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Abstract

We extend the notion of program checking to include programs which alter their
environment. In particular, we consider programs which store and retrieve data from
memory. The model we consider allows the checker a small amount of reliable memory.
The checker is presented with a sequence of requests (on-line) to a data structure which
must reside in a large but unreliable memory. We view the data structure as being
controlled by an adversary. We want the checker to perform each operation in the input
sequence using its reliable memory and the unreliable data structure so that any error
in the operation of the structure will be detected by the checker with high probability.

We present checkers for various data structures. We prove lower bounds of logn
on the amount of reliable memory needed by these checkers where n is the size of
the structure. The lower bounds are information theoretic and apply under various
assumptions. We also show time-space tradeoffs for checking random access memories
as a generalization of those for coherent functions.

1 Introduction

The program checking model was introduced in [3] and several subsequent papers [4, 1, 14]
have provided checkers for classical computational problems. The model was introduced as
a practical means of checking that programs for these problems are correct. Rather than
certifying that the program is always correct, a program checker certifies that on any given
input the program is correct. Of course, an incorrect program may be correct on some inputs,
and for those inputs the checker may or may not detect an error. The requirement is that
the checker detect incorrect behavior on the given input.

In the context of program checking, programs have been thought of merely as computing
a function and not as having any side effects. An important problem is extending the concept
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of program checking to computations that cannot be modeled this way. Such an extended
notion is required to check programs that implement storage and retrieval from memory.
Further, checking the correctness of these programs is of great practical importance. In
this paper, we define a suitable model for checking such programs and present checkers for
various problems of storage and retrieval.

Our model differs from the adaptive checker model introduced by Blum, Luby, Rubin-
feld [5] and the model of the program as a prover which is discussed by Fortnow, Rompel, and
Sipser in [8]. These papers distinguish between provers which act as functions and provers
which may adaptively alter their response to a particular question over time. In our case,
the manner in which the program alters its environment is prescribed by the definition of
the data structure. We allow programs which do not simply compute a function; but they
must follow the prescribed data structure definition.

As in the program checking case, we only require that the checker certify the correct
operation of the program on any given input. However, when checking storage and retrieval,
the input does not result in a single output. Instead, the input is a sequence of operations,
such as reads and writes to memory, and each operation may have an associated output. In
addition, the output of an operation in the input sequence will usually depend on the pre-
ceding operations in the sequence. Thus checkers for programs which interact with memory
must check that the output not only follows the problem specification but also is consistent
with the input sequence.

The question of checking a sequence of stores and retrieves from a random access memory
has been addressed by the papers of Goldreich [9] and Ostrovsky [18]. These two papers
actually solve the harder problem of software protection against a very powerful adversary.
Consequently, the overheads involved in checking the sequence of memory accesses is quite
large. In this paper, we provide checkers not only for RAMs but also for the more restricted
problems of stores and retrieves from stacks and queues with much smaller overhead.

A more detailed description of the contents of this paper will be given after the model is
discussed.

2 Model

A data structure is defined by specifying the output of each data structure operation in any
sequence of operations performed on the data structure starting in some initial configuration.
For example the definition of a stack assigns to the sequence “push a, push b, pop, pop” the
outputs “0, 0, b, a” where ) indicates no output.

We think of the data structure as residing in a large unreliable memory. In fact, we
view the data structure as being controlled by an adversary. The user interacts with the
data structure by presenting it with a sequence of operations. The checker’s job is to detect
any error in the behavior of the data structure while performing the user’s operations. The
checker is allowed only a small amount of reliable memory in order to achieve this goal.

An error occurs if any value returned from the data structure does not match the corre-
sponding value entered into the data structure. For example, in a queue if v is the i** value
enqueued and w is the 1" value dequeued, then v # w is an error. In the case of the RAM,
a read at address ¢ must return the last value written to address . Note that entering a
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Figure 1: Memory Checker interaction with User and Data Structure

value into a data structure does not produce an output and thus has no formally-acceptable
notion of being incorrectly executed.

Definition: A memory checker for a data structure D is a probabilistic Turing machine C'
with five tapes: a read only input tape from which the checker reads user specified operations
to D, a write only output tape on which the checker writes the output of each operation or
declares the implementation of D to be BUGGY, a read/write worktape called the reliable
or private checker memory, a write only input tape on which the checker specifies operations
to D, and a read only output tape from which the checker reads the output of each operation
(as determined by some implementation of D).

The checker C' is presented with operations to D on its input tape. It is required to write
the output of each operation (or BUGGY) on its output tape before the next operation is
presented.

Finally, for all implementations D of data structure D and for all user operation sequences
of length polynomial in n (the size of the data structure):

o If D’s output is correct for all operations in the sequence then C’s output is correct
with probability > 3/4.

o If D’s output is incorrect for some operation then C' outputs BUGGY with probability
> 3/4.

See Figure 1 for a pictorial depiction of the memory checker.

If C’s reliable memory is sufficiently large then €' can check the operation of D simply by
performing the data structure operations itself using its worktape to hold the data structure
and checking that D always agrees. We will be interested in obtaining checkers which have
small worktapes; typically size logarithmic in the size of the data structure. Note that by
restricting the size of the checker’s worktape we force the checker to be different from the
data structure implementation.

The definition of a memory checker does not specify when the checker should output
BUGGY if it detects an error. Ideally, we would like the checker to output BUGGY immedi-

ately after an errant operation. We call this type of checker an on-line checker. Alternatively,



if we allow the checker to wait until the end of the sequence of operations to output BUGGY
then the checker is an off-line checker. In either case the checker is required to output a
result for each operation before the user presents the next operation.

