
CCCG 2011, Toronto ON, August 10–12, 2011

The Possible Hull of Imprecise Points∗

William Evans† Jeff Sember†

Abstract

We pose the problem of constructing the possible hull
of a set of n imprecise points: the union of convex hulls
of all sets of n points, where each point is constrained
to lie within a particular region of the plane. We give
an optimal algorithm for the case when n = 2, and the
regions are a point and a simple (possibly nonconvex)
polygon. We then describe how the algorithm leads to
an optimal algorithm for the case when n ≥ 2, and each
region is a simple polygon.1

1 Introduction

Let S = {s1, . . . , sn} be a planar point set.2 If we
are not given the locations of these points, but are
told only that each point si lies within a particular re-
gion of uncertainty Ri, then the points are imprecise.
The convex hull of a set of imprecise points cannot
be determined since it is one of possibly many feasi-
ble hulls (each of which is the convex hull of a feasible
set {s1 ∈ R1, . . . , sn ∈ Rn}).

Kreveld and Löffler investigate the problem of find-
ing the feasible hull with maximal or minimal area or
boundary length [3]. The problem of determining the
intersection of all feasible hulls has also been investi-
gated [5],[6],[2],[1],[7].

We define the possible hull of a set of imprecise points
(or their corresponding regions of uncertainty) as being
the union of the feasible hulls of the points. To moti-
vate this problem, consider the scenario where each is-
land in a group of islands contains a sensor whose exact
location is uncertain, and that each pair of these sen-
sors can detect any object that passes between them. To
avoid being detected, a boat traveling near the islands
would need to remain outside of their possible hull.

One reason that possible hulls have received little at-
tention until now is that when the regions of uncer-
tainty are convex, the possible hull is simply the convex
hull of the regions [5]. In this paper, we investigate
possible hulls of more general uncertain regions. We

∗Research supported by NSERC and Institute for Computing,
Information and Cognitive Systems (ICICS) at UBC
†Department of Computer Science, University of British

Columbia, [will,jpsember]@cs.ubc.ca
1An applet demonstrating these results can be found at

http://www.cs.ubc.ca/~jpsember/uh.html.
2All sets in this paper are assumed to be multisets.

present an algorithm for constructing the possible hull
of a point and a simple (possibly nonconvex) polygon,
and describe how this algorithm can be used as a sub-
routine to construct the possible hull of two or more
simple polygons. See Figure 1.

R1
R2

R1
R2

Figure 1: Possible hulls of pairs of uncertain regions.

2 Properties

We will denote the convex hull of a point set S by
CH(S), and the possible hull of uncertain regions R =
{R1, . . . , Rn} by PH(R) (or, when clear from the con-
text, by PH). Formally,

PH(R) =
⋃

{s1∈R1,...,sn∈Rn}

CH({s1, . . . , sn}).

From this definition, we can derive the following addi-
tional properties of possible hulls.

Lemma 1 PH({A}) = A.

Lemma 2 PH({A, B}) =
⋃

a∈A,b∈B

ab.

Lemma 3
⋃

Ri∈R
Ri ⊆ PH(R).

Lemma 4 If A and B are nonempty sets of uncertain
regions, then PH(A ∪ B) = PH({PH(A), PH(B)}).

Proof. Let Q = PH({PH(A), PH(B)}). Suppose p is
a point within PH(A∪B). Then there exists a feasible
set S of A ∪ B such that p ∈ CH(S). Let Sa and Sb be
the subsets of S corresponding to the subsets A and B.
By using the definition of convex hull, it is easy to show
that (i) CH(S) = CH(CH(Sa) ∪ CH(Sb)), and (ii) there
exist points a and b within CH(Sa) ∪CH(Sb) such that
p ∈ ab. Now, without loss of generality, either (i) a, b ∈
CH(Sa), or (ii) a ∈ CH(Sa) and b ∈ CH(Sb). If (i),



23d Canadian Conference on Computational Geometry, 2011

then ab ⊆ CH(Sa), and since (by definition) CH(Sa) ⊆
PH(A), ab ⊆ PH(A), which implies (by Lemma 3)
that ab ⊆ Q. If (ii), then since CH(Sa) ⊆ PH(A) and
CH(Sb) ⊆ PH(B), Lemma 2 implies ab ∈ Q. Hence
PH(A ∪ B) ⊆ Q.

