; pgp, a popular crypto-
graphic encryption/decryption program; and rasta, a speech-
analysis program. The inputs used to obtain the execution
profiles used to guide code compression, as well as those used
to evaluate execution speed (Figure 7(b)), are described in
Figure 5: the profiling inputs refer to those used to ob-
tain the execution profiles that were used to carry out com-
pression, while the timing inputs refer to the inputs used
to generate execution time data for the uncompressed and
compressed code. Details of these benchmarks are given in
the Appendix.

These programs were compiled using the vendor-supplied
C compiler ¢c V5.2-036, invoked as cc -01, with additional
flags instructing the linker to retain relocation information
and to produce statically linked executables.? The vendor-
supplied compiler cc produces the most compact code at op-
timization level -01: it carries out local optimizations and
recognition of common subexpressions; global optimizations
including code motion, strength reduction, and test replace-
ment; split lifetime analysis; and code scheduling; but not
size-increasing optimizations such as inlining; integer multi-
plication and division expansion using shifts; loop unrolling;
and code replication to eliminate branches.

The programs were then compacted using squeeze. Squeeze
eliminates redundant, unreachable, and dead code; performs
interprocedural strength reduction and constant propaga-
tion; and replaces multiple similar program fragments with
function calls to a single representative function (i.e., it per-
forms procedural abstraction). Squeeze is very effective at
compacting code. If we start with an executable produced
by cc -01 and remove unreachable code and no-op instruc-
tions, squeeze will reduce the number of instructions that
remain by approximately 30% on average.

The remaining instructions were given to squash along
with profile information obtained by running the original
executable on sample inputs to obtain execution counts for
the program’s basic blocks. Squash produces an executable
that contains never-compressed code, entry stubs, the func-
tion offset table, the runtime decompressor, the compressed

2The requirement for statically linked executables is a re-
sult of the fact that alto relies on the presence of relocation
information to distinguish addresses from data. The Tru64
Unix linker 1d refuses to retain relocation information for
executables that are not statically linked.

code, the buffer used to hold dynamically generated stubs,
and the runtime buffer. All of this space is included in the
code size measurement of squashed executables.

Figure 6 shows how the amount of code size reduction ob-
tained using profile-guided compression varies with the cold
code threshold . With § = 0.0, only code that is never
executed is considered to be cold; in this case, we see size
reductions ranging from 9.0% (g721_enc) to 22.1% (pgp),
with a mean reduction of 13.7%. The size reductions ob-
tained increase as we increase 6, which makes more and more
code available for compression. Thus, at § = 0.00001 we
have size reductions ranging from 12.1% (adpcm) to 23.7%
(pgp), with a mean reduction of 16.8%. At the extreme, with
0 = 1.0, i.e., all code considered cold, the code size reduc-
tions range from 21.5% (adpcm) to 31.8% (pgp), with a mean
of 26.5%. It is noteworthy that much of the size reductions
are obtained using quite low thresholds, and that the rate
at which the reduction in code size increases with 6 is quite
small. For example, increasing 6 by five orders of magnitude,
from 0.00001 to 1.0, yields only an additional 10% benefit in
code size reduction. However, as 0 is increased, the runtime
overhead associated with repeated dynamic decompression
of code quickly begins to make itself felt. Our experience
with this set of programs (and others) indicates that beyond
6 = 0.0001 the runtime overhead becomes quite noticeable.
To obtain a reasonable balance between code size improve-
ments and execution speed, we focus on values of § up to
0.00005.

Execution time data were obtained on a workstation with
a 667 MHz Compaq Alpha 21264 EV67 processor with a
split two-way set-associative primary cache (64 Kbytes each
of instruction and data cache) and 512 MB of main memory
running Tru64 Unix. In each case, the execution time was
obtained as the smallest of 10 runs of an executable on an
otherwise unloaded system.

Figure 7 examines the performance of our programs, both
in terms of size and speed, for § ranging from 0.0 to 0.00005.
The final set of bars in this figure shows the mean values for
code size reduction and execution time, respectively, relative
to squeezed code; the number at the top of each bar gives
the actual value of the geometric mean for that case. It can
be seen that at low cold-code thresholds, the runtime over-
head incurred by profile-guided code compression is small:
at § = 0.0 the compressed code is about the same speed, on
average, as the code without compression; at § = 0.00001
we incur an average execution time overhead of 4%; and at
0 = 0.00005 the average overhead is 24%. Given the cor-
responding size reductions obtained—ranging from 13.7%
to 18.8%—these overheads do not seem unreasonably high.
(Note that these reductions in size are on top of the roughly
30% code size reduction we obtain using our prior work on
code compaction [7].)

It is important to note, in this context, that the execution
speed of compressed code can suffer dramatically if the tim-
ing inputs, i.e., inputs used to measure “actual” execution
speed, cause a large number of calls to the decompressor.
This can happen for two reasons. First, a code fragment
that is cold in the profile may occur in a cycle, which can
be either a loop within a procedure, or an inter-procedural
cycle arising out of recursion. Second, the region partition-
ing algorithm described in Section 4 may split a loop into
multiple regions. In either case, if the loop or cycle is ex-
ecuted repeatedly in the timing inputs, the repeated code
decompression can have a significant adverse effect on exe-
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cution speed. An example of the first situation occurs in the
SPECint-95 benchmark /i, where an interprocedural cycle,
that is never executed in the profile, is executed many times
with the timing input. An example of the second situation
occurs in the benchmark mpeg2dec when the runtime buffer
size bound K is small (e.g., K = 128).