In addition, we distinguish checkers on one other score: Checkers which use the data
structure to store information other than what the user requests are called invasive. Checkers
which do not introduce their own operations are called noninvasive. For example, when the
user issues a write request of some value, an invasive checker may write a time stamp as
well as the value into memory. Or an invasive checker may write an encrypted version of the
value. A noninvasive checker must write only the user’s value in the memory.

Finally, we would like to design checkers which introduce very little overhead per user
operation. Ideally, the checker would perform a constant number of data structure operations
and a constant amount of additional work per user operation. Some of the checkers that are
presented in this paper perform an amount of work per user operation which is proportional
to the logarithm of the data structure size.

In the next section, we describe several hashing tools from the literature that are used
here to design checkers. Section 4 presents off-line checkers for queues, stacks, and RAMs.
Section 5 gives on-line checkers for these data structures.

Finally, in Section 6 we prove two lower bounds: The first is an Q(logn) lower bound
on the size of the checker’s private memory for checking the correctness of an n-bit string
stored and retrieved from memory. This lower bound is information theoretic and hence
very robust. It holds for all the private memory checkers discussed in this paper, even with
cryptographic assumptions, with the checker being given access to a random oracle, and with
the checker being allowed to take more than polynomial time per request. On the other hand,
it is very simple to design an off-line, noninvasive checker for this problem with O(log n) bits
of memory, running in polynomial time and using no cryptographic assumptions.

The second lower bound has to do with on-line, noninvasive checkers. We show that if
the checker has m bits of memory and is allowed at most ¢ accesses to main memory per
request, then the size of the main memory cannot be much larger than mt.

3 Hashing tools

Several hashing techniques are used in the paper. Some of them rely on cryptographic
assumptions while others do not. We review these hashing techniques in this section.

3.1 e-biased hash functions

This hashing scheme is drawn from [16]. We briefly describe the result in a communication
complexity setting. Suppose two players A and B have n-bit strings = and y respectively
and would like to decide if # = y. The scheme in [16] allows A to define a hash function A
using O(logn + k) random bits such that A(x) is small (O(k) bits) and h(x) = h(y) with
probability < 1/2% if z # y.

The hash function description is treated as a source of O(logn + k) bits. These bits
are expanded into [ = O(k) distinguisher strings ry,72,...,r;, each of length n, which are
“random” enough to ensure that if  # y then the inner products, (z,r;) agree with the
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corresponding inner products, (y,r;) mod 2 for all 7 with probability < 1/2*. A further nice
property of this scheme is that for any j, the ;' bit of any r; can be generated using a
constant number of log n-bit operations.

In the communication setting this allows B to determine if x = y with high probability
using O(logn + k) bits of communication. In the checking scenario this allows the checker
to use O(logn + k) bits of reliable (and secret) memory to fingerprint an input which is n
bits long.

It is interesting to note that hashing mod a random prime of length O(log n) provides a
scheme for testing equality that achieves a constant probability of error, while this scheme
produces an inverse polynomial probability of error with the same number of bits. Further-
more, the fact that one can generate any particular bit in constant time allows us to compute
this hash function as the string to be hashed is revealed bit by bit.

We now list two (cryptographic) techniques for hashing.

3.2 Pseudorandom functions

A family of pseudorandom functions, as defined by Goldreich, Goldwasser and Micali [10], is a
collection of functions that has the property that a random member of it is indistinguishable
from a random function, yet it has a succinct representation and can be efficiently computed.

More precisely, let D(n) be a sequence of domains such that |D(n)| is polynomial in n.
Let s(n) = n® for some € > 0 and let k(n) be bounded by a polynomial in n (k(n) is possibly
subpolynomial). A family of pseudorandom functions consists of a sequence of polynomial
time computable functions £}, that on input S € {0,1}*®) and z € D(n) outputs a member
of {0,1}*("). We denote by fs(z) the function obtained from F,(S,z) by fixing S.

For F, to be pseudorandom, no probabilistic polynomial time statistical test A can
distinguish fs, for randomly chosen S, from a truly random function. In particular, A is
given a function which maps D(n) — {0, 1}*(®), The function is either (a) a random function
or (b) a function fs for random S € {0,1}*"). A can choose adaptively z € D(n) and in

case (
b) it gets fg(z). After a polynomial number of queries, A guesses whether it is in case
g poly q ; AL
(a) or (b). For all polynomials p, for sufficiently large n,

a) gets a random value (if it queries the same z twice, it gets the same value) and in
case

Pr[A guesses (a) | case (a)] — Pr[A guesses (a) | case (b)] < p(l—n)

Goldreich, Goldwasser and Micali [10] show how to construct pseudorandom functions
based on any pseudorandom generator, which in turn can be based on any one-way hash
function [11, 12].

We assume that the reliable (and secret) memory of the checker can store the seed S of a
pseudorandom function fs. The contents of memory cells are authenticated by adding tags:
if we wish to store value v in location i, the checker stores both v and the tag fs(i,v) in
location i. Here fs(i,v) is the value of the pseudorandom function at ¢ o v (i concatenated
with v). This prevents the adversary from “making up” values for memory locations, but it
does not prevent the write-once (or replay) attack. That is, the adversary might continue to
return old, obsolete value, tag pairs from a location. A similar problem was addressed in [9]
and [18]. We address the problem in section 5.1.2.



3.3 Universal one-way hash functions

The advantage of this technique is that it assumes only a reliable but not secret memory for
the checker.