If p is a point in Q, then by Lemma 2, p ∈ ab, where
a ∈ PH(A) and b ∈ PH(B). There must then exist
feasible sets Sa of A and Sb of B where a ∈ CH(Sa) and
b ∈ CH(Sb). Note that ab is within CH(Sa ∪ Sb), and
since Sa ∪ Sb is a feasible set of A ∪ B, CH(Sa ∪ Sb) is
within PH(A ∪ B); hence Q ⊆ PH(A ∪ B). �

Lemma 5 The possible hull of any set of two or more
connected uncertain regions is simply connected.

Proof. Let R = {A, B} be a set of connected uncertain
regions (Lemma 4 implies that the proof extends by in-
duction to sets of more than two regions). By Lemma 2,
every point of PH is connected within PH to both A
and B; and by Lemma 3, both A and B lie within PH.
Hence PH is connected, and we need only show that
it has no holes. We will do this by showing that every
exterior point of PH is the source of a ray exterior to
PH. Let q be any point exterior to PH. First, ob-
serve that if no lines through q that are tangent to A
exist, then (i) every line through q will intersect A, and
(ii) at least one line through q will intersect A to both
sides of q. Since the same argument applies to B, if no
such lines exist for A or B, then some segment ab ex-
ists (where a ∈ A and b ∈ B) that contains q, implying
that q ∈ PH, a contradiction. Hence, we can assume
that there exist directed lines L1 and L2 through q that
are right-tangent to (without loss of generality) A. Let
W1 (resp., W2) be the wedge lying on or to the right
(resp., left) of both L1 and L2. Note that W1 contains
A. Note also that W2 cannot intersect B, otherwise
some segment ab exists that contains q. Let R be any
ray from q lying in W2. Observe that no point r ∈ R
can lie on a segment ab, since for any choice of a ∈ A,
the portion of ray −→ar lying at or beyond r lies within W2

(Figure 2). Hence, by Lemma 2, R does not intersect
PH. �

q

A

B

R
r

a

W1

W2 L1

L2

Figure 2: Lemma 5

Corollary 6 Let (p1, . . . , pk, p1) be a cyclic sequence of
points. If each consecutive pair (pi, pi+1) are endpoints

of a segment known to lie within PH, and P is a sim-
ple polygon whose edges lie on these segments, then the
interior of P lies within PH.

Theorem 7 The possible hull of any set of two or more
connected uncertain regions is star-shaped.

Proof. Let R = {A, B} be a set of two connected
uncertain regions (Lemma 4 can be applied to prove
the claim for sets of more than two regions). We will
prove that PH is star-shaped by showing that it has a
nonempty kernel.

Let I = CH(A) ∩ CH(B). If I 6= ∅, then let s be
any point in I. Observe that there must exist points
a1, a2 ∈ A, and b1, b2 ∈ B where s lies on both a1a2

and b1b2. Let q be any point in PH. By Lemma 2,
there exist points a′ ∈ A, b′ ∈ B such that q ∈ a′b′.
Without loss of generality we can assume that a1, b1,
and a′ are on or to the left of −→sq, and that a2, b2, and
b′ are on or to the right of −→sq. There are now two cases
(Figure 3): s, b1, and a2 are either to the left or to the
right of

−−→
a1b2. In both cases, we can construct a cyclic

sequence of points defining a polygon (per Corollary 6)
that lies within PH, and which contains sq. (In the
former case, the sequence is (a1, b2, a2, b

′, a′, b1); and in
the latter case, it is (b1, a2, b

′, a′).) Since this holds for
any q ∈ PH, s is in the kernel of PH.

s q

b1

a1

a2
b2

a′

b′

s q

b1
a1

a2
b2

a′

b′

(i) (ii)

Figure 3: Theorem 7

If I = ∅, then there exists line L1 right-tangent to A
and left-tangent to B, and line L2 left-tangent to A and
right-tangent to B. Let s be the point where L1 and L2

cross, and q be any point in PH. By Lemma 2, q ∈ ab,
for some a ∈ A, b ∈ B. Note that there exist points
a′ ∈ A and b′ ∈ B such that s ∈ a′b and s ∈ ab′. We
can again construct a sequence of points that defines a
polygon that lies within PH and contains sq. If s lies to
the right of ab, this sequence is (b, a, b′, a′); otherwise,
it is (a, b, a′, b′). �

From this point on, we will assume that each region
of R is a polygon (or a point, which can be viewed
as a degenerate polygon). We will refer to an edge of
each such polygon as a native segment, and to a segment
connecting vertices of distinct polygons of R as a bridge
segment.