8. RELATED WORK

Our work combines aspects of profile-directed optimiza-
tion, runtime code generation/modification, and program
compression. Dynamic optimization systems, such as Dy-
namo [4], collect profile information and use it to generate
or modify code at runtime. These systems are not designed
to minimize the memory footprint of the executable, but
rather to decrease execution time. They tend to focus opti-
mization effort on hot code, whereas our compression efforts
are most aggressive on cold code.

More closely related is the work of Hoogerbrugge et al.,
who compile cold code into interpreted byte code for a stack-
based machine [14]. By contrast, we use Huffman coding to
compress cold code, and dynamically uncompress the com-
pressed code at runtime as needed. Thus, our system does
not incur the memory cost of a byte-code interpreter.

There has been a significant amount of work on archi-
tectural extensions for the execution of compressed code:
examples include Thumb for ARM processors [3], CodePack

for PowerPC processors [15], and MIPS16, for MIPS proces-
sors [16]. Special hardware support is used to expand each
compressed instruction to its executable form prior to exe-
cution. While such an approach has the advantage of not
incurring the space overheads for control stubs and time
overheads for software decompression, the requirement for
special hardware limits its general applicability. Lefurgy et
al. describe a hybrid system where decompression is carried
out mostly in software, but with the assistance of special
hardware instructions to allow direct manipulation of the
instruction cache [18]; decompression is carried out at the
granularity of individual cache lines.

Previous work in program compression has explored the
compressibility of a wide range of program representations:
source programs, intermediate representations, machine codes,
etc. [24]. The resulting compressed form either must be de-
compressed (and perhaps compiled) before execution [9, 10,
11] or it can be executed (or interpreted [13, 21]) without
decompression [6, 12]. The first method results in a smaller
compressed representation than the second, but requires the
time and space overhead of decompression before execution.
We avoid requiring a large amount of additional space to
place the decompressed code by choosing to decompress
small pieces of the code on demand, using a single, small
runtime buffer. Similar techniques of partial decompression
and decompression-on-the-fly have been used under similar



situations [9, 19], but these techniques require altering the
runtime operation or the hardware of the computer.

Most of the earlier work on code compression to yield
smaller executables treated an executable program as a sim-
ple linear sequence of instructions, and used a suffix tree
construction to identify repeated code fragments that could
be abstracted out into functions [6, 12]. We have recently
shown that it is possible to obtain results that are as good,
or better, by using aggressive inter-procedural size-reducing
compiler optimizations applied to the control flow graph of
the program, instead of using a suffix-tree construction over
a linear sequence of instructions [7].

9. CONCLUSIONS AND FUTURE WORK

We have described an approach to use execution profiles
to guide code compression. Infrequently executed code is
compressed using data compression techniques that produce
compact representations, and is decompressed dynamically
prior to execution if needed. This has several benefits: the
use of powerful compression techniques allows significant im-
provements in the amount of code size reduction achieved;
for low execution frequency thresholds the runtime over-
heads are small; and finally, no special hardware support
is needed for runtime decompression of compressed code.
Experimental results indicate that, with the proper choice
of cold code thresholds, this approach can be effective in
reducing the memory footprint of programs without signif-
icantly compromising execution speed: we see code size re-
ductions of 13.7% (# = 0.0) to 18.8% (6 = 0.00005), on
average, for a set of embedded applications, relative to the
code size obtained using our prior work on code compaction
[7]; the concomitant effect on execution time ranges from
a very slight speedup for § = 0.0 to a 27% slowdown, on
average, for 8 = 0.00005.

We are currently looking into a number of ways to en-
hance this work further. These include other algorithms for
compression/decompression, as well as other algorithms for
constructing compressible regions within a program.
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APPENDIX. BENCHMARK DATA

Our benchmarks are taken from the MediaBench bench-
mark suite, available at http://www.cs.ucla.edu/"leec/
mediabench. We used the following programs: adpcm, which
does speech compression and decompression; epic, an im-
age data compression utility; ¢721_dec and ¢721_enc, which
are reference implementations from Sun Microsystems of
the CCITT G.721 voice compression decoder and encoder;
gsm, an implementation of the European GSM 06.10 pro-
visional standard for full-rate speech transcoding; jpeg_dec
and jpeg_enc, which implement JPEG image decompression
and compression; mpeg2dec and mpeg2enc, which implement
MPEG-2 decoding and encoding respectively; pgp, a popular
cryptographic encryption/decryption program; and rasta, a
speech-analysis program. Table 1 gives the number of in-
structions in each program: the second column, labeled “In-
put,” gives the number of instructions in the input program
after the initial elimination of unreachable code and noops;
the third column, labeled “Squeeze”, gives the number of
instructions after the application of our earlier code com-
paction tool, squeeze. The performance data given in this
paper are relative to the third column of this table.

The inputs used to obtain the execution profiles used to
guide code compression, as well as those used to evaluate
execution speed, are described in Figure 5: the profiling in-
puts refer to those used to obtain the execution profiles that
were used to carry out compression, while the timing inputs
refer to the inputs used to generate execution time data for
the uncompressed and compressed code. These input files
are as follows. The various mlk IHaveADream.* files were
derived from the file oblakhsO11ul.wav, a 728.6 KB audio
file of a speech by Martin Luther King Jr., obtained from
http://www.britannica.com/blackhistory/audiov.html.
The MPEG-2 files sarnoff2.m2v and tceh_v2.m2v, used
for the benchmarks mpeg2dec and mpeg2enc, were obtained
from http://bmrc.berkeley.edu/ftp/pub/mpeg/movies/

bitstreams/video/. The file compression.ps is PostScript
for the paper [7], obtained using latez2e and dvi2ps, while
the file TI-320-user-manual . ps is PostScript for a user man-
ual for the TI-320 processor, obtained from the Texas Instru-
ments web site. The various clinton.* files, as well as the
file ex5_cl.wav, were obtained as part of the Mediabench
distribution.