Let U be a family of functions where Vf € U, f: D — R. Following Naor and Yung [17]
we say that U is a family of universal one-way hash functions (UOWHF) if Vo € D, for f
chosen at random from U, it is hard to find y # = such that f(z) = f(y) (see exact definition
below). It is possible to construct a family of UOWHF given any one-way function ([17] shows
this for any 1-1 one-way function and Rompel [20] shows this for any one-way function.)

Using UOWHF, there is a way to authenticate several memory cells with one memory
cell, without assuming secrecy (but assuming that the contents of the authenticating cell
are not altered). Let U be a family of UOWHF such that Vf € U, f : D* — D. Assume
that a description of f € U is stored in the reliable (but not secret) memory of the checker.
To authenticate values v; and v;, store in another cell (say [) f(v;,v;). Assume that this I’s
contents have been verified somehow. Then, in order to verify the content of cell 7 or j: read
the other cell; compute f(v;,v;); and compare with the content of .

We now define UOWHF precisely. Let {ny,} and {ng,} be two increasing sequences such
that for all ¢, no, < ny,, but 3¢, a polynomial, such that g(no,) > ni,. Let H; be a collection
of functions such that for all A € Hy, h 2 {0,1}*¢ — {0,1}"¢ and let U = J, H,. Let A
be a probabilistic polynomial time algorithm (A is the collision adversary ) that on input ¢
outputs = € {0,1}"¢ which we call the initial value, then given a random h € H, attempts
to find y € {0,1}" such that h(xz) = h(y) but x # y. In other words, upon receiving h, A
tries to find a collision with the initial value.

Definition: Such a family U is called a family of universal one-way hash functions if for
all polynomials p and for all polynomial time probabilistic algorithms A the following holds
for sufficiently large /:

1. If z € {0,1}" is A’s initial value, then

1
p(nle)

Pr[A(h,z) =y, h(z) = h(y),y # z] <

where the probability is taken over all h € H; and the random choices of A.

2. Yh € H; there is a description of h of length polynomial in ny,, such that given A’s
description and z, h(z) is computable in polynomial time.

3. Hyisaccessible : there exists an algorithm G such that G on input £ generates uniformly
at random a description of h € H,.

For our purposes we will need a family with the following parameters: ng, = £ and ny, =
2(0 + [log |Hy|]). That is, h € H, maps two strings of length ¢ and two descriptions of
elements of H, into a string of length ¢. From [17] we know that such a family can be
constructed given any family that compresses one bit (which in turn can be based on any
one-way function). The construction is such that [log|H,|] is O().
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4 Off-line checkers

We adopt the same basic strategy in designing off-line checkers for RAMs, stacks, and queues.
In its private memory the checker holds the following pieces of information:

e The description of a hash function h.

e The hashed value h(W) of a string W that encodes the information in all the write
instructions to the data structure.

e The hashed value h(R) of a string R that encodes the information in all the read
instructions to the data structure.

We will choose the encodings such that W = R iff D functions correctly. The particular
choice of encoding will depend on the data-structure being checked.
We have several constraints on the hash function h:

1. The description of h, h(R), and h(W) must all fit in the checker’s memory.
2. We must be able to quickly update h(W) and h(R).
3. If W # R then h(W) must differ from h(R) with high probability.

We now describe how we achieve these goals for the encoding and the hash function in each
of the three data structures.

4.1 Checking RAMs

To check that a RAM operates correctly we must check that the value we obtain from reading
an address is the last value previously written to that address. To perform this check we
store in each memory address not only a value but also the time the value was written.
Here ‘time’ is discrete and incremented whenever a write operation is performed on the data
structure. The set of (value, address, time) triples which are written should equal the set of
(value, address, time) triples which are read. The strings W and R are designed to represent
these sets.

One possible encoding of the triples to W and R is as follows. Suppose (v, a,t) is one of
the triples that is written. We encode this as a 1 at position v + an + tn? in W where n is
the size of the RAM available to the user.

Here we assume v, a, and ¢ are log n-bit words. Thus the strings W and R have polynomial
length. These strings are too large to store explicitly in the checker memory. Instead, we
store the hash of W and R using e-biased hash functions. In this case, the description of an
e-biased hash function requires O(logn + k) bits. A(W) and h(R) are each k bits long.

We now describe the functioning of the checker on write and read requests from the user:
Checker on user Write of value v to address a

e reads the value v’ and time ¢’ stored in address a.



e checks that ¢’ is less than the current time ¢.

e updates the hash A(R) of string R with v’ a,t’.

e writes the new value v and current time ¢ to address a.

e updates the hash (W) of string W with v, a,t.
Checker on user Read of address a

e reads the value v' and time ¢’ from address a.

e checks that ¢’ is less than the current time ¢.

e updates the hash A(R) of string R with v’ a,t’.

e writes v’ and ¢ to address a.

e updates the hash A(W) of string W with v',a, .

Updating A(W) on a write triple (v, a,t) (for an e-biased hash function) involves com-
plementing bit i of A(W) if bit v 4+ an + tn? of the " distinguisher is 1. Determining any
one bit of a distinguisher string requires O(1) operations on log n-bit words. Thus updating
h(W') which consists of the inner product of W with & distinguisher strings requires O(k)
operations. The same holds for updates to h(R).

To check the functioning of the RAM at the end of a sequence of operations, the checker
reads all the memory cells and updates h(R) accordingly. Assuming initially W = R =0
and the RAM is empty, A(W) should equal h(R) if the memory functioned correctly, and
should be different from h(R) with high probability if the memory was faulty. We can ensure
that ¢ is less than n by checking the memory every n operations and resetting the time.

To show the checking scheme works correctly we must prove:

Lemma 1 If the RAM malfunctions then W # R.