CCCG 2011, Toronto ON, August 10–12, 2011

Theorem 8 If R is a set of uncertain polygons with a
total of n vertices, then PH(R) is a star-shaped polygon
with at most n vertices.

Proof sketch. PH is star-shaped, by Theorem 7. It
can be shown (we omit the details) that every point on
the boundary of PH lies on either a native segment or
a bridge segment of R; hence, PH is a polygon. To
bound its complexity, it can also be shown that each
boundary vertex v that is not already a vertex of R
can be associated with a subset of the boundary of one
of the polygons A of R that (i) is disjoint from the
subset associated with any other vertex of PH, and (ii)
contains a vertex of A (in the interior of PH) to which
we can charge v. �

3 Point and Polygon

By Lemma 5, the possible hull of a point s and a polygon
P , PH = PH({s, P}), is equal to the possible hull of
s and the boundary of P . Hence, it will suffice for our
algorithm to construct the possible hull of a point and
a simple polygonal chain.

Our algorithm is reminiscent of Melkman’s algorithm
for finding the convex hull of a simple polygonal chain
[4] for two reasons: first, both are on-line algorithms;
and second, both look for points where the chain enters
and emerges from the interior of the hull, and rely upon
the simplicity of the chain to perform this efficiently.

We motivate our algorithm with the following obser-
vation: the possible hull of a point s and a chain P
is equal to a union of triangles, where each triangle’s
vertices are s and the endpoints of an edge of P .

Let (p1, . . . , pn) be the ordered vertices of P . We will
denote the connected subset of P from a to b by (a . . . b).
We start with point u initialized to p2, and the cur-
rent possible hull H initialized to PH({s, (p1 . . . p2)}) =
4sp1p2. We advance u along P , processing each new
edge (or part of an edge) in one of two ways. If the edge
is exterior to H, then we expand H by adding its as-
sociated triangle; and if the edge is interior to H, then
we skip the edge and advance u until it emerges from
H. In either case, at the start of each iteration, u is a
point that is on both P and the boundary of H. When
u reaches pn, H will equal PH({s, P}).

We assume the vertices of H (which, by Theorem 8,
is a simple polygon) have a ccw ordering. For added
flexibility, we will associate with H a variable orienta-
tion whose values are ccw or cw. If a and b are adjacent
vertices of H, with b ccw from a, then we will consider b
to follow a when H has ccw orientation, and to precede
a when H has cw orientation. Our algorithm has these
steps:

1. Initialize H to be 4sp1p2, and u to be p2.

2. If u = pn, stop.

3. Set the orientation of H to ccw (resp., cw) if s lies
to the left (resp., right) of uv, where v is the vertex
of P following u.3

4. If the points of P immediately following u lie in the
interior of H, go to step 6.

5. Expansion step. Let T = 4suv (uv’s contribu-
tion to the hull). Starting with x = u, advance
x along H, deleting those edges that lie within T ,
until the first of three events occurs:

(i) H has no more edges (Figure 4). Replace H
with T , advance u to v, and go to step 2.

s

p1
pn

v
u

T

s

p1
pn

v
u

T
H H

Figure 4: Expansion step, case (i), before and after
changes to H.

(ii) x reaches the point where edge ab of H inter-
sects sv. Replace ab with edges uv, vx, and
xb (Figure 5). Advance u to v, and go to step
2.

s

p1

pnv
u

T
s

p1

pnv
u

T

xb
a

H H

Figure 5: Expansion step, case (ii), before and after
changes to H.

(iii) x reaches the point where edge ab of H in-
tersects uv. Replace ab with ux and xb (Fig-
ure 6). Advance u to x, and go to step 2.

pn

T

p1

v u

s

a

b

x

pn

p1

v u

s

a

b

T

H H

Figure 6: Expansion step, case (iii), before and after
changes to H.

3In each of the figures that follow, H has ccw orientation ac-
cording to this rule.



23d Canadian Conference on Computational Geometry, 2011

6. Interior step. Starting with x = u, advance x
along P until the first of two events occurs:

(i) x reaches pn; stop.