Proof: A write operation performed by the checker and a read operation performed by the
checker correspond if the read is the first read after the write involving the same address as
the write. The fact that both a read and write operation are performed for each user oper-
ation insures that each read/write operation performed by the checker has a corresponding
write/read operation. A malfunction occurs if the value and time the checker reads from an
address are different from the value and time of the corresponding write. Let (v, a,t) be the
value, address, and time of a write operation whose corresponding read returns v’, ¢’ with
either v’ # v or ' # t. Choose such a triple, (v,a,t), such that ¢ is maximized. In other
words, we pick a write operation, with a corresponding errant read, such that the time of
the write is maximized.

We want to show that no read operation at address a returns v, ¢. If we show this then the
lemma follows since the triple (v, a,t) is stored in W but (v, a,t) is not stored in R. Consider
the operations involving address a as occurring on a time line. No read operations after the
chosen errant read can return (v,t) for this would be an errant read whose corresponding
write has a larger time stamp.



Suppose (v,t) were returned before the write corresponding to the errant read. If this
were the case then ¢ would be greater than the current time at that read which would be
detected by the checker. [ |

We summarize the results in the following theorem

Theorem 1 For a RAM with 2n memory locations storing log n-bit words there exvists an
off-line, invasive checker which uses O(logn + k) private memory and detects errors with
probability > 1 — 1/2%.

4.2 Checking stacks

The same scheme used to check RAMs can be used to check stacks. The “address” of a stack
operation is the level of the stack which is kept in checker memory. On a push operation
we push the value and time onto the stack and update h(W). Note that the level at which
the item is pushed is empty before the operation thus we do not need to update h(R). On a
pop operation, we pop both value and time. We check that the time is less that the current
time and update h(R). Again we do not update h(WW) since the level of the pop is emptied.
With these modifications, the above theorem for RAMs applies to stacks as well.

We can reduce the invasiveness of the checker by taking advantage of the restricted data
access pattern of the stack. Rather than maintain the current time, the checker maintains
the number of times the stack level achieves a local minimum. In other words, the checker
counts the number of times the stack “turns around” after a sequence of pops and starts a
sequence of pushes. The checker uses this count of local minima in place of the time stamp.
The count, like the time, is strictly increasing for any particular level. Thus the proof that
W # R if an error occurs holds when time is replaced by count. The count remains the same
during a sequence of pushes. We reduce the invasiveness by pushing the count only on the
first push operation after a sequence of pops. The amount by which we reduce invasiveness
is dependent on the input sequence, but this scheme is always less invasive than the scheme

based directly on the RAM checker.

4.3 Checking queues

The RAM checker can also be used to check queues. In this case, the “address” of a write
operation is the number of preceding write operations and the address of a read operation
is the number of preceding read operations. An address, in this sense, is never reused. Thus
a time stamp would be redundant.

Let w be the number of values enqueued and r the number of values dequeued. The
checker maintains w and r in private memory. On an enqueue of value v, the checker updates
h(W) with v and w, enqueues v, and increments w. Note that the checker is noninvasive. It
writes only the input value v to the queue. On a dequeue, the checker dequeues some value
v’, updates h(R) using v" and r, and increments r.

The queue malfunctions if and only if the :** value dequeued does not match the i** value
enqueued for some ¢. Thus, as in the RAM case, after the queue is empty, W # R if a
malfunction occurs.



5 On-line checkers

The previous sections contain descriptions of checkers which check whether a sequence of
operations are correct. In this section we describe checkers which check after each operation
whether the data structure performed correctly.

5.1 Checking RAMs

It is possible to check a RAM using either pseudorandom functions or UOWHF. The number
of checker operations per user operation is O(tlogn) where ¢ is the time to evaluate the
pseudorandom function or UOWHF and the memory size is O(n).

Both solutions construct a complete binary tree on top of the memory. The leaves of
the tree correspond to the n locations in the memory which are available to the user. The
checker uses the remaining memory to store the internal nodes of the tree. Thus the checkers
in both cases are invasive.

In the case of the pseudorandom function based checker, the checker’s reliable memory
must be secret, while in the case of the UOWHF based checker, the checker’s reliable memory
is known to the adversary. In the case of the UOWHF, if the word size of the RAM is
O(logn) then since the adversary knows the checker’s hash function, a polynomial time
adversary could hash all O(logn) size words and find a value which collides with some value
in the input sequence. In order to defeat such an adversary, the word size of the RAM must
be polynomial. These are the primary differences between the two cryptographic based
checkers.

5.1.1 Authentication using UOWHF

Let U be a family of UOHWF as defined in Section 3.3. For any ¢ > 0 we can choose £, the
parameter that determines the hashing domain, to be n°. In practice we should assume that
{ is sufficiently large so as to prohibit any feasible adversary A from breaking H,.

We operate on words of size £. The n locations which we wish to authenticate are assumed
to be of size . Each internal node v stores [log |H,|| + ¢ bits: [log |H,|] bits that describe
a function h, € Hy; and / bits that describe z, € {0,1}, the result of applying A, to the
contents of the children of v. The checker’s memory is the root of the tree. It need not be
kept secret.

In order to read the contents of location 7, the checker accesses all the nodes on the path
from the root to location 7 and their children (2logn altogether). For each internal node v
on the path and its two children v and w, the checker verifies that z, = h, (2, 0 hy 0 2, 0 hy)
(o denotes concatenation). If v and w are leaves, then h, and h, are simply the all zero
string.