(ii) x reaches the point where P emerges from H’s
interior (Figure 7). Split cd, the edge of H
containing this point, into edges cx and xd.
Advance u to x, and go to step 2.

pn

p1

s, c

u

v

xd
H

Figure 7: Interior step, case (ii).

We will use induction to show that at the start of
each iteration of the algorithm, the following invariants
hold:

1. H is the possible hull of s and (p1 . . . u).

2. u lies on the boundary of H.

The invariants clearly hold for the base case, since the
initial hull, H, is triangle 4sp1u (where u = p2), and is
thus equal to PH({s, (p1 . . . u)}).

Suppose the invariants hold for every iteration until u
reaches a particular position along P , and an expansion
step is to be performed. If every edge of H lies within
T (case i), then T is the possible hull of (p1 . . . v), and
the invariants are satisfied. Suppose instead that some
edge of H does not lie within T . Consider the boundary
points of H following u. Since s lies in the kernel of H,
the first such point where the boundary crosses an edge
of T must lie on sv (case ii), or in the interior of uv (case
iii). In the former case, modifying the boundary of H as
stated has the effect of expanding H to include 4suv(=
T ); and in the latter, it has the effect of expanding H
to include 4sux(⊂ T ). Since u is advanced to v in the
former and x in the latter, we are thus adding exactly
that portion of the hull contributed by those points of
P between the old and new u, which satisfies invariant
(1); and since the new u is not interior to H, invariant
(2) is also satisfied.

Now consider the case where an interior step is to be
performed. It is easy to show that if H is the possible
hull of s and a set J , then H = PH({s, H∪J}). Hence,
we can ignore points on (u . . . x). The only change we
make to H is to split edge cd at x. As this does not
actually change the boundary of H, and x (the new
location of u) lies on this boundary, both invariants are
satisfied.

Since the invariants hold for each iteration of the al-
gorithm, we can claim:

Theorem 9 The above algorithm generates the possible
hull of a point and a simple polygonal chain.

We now examine the running time of the algorithm.
To simplify the analysis, we assume that s is not
collinear with any two vertices of P . Step 4 takes con-
stant time, since the points of P immediately following
u lie in the interior of H iff the vertex of H following u
is to the right (or, if the hull has cw orientation, to the
left) of uv.

In step 6, we must determine which edge of H con-
tains the point x where P emerges from H’s interior.
To do this efficiently, we start by characterizing each
boundary edge of H as being either a polygonal edge
(lying on an edge of P ) or a radial edge (lying on a ray
from s through a vertex of P ). By assumption, no edge
can be both.

Lemma 10 At the start of any iteration in which an
interior step occurs, the following conditions hold: (i)
exactly one of the edges of H incident with u is a radial
edge; and (ii) if this radial edge is not incident with s,
then x (the point where P emerges from H’s interior)
must lie on this edge as well; otherwise, x must lie on
an edge incident with s.

Proof. At the start of an interior step, the edges of H
incident with u cannot both be polygonal edges, other-
wise (since an interior step is about to occur) this would
imply that u is incident to three edges of P , which is
impossible. Suppose instead that that they are both ra-
dial edges. Note that each radial edge of H is induced
by a distinct vertex of P (unless a radial edge has just
been split in step 6(d); but each such step is immedi-
ately followed by an expansion step that removes one of
these two edges). Hence, s and two distinct vertices of
P must be collinear, contradicting our general position
assumption.

To prove (ii), we first note that since P is simple, x
must lie in the interior of cd, a radial edge of H. Let
ab be the radial edge of H incident with u. Assume by
way of contradiction that ab and cd are distinct edges,
and that at least one of them is not incident with s.
This edge must then be adjacent to (distinct) polygonal
edges y1 and y2 (see, for example, edge ab in Figure 8).
Now observe that (u . . . x) partitions H into two pieces,
and since ab 6= cd, y1 and y2 must lie on opposite sides
of (u . . . x). We now have a contradiction, since the
interiors of paths (p1 . . . u) and (u . . . x) must intersect,
which implies that P is nonsimple. �

Lemma 10 implies that in order to find x while moving
along edges of P during an interior step, we need to
check for intersections of P with at most two edges of
H: the single radial edge incident with the point of entry
u, and (if that edge is also incident with s) the other
edge incident with s.



CCCG 2011, Toronto ON, August 10–12, 2011

d

b(= u)x
c

a
y1

y2

H

Figure 8: Lemma 10.

Let us determine the total number of vertices pro-
cessed by the algorithm. These include the vertices of
P , plus any vertices that ever appear in H. Consider
the start of a particular iteration, where H is the cur-
rent hull, u is the current position on P , and v is the
vertex of P following u. We will show that at most three
vertices are introduced to H by the addition of triangle
T = 4suv.

Each new vertex (other than v) is a point where the
boundaries of H and T cross, and hence must lie on
either uv or vs (since su ⊂ H). Suppose for the sake of
contradiction that two new vertices, p and q, lie in the
interior of uv. We can assume that uv first enters H at
p, then exits H at q. Since uv ⊂ P , and P is simple, p
and q must lie on radial edges of H. These radial edges
must lie on rays −→sa and

−→
sb respectively, where a and

b are vertices of P preceding u (Figure 9). The path
(a . . . b . . . u) (or (b . . . a . . . u)) in P cannot cross rays
−→pa or

−→
qb (otherwise p or q would lie in H’s interior),

nor can it cross pq (since P is simple). We now have
a contradiction, since this implies that (a . . . b) is not
connected to (u . . . v) within P . Hence, at most one
new vertex lies in the interior of uv; and since s is in
the kernel of H, at most one of the new vertices lies in
the interior of vs.

s

u
v

ab

T

P
pq H

Figure 9: p and q cannot both be new vertices of H.

Theorem 11 The above algorithm generates the pos-
sible hull of a point and a simple polygonal chain of n
vertices in O(n) time.

Proof. We store the vertices of H and P in doubly-
linked lists, so that inserting or removing a vertex, or
accessing a vertex’s neighbor, can be done in constant
time. Every step of the algorithm can be done in con-
stant time, except for the expansion and interior steps,
which can be done in time proportional to the number

of vertices that are: (i) visited on the chain; (ii) inserted
into the hull; or (iii) removed from the hull. Since a ver-
tex can be removed from the hull only once, the total
running time of the algorithm is bounded by the num-
ber of vertices processed by the algorithm (which, as
we have shown, is O(n)) and the number of iterations
(which is also O(n), since each advances u to a distinct
vertex of H or P ). �

4 Possible Hull of Polygons

In this section, we provide an overview of an algorithm
to construct the possible hull of a pair of uncertain poly-
gons A and B (a more detailed presentation, which in-
cludes a correctness proof, can be found in [7]). It em-
ploys the algorithm of the previous section as a subrou-
tine to achieve an optimal running time.

Our algorithm starts with a polygon H equal to
CH(A ∪B), then modifies H’s boundary until H is
equal to PH({A, B}). If a boundary edge of CH(A ∪B)
is a polygonal segment or a bridge segment, then by
Lemmas 2 and 3, and the fact that PH({A, B}) ⊆
CH(A ∪B), it lies on the boundary of PH({A, B}) as
well. Otherwise, its vertices must be nonadjacent ver-
tices from the same polygon (e.g., ai and aj). As we
manipulate H, both ai and aj will remain vertices of
H, but the path (ai . . . aj) on H’s boundary will change.
We will refer to this path as a pocket of H, and to seg-
ment aiaj as the pocket’s lid.

Our algorithm has these steps:

1. Initialize H to CH(A ∪B).

2. For each pocket lid aiaj of H, perform the following
hull contraction steps:

(a) Using the algorithm of the previous section,
construct J , the possible hull of (ai . . . aj) (on
the boundary of A) and any point s from B.

(b) Replace aiaj with path (ai . . . aj) on the
boundary of J .

3. Repeat the hull contraction steps with the roles of
A and B reversed.

4. Perform the following hull expansion steps:

(a) Set u to h1, any vertex of CH(A ∪B).

(b) Determine ray Tu as follows. If u is a vertex
of A, then set Tu to the ray from u that is
left-tangent to B; otherwise, set Tu to the ray
from u that is left-tangent to A.

(c) If the vertex v of H following (i.e., in ccw di-
rection) u is not left of Tu, then go to (f).

(d) Let x be the point where the boundary of H
next crosses Tu.



23d Canadian Conference on Computational Geometry, 2011

(e) Replace (u . . . x) with ux.

(f) Advance u to the next convex vertex of H. If
u 6= h1, go to (b).