In order to write a new value to location 7, the checker accesses all the nodes on the path
from the root to location 7 and their children. For every internal node v along the path,
the checker chooses a new hash function h! € H, to replace the old hash function h,. The
checker stores the value =/ = h! (2! o h! ox! oh!)in v. Here u and w are v’s children; and
z! k!, x! and h!, denote the new contents of u and w.
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Therefore, in order to read or write, the checker accesses 2logn cells of O(f) bits each.
The amount of computation is log n applications of a hash function. This scheme can be seen
as a variant of Merkle’s tree authentication scheme for digital signatures [15]. The signature
scheme in [17] is based on it as well.

To define security in our context, we must specify the power of an adversary that attempts
to attack our scheme. We assume that the adversary B is a probabilistic polynomial time
machine that controls both the input and the memory. B adaptively selects a sequence of
read and write instructions. The checker performs every read and write as defined above.
Whenever the checker accesses a memory cell (except the root of the tree which is stored
in the checker’s own memory), B can choose any value to return, as explained in Section 2.
The checker is supposed to announce BUGGY if the result of the read operation is not what
it should be. We say that B is successful, if a faulty result from a read operation is returned
without the checker announcing BUGGY. For any adversary B and memory size n, we can
define B’s probability of success which is taken over B’s internal coin flips. For the scheme
to be secure means that for any adversary B and any polynomial p, for sufficiently large n
the probability that B succeeds is smaller than 1/p(n).

Theorem 2 The above scheme is secure.

Proof: In order to prove that the scheme is secure, we must show that an adversary B which
successfully avoids detection can be used to break the UOWHF in polynomial time, which
contradicts our assumption of the existence of UOWHF. Suppose that there is a probabilistic
polynomial time adversary B such that B has a nonnegligible probability of deceiving the
scheme described above. Whenever B is successful, we know that at some point B must
have given false contents for some node u. Let u be the first node whose contents B falsifies.
Let v be u’s parent and w be u’s sibling. Since we assume that u was the first node whose
contents were altered, the scheme did return the right value for A, and z,. Since B was not
detected, it must have claimed the contents of u to be A/, x! and the contents of w to be
k!, ! such that

T, = hy(2, 0 hy 0Ty 0 hy) = hy(zl, okl ozl ohl)

We will now use B to construct an adversary A that attacks U, the presumed family
of UOWHF. A guesses the first point in time and the first node v where B will lie (it has
a nonnegligible chance of guessing correctly). A simulates B up to the point where it has
guessed B will lie. A outputs z, hy, Ty, by, (the real contents of u and its sibling w) as the
x on which it will attempt to break the one-way hash function. Now A is given a random
hash function h € H, on which it should find a y # x such that h(z) = h(y). A writes
h as h, (From B’s view, this is similar to what the checker does). If indeed B comes up
with 2!, 2! k!, x! such that h,(x, 0 hy 0 2y 0 hy) = hy(x!, 0 k!, 0 2!, 0h!), then A outputs

y=ual oh! ox! oh!. In this case, A succeeds. Therefore, if B has a nonnegligible chance

of deceiving the checker, then A has a nonnegligible chance of breaking the UOWHF. =&
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5.1.2 Authentication using pseudorandom functions

We describe how to use pseudorandom functions and time stamps to authenticate the mem-
ory.

Let T be a pessimistic estimate on the total number of operations to the RAM and let
V' be the set of values that can be written in a memory word. Let D, the domain of the
pseudorandom function, be V' x {1..T} x {1...2n — 1} and let k(n) be such that 1/2%) is
a probability of deception that is tolerable. In location 7 of the memory, the checker stores
three items: v;, the contents of location #; ¢;, the last time it was written; and fs(v;,¢;,1),
an authentication tag which prevents the adversary from “making up” values for location .
The problem is to ensure that ¢; is indeed the last time location 7 was written.

To solve this problem, we construct a complete binary tree whose leaves correspond to
the n memory locations. We associate a time stamp with every node of the tree. The time
stamp associated with a leaf 7 is ;. The time stamp ¢, associated with an internal node v
with children v and w is ¢, +t,,. The checker authenticates the values in the internal nodes,
as above, by storing in node v, the time stamp ¢, and fs(0,¢,,v) (the nodes of the tree are
mapped to {1...2n — 1}). The checker keeps the root of the tree in its private memory.

In order to read the contents of location 7, the checker accesses all the nodes on the path
from the root to location 7 and their children (2logn altogether). For each internal node v
on the path, the checker verifies that ¢, is indeed the sum of ¢, and t,, the time stamps at
v’s children. Also, the checker verifies that the tags fs are correct.

In order to write into location i, the checker accesses all the nodes on the path from
the root to location 7 and their children. The checker verifies the time stamp ¢; as above.
The checker writes v} (the new value), ¢; + 1 and fs(v!,t; + 1,7) in the leaf corresponding to
location i. For each internal node v along the path, the checker increases ¢, by 1 and writes
fs(o, t, + 1, U).

Why is this immune against replays (write once)? The replay attack can only decrease
the times stored in the tree. Since the root contains the true value, there must be a first
point along the path where false values are retrieved from one or both siblings. However,
the sum of these false values cannot be equal to those retrieved from the parent, since the
false values are only smaller than the true ones.

Thus in order to return an incorrect value and escape detection, an adversary B must
guess the value of the pseudorandom function at some point correctly. Suppose that the
checker has access to a truly random function, rather than a pseudorandom function. In this
case B can do no better than guessing the value of the function. If B can choose a polynomial
length input sequence such that against a pseudorandom based checker it has a nonnegligible
chance of avoiding detection, then B forms the basis of a polynomial time statistical test A.
Given a function, A simply simulates the checker using the function against the adversary B
on the input sequence. If the B succeeds in avoiding detection then A declares the function
pseudorandom.