5. Repeat the hull expansion steps, substituting cw
for ccw, and right for left.

The hull contraction steps use the algorithm of the
previous section to replace each pocket lid with a por-
tion of the boundary of a possible hull associated with
the pocket (Figure 10). This contracts H by ‘taking
bites’ out of the convex hull of the two polygons. Corol-
lary 6 implies that after this modification, each pocket
lies within PH. The hull expansion steps traverse the
boundary of H, find tangent rays that potentially con-
tain bridge segments of PH, and modify H to incorpo-
rate these segments. This has the effect of expanding
H, by adding back some portions that were removed in
the hull contraction steps. It can be shown that after
the hull expansion steps have been performed for both
ccw and cw directions, H = PH({A, B}).

A

ai

aj

s

J

B

H

Figure 10: Hull contraction step: pocket lid aiaj re-
placed by (ai . . . aj) of J .

Step 1 can be performed in O(n) time, where n is the
number of vertices of A and B: first by constructing
the convex hulls of both A and B (in O(n) time, e.g.,
by using Melkman’s algorithm [4]); then by using the
rotating calipers method [8] to construct CH(A ∪B).

In the hull contraction steps, for each pocket lid aiaj ,
we construct the corresponding subset of the boundary
from A, then calculate the possible hull of this bound-
ary and an arbitrary point of B. Since each edge of A
appears in only one of these subsets, and the possible
hulls can be constructed in time linear in the size of
the subset (Theorem 11), we can perform these steps in
O(n) time.

Step 2(b) plays a crucial role in the algorithm. It
ensures that throughout the hull expansion steps, each
pocket (ai . . . aj) is a sequence of points that have mono-
tonically increasing polar angles with respect to a point
s ∈ B (the pocket would not necessarily have this prop-
erty if, for example, it was instead initialized to path
(ai . . . aj) on the boundary of A). The monotonicity
property implies that the tangent rays Tu in step 4(b)
can be found by using the rotating calipers method [8],

which (it can be shown) implies that the running time
of each hull expansion step is O(n). Hence:

Theorem 12 The possible hull of a pair of polygons
with n total vertices can be constructed in O(n) time.

The running time of our algorithm is clearly opti-
mal, since it matches the input size. We can adapt the
algorithm to the case where there are more than two
polygons:

Theorem 13 The possible hull of k polygons with a to-
tal of n vertices can be constructed in O(n log k) time,
and this running time is optimal in the worst case.

Proof. Lemma 4 implies that we can apply our O(n)
algorithm for pairs of polygons recursively, in a divide-
and-conquer manner, to construct the possible hull of
k polygons. In doing so, we increase the running time
by a factor that is logarithmic in the height of a binary
tree of k elements. It is worst-case optimal, since if the
input consists of n/3 small triangles distributed along a
circle, the problem reduces to constructing the convex
hull of O(n) points (each of which lies on the hull). �

Acknowledgment

The authors would like to thank David Kirkpatrick for
his helpful discussions and valuable insights.

References

[1] A. Edalat and A. Lieutier. Foundation of a computable
solid modelling. Theor. Comput. Sci., 284(2):319–345,
2002.

[2] A. Edalat, A. Lieutier, and E. Kashefi. The convex hull
in a new model of computation. In CCCG, pages 93–96,
2001.

[3] M. Löffler and M. J. van Kreveld. Largest and small-
est convex hulls for imprecise points. Algorithmica,
56(2):235–269, 2010.

[4] A. A. Melkman. On-line construction of the convex hull
of a simple polyline. Inf. Process. Lett., 25(1):11–12,
April 1987.

[5] T. Nagai, Y. Seigo, and N. Tokura. Convex hull prob-
lem with imprecise input. In Revised Papers from the
Japanese Conference on Discrete and Computational Ge-
ometry, pages 207–219, London, UK, 2000. Springer-
Verlag.

[6] T. Nagai and N. Tokura. Tight error bounds of geometric
problems on convex objects with imprecise coordinates.
In JCDCG ’00: Revised Papers from the Japanese Con-
ference on Discrete and Computational Geometry, pages
252–263, London, UK, 2001. Springer-Verlag.

[7] J. Sember. Guarantees Concerning Geometric Objects
with Uncertain Imputs. PhD thesis, University of British
Columbia, Forthcoming 2011.

[8] M. I. Shamos. Computational geometry. PhD thesis,
Yale University, 1978.