The techniques described in this subsection carry over to stack and queue checking. How-
ever, for stacks and queues, we can design on-line checkers that do not use any cryptographic
assumption. We describe this in the next subsection.
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5.2 Checking stacks

The stack checker described in section 4 checks correctness when the stack empties. One way
to check correctness after each operation is to empty the stack after each operation, storing
the contents in an auxiliary stack. The checker then checks that h(W) = h(R) and refills
the main stack from the auxiliary stack. It checks the auxiliary stack with two auxiliary
hashes. Unfortunately, this could require Q(7') operations per pop and Q(7?) operations
total, where T' is the number of operations in the request sequence.

The checker described in this section follows the auxiliary stack method. That is, the
checker has access to two stack data structures. Both stacks may be controlled by a common
adversary. One of the stacks is an auxiliary stack and is used to hold the contents of the
other stack which we partially empty periodically. We note that the user could use both
stacks. That is both stacks may contain user data. In this case each stack would act as the
auxiliary stack for the other.

In order to avoid squaring the number of operations in order to check the behavior of the
stack, the checker keeps intermediate “markers” in its private memory. A marker at level [
is the value that A(W) and h(R) attained when the stack reached level [. The hash values
h(W) and h(R) are reset after the marker is placed so that the marker above it is hA(W)
and h(R) for values above level [. Thus, when the checker checks an operation, it need only
empty the stack down to the position of a marker and check that A(W) = h(R). If the stack
drops below a marker, the checker resets h(W) and h(R) to the values stored by the marker.

We use O(log H) markers and perform O(log H) amortized additional operations per user
operation for this checker where H is the maximum number of items in the stack. The trick
is the placement of the markers. We use an idea from the simulation by oblivious Turing
machines of Pippenger and Fischer [19]. To simplify the explanation, we assume that we
have h = log H stacks Sp, S1, ..., Sp—1. Each stack has its own A(W) and h(R). We will see
how to combine these stacks into one stack later. The capacity of stack S; is 2 x 2° words. It
is convenient to think of stack S; as holding two blocks each of size 2°. A block operation on
stack S; is a sequence of 2! pushes or 2! pops. We refer to block operations for convenience.
Of course, the actual operations performed on the stack involve single words.

The stacks act as buffers. We service push/pop operations using stack Sp. If S overflows
(i.e., So contains two items and receives a push operation), we remove the two data items in
So and push them (as one block) into stack S;. Similarly, if on a pop operation Sy is empty,
we pop two data items (one block) from S; and push them into So. So now contains two
items and it can service the pop request.

The operation of stack S; is identical to Sy except that S; uses a block of 2 words as its
data item. A simple inductive argument shows that following this strategy stack .S; receives a
block push/pop operation at most every 2° user operations. The time (number of single word
operations) S; requires to service a block push/pop operation is O(2%). This includes the
time to empty S; (checking that h(W) = h(R) for S;) and refill S; from the auxiliary stack
(checking the auxiliary stack). Thus, the time to service n user operations is O(nlog H).
Note that since H is the maximum height of the stack, S;_; never overflows.

To turn the stacks Sg, 51, ..., Sp—1 into a single stack, we stack the stacks on top of each
other; the contents of Sy above the contents of 57, etc. Note that we still need a separate
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auxiliary stack to perform the partial emptying and refilling at each step. We keep a O(h)-
bit vector in reliable memory which indicates the number of blocks in each of the A stacks.
This vector determines the position of the markers. Each marker is a pair of O(k)-bit hash
values. Thus the size of the checker’s reliable memory is O(klogn).

For queues, a similar on-line checker can be implemented with O(log n) queues. However,
at this point we do not know a simple way to combine these queues into a single queue.

6 Lower bounds

In this section, we describe two lower bounds on checker memory size. The first is a lower
bound that holds essentially for all types of checkers considered in this paper. The second
is a much stronger lower bound specifically for on-line, noninvasive checkers. We also show
that these lower bounds are tight.

6.1 Lower bound for off-line checking

We show lower bounds on the amount of private memory a checker must use to correctly check
sequences which store n bits of data. We prove three claims. The first applies to checkers
which never call an honest implementation BUGGY. The second applies to checkers which
may sometimes call an honest implementation BUGGY. The third claim extends the second
claim by allowing the checker to use a (size dn : 0 < d < 1) public incorruptible tape. In
each claim, we show that the checker needs close to log(n) bits in its private memory to work
correctly.

Our lower bound is constructed from the special scenario in which the sequence of oper-
ations to be performed is a sequence of writes to distinct addresses followed by a sequence of
reads from those addresses. This is a possible scenario for all the data structures we consider
in this paper. For convenience, we will think of the sequence of writes as storing a long string
which the checker must reconstruct at a later point after the sequence of reads.

We view the data structure as a large adversarial main memory which is accessible to
the checker. We allow this adversary to be very powerful. We give the adversary the ability
to place the main memory in any configuration following the sequence of write operations
by the checker. The adversary’s primary limitation is that it doesn’t know the input string
or the state of the checker’s memory.

The checker’s input is the n-bit string of data presented in the sequence of writes. The
checker encodes the input as a checker memory state and a main memory state. Then after
the sequence of reads, the checker must reconstruct the input string using only the contents
of its checker memory and the adversarial main memory.

We show that if the checker’s memory is too small then there exists an input z such that
the adversary can fool the checker when the checker tries to encode and decode =. By fooling
the checker, we mean that the adversary changes the main memory contents such that the
checker decodes the main memory and its checker memory as some y not equal to the input
x. The adversary does not know what the checker’s input is. However, the adversary only
needs to be able to fool the checker (with high probability) on one input z in order to defeat
the checker. Therefore, the adversary will always assume that the checker’s input is x. If
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it is x, then the checker will be fooled. In the first claim, we also show that if the input is
not z, the adversary might not fool the checker but it will escape detection — that is, even
though the adversary alters main memory, the checker will not say BUGGY. It is easy to
extend the two subsequent claims so that the adversary always escapes detection.

Claim 1 A checker which correctly decodes the string it stored if the main memory is honest
must have private memory of size m > log(n) — 1 where n is the length of the string.

Proof:

Assume m < log(n) — 1 and fix the checker protocol.

We will show that there exists an input string = of length n such that whenever the
checker encodes x as some main memory state and checker memory state and then tries to
reconstruct the input, an adversary may always substitute a different main memory state
and fool the checker into believing that the original input was something other than z.

The adversary considers how the checker encodes inputs and decodes combinations of
checker memory and main memory states.

Definition: For each input z and each main memory state M, let sphere(x, M) be a vector
of length 2™ where the ¢ component is set to A if the (M, c) pair is a possible encoding of
x, * if the pair is a possible encoding of some other input, and [ if it is impossible for the
checker to reach that pair from any input.

If the adversary does not alter the main memory (i.e. the main memory is honest) the
checker must decode the main memory and checker memory as the input x with probability
1. Thus on input z, the checker memory must be in some configuration ¢ and the main
memory in some configuration M such that the ¢'* component of sphere(z, M) is A.

Observation: If 3z such that VM, Jy # x and M’ such that sphere(x, M) = sphere(y, M")
then the adversary can always fool the checker into believing it has stored y # . Note that
y may depend on M.

The adversary does this by always substituting M’ for M (even though the adversary
does not know what the checker’s input actually was). If the input was = and the checker
memory was ¢, then the ¢ component of sphere(z, M) = sphere(y, M') is an A and the
checker will decode (M, ¢) as y.

Note also that if the input to the checker is not # and the main memory is M, then the
checker memory ¢ must correspond to a * component of sphere(xz, M) = sphere(y, M') and
the checker will still decode the memory pair (M’,¢) as some input and the adversary will
go undetected.

In order to foil the adversary, an input must have a sphere (corresponding to that input
and some main memory) which occurs for no other inputs. There are 2 inputs of length n
and there are only 32" unique spheres. If m < log(n) — 1 then 32" < 27. Hence there exists
an input which satisfies the condition and which the checker cannot safely store. [ |

Now assume that the checker functions correctly with probability p but with two-sided
error. By this we mean that if the main memory is untouched by the adversary, the checker
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need only correctly decode the checker memory and main memory states with probability
> p and if the adversary alters the main memory, the checker will either detect the cheating
or still correctly decode with probability > p.

Adding discretization to the techniques of the above proof, we show:

Claim 2 A checker which functions correctly with probability p > 1/2 4+ 1/2!*1 on input
sequences storing n bits of data must have private memory of size m > log(n) — log(l) where

le Z+.

In other words, if the checker uses log(n) minus a few bits of checker memory, then there
exists an input such that the probability that the checker can correctly decode that input is
at most something close to 1/2.

Proof:

Assume m < log(n) — log(l). The adversary will look at spheres from the point of view
of how the checker decodes the main memory, checker memory pair.

Redefine sphere(xz, M) to be a [2™-bit vector where the ¢ set of [ bits is the closest
binary approximation to Pr[checker decodes (¢, M) as z].

Note that now there are at most 22" < 2" unique spheres and 3z such that VM, 3y # z
and M’ such that sphere(z, M) = sphere(y, M'). Fix such an z.

Let

qg= > (Pr[checker generates M,c from z] x
M,c

Pr[checker decodes M, ¢ as z])

In other words, ¢ is the probability the checker successfully encodes and decodes x when the
adversary does not alter the main memory.
Let

q = Z (Pr[checker generates M, ¢ from z] x
M,c

Pr[checker decodes M', ¢ as y])

where sphere(xz, M) = sphere(y, M'). In other words, ¢’ is the probability that if the checker
encodes z, and the adversary alters the main memory by finding a matching sphere then the
adversary successfully fools the checker into decoding the checker memory and altered main
memory as some other input.

Since sphere(x, M) = sphere(y, M') and the approximation of each vector component
uses [ bits, Pr[ checker decodes M, ¢ as z] < Pr| checker decodes M’ c as y] + 1/2".

Thus ¢ — 1/2! < ¢.

By the definition of our checker p < g and ¢’ < 1 — p which implies that p < 1/241/2*1,
|

Note that, if the checker uses too few bits in its private memory, then the probability

an adversary can fool a checker is almost as high as the checker’s probability of success-
fully decoding from unaltered memory (¢’ > q — 1/2'). Thus we need only insist that the
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checker successfully decode unaltered memories with high probability in order to show that
an adversary can fool the checker with high probability.

We now consider the case where the checker is allowed a certain amount of reliable
memory which the adversary may also see. If the size of this public incorruptible memory
were n then the checker could simply store the input in this memory. We consider the case
where the size of the incorruptible memory is less than n by a constant fraction and show
that the checker still needs Q(log(n)) private memory.

Claim 3 A checker which functions correctly with probability p > 1/2 4+ 1/2!*1 on input
sequences storing n bits of data using a public incorruptible tape of size dn (d < 1) must
have private memory of size m > log(n) — log(ﬁ) where | € Z7T.

Proof:

Assume m < log(n) — log(+55).

Define spheres as in the previous proof except now allow the spheres to be a function of
the input z, the main memory M, and the incorruptible memory B. Using the same dis-
cretization as in the previous proof, we have that there are at most 22" unique spheres per
incorruptible memory configuration. There are 29" possible incorruptible memory configu-
rations and hence at most 2/2"2%" < 2" inputs have a unique sphere for any of the possible
incorruptible memory configurations. Thus 3z and B such that VM, 3y # = and M’ such
that sphere(y, M', B) = sphere(x, M, B).

Therefore, an adversary may always replace M with M’ and the overall probability the
checker will be fooled will be at least p—1/2" if the checker’s input were z. As in the previous
proof this implies that p < 1/2 4 1/2!*1, [ |

6.2 Time-space tradeoffs for on-line noninvasive checking

We show a time-space tradeoff in the case of on-line noninvasive RAM checkers. Time in
this context is ¢, the number of cells in the RAM examined by the checker when it checks the
validity of an operation. Space is the size m of the checker’s reliable memory. Let n be the
size of the RAM. We show that n € O(mt). The proof is a generalization of Yao’s tradeoffs
for coherent functions in [21].

For the sake of simplicity we assume that each RAM cell holds just 1 bit. Once again we
assume that the checker is correct with probability p whenever it certifies the contents of a
memory location. Clearly, the interesting case is when p > 1/2.

Let M be the contents of the RAM and R an r-bit string which is treated as the source
of randomness for the checker. Since the checker in noninvasive, all memory contents are
possible and the number of pairs (M, R) is 2"*". The idea of the proof is to show that we
can use an on-line noninvasive checker to encode the pair (M, R) as a smaller string from
which the original pair can be reconstructed. If we can perform this encoding for too many
pairs, we obtain a contradiction.

In particular, we show that at least a constant fraction v of the pairs (M, R) can be
uniquely specified by strings of length m + (t + 8)n/(t + 1) + r with 8 < 1. It follows that,

nt+r+logy < m+{E+0)n/(t+1)+r
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(1=P)n < (m—logy)(t+1)
n € O(mt)

The encoding of (M, R) is (C, M', 7', R) determined by the following steps:

1. Simulate the storage of M into the RAM using R as the source of randomness in order
to obtain the checker memory C'.

2. Let J=0,5=0, M =0

3. Repeat the following n/(t + 1) times
Select the smallest positive integer 1 & .J

Assume M; = 0 and check (reading ¢ locations determined by the checker using C
and R)

If checker says BUGGY assume M; = 1

(Note: At this point we have assumed either M; = 0 or M; = 1.)

If the assumption is correct then Z; =1 else Z; =0

j=7j+1

Concatenate the contents of the ¢ locations read by the checker to M’
Put ¢ and the ¢ locations read by the checker in .J

4. If at least an/(t + 1) of the Z;’s are 1 then output (C, M’, 7', R) where Z' and « are
defined below.

The probability that the algorithm makes the correct assumption for the value of M; is > p.
The expected number of 1’s in 7 is then > pn/(t + 1). By Markov’s inequality, at least
v=(p—a)/(l —a) of the strings R cause Z to have > an/(t + 1) 1’s. Since this holds for
every memory contents, at least v of the pairs (M, R) output an encoding (C, M', 7', R).

Given C, M', 7, and R we can clearly reconstruct M and R. We now show how to
compress Z (n/(t+1) bits) to Z' (Bn/(t+1) bits with 8 < 1) without losing any information.
We know that Z contains > an/(t 4+ 1) 1’s. Using Chernoff bounds, the probability that a
randomly chosen n/(t 4+ 1)-bit string has > an/(t + 1) I’s is < e~ (@=1/2)*n/(2(t+1))  Thys the
number of such strings is < 2°%/+1) where 8 = 1 —log(e)(a —1/2)?/2. We can encode these
strings using #n/(t 4+ 1) bits. Thus the length of (C,M", Z', R) ism + (t + B)n/(t + 1) + r.
The definition of the checker allows p = 3/4, a =5/8, v =1/3, and 3 =1 — log(e)/128. Tt
follows that n € O(mt).

7 Conclusions and open problems

In this paper, we extend the idea of function checking to the realm of data structures and
memory. We define this notion of memory checking and consider models in which the power
of the checker is restricted in various ways (on-line/off-line and invasive/noninvasive). We
present checkers for several data structures in these models. We show lower bounds on the
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amount of reliable memory a checker must use under very general assumptions. We also
present a time-space tradeoff for a RAM checker under certain restrictions on its power (on-
line, noninvasive). Here time measures the number of memory cells examined per operation
and space measures the size of the checker’s reliable memory. The checking model in this
case closely resembles the setting for Boolean function coherence. Such a result indicates
that data structure checking provides a framework for generalizing more traditional function
checking models.

Another area in which data structure checking provides insight is in the context of in-
teractive proofs. One application of our results is a direct method of simulating a polytime
verifier by a logspace verifier. Condon [6], Dwork and Stockmeyer [7] and Lipton [13] derive
this result to show that logspace verifiers can verify essentially the same proofs as polytime
verifiers. Given a polytime verifier V' (a Turing machine), we simulate V by a logspace
verifier V. V' maintains V'’s head position on its logspace worktape. It uses the prover P
to hold the contents of V'’s tape. In this context, P plays the role of an unreliable memory
accessed by tape position. Our results show that V' needs only logspace in order to check
that P does not corrupt the tape. The computation time taken by V' is essentially that
required by V. An interesting open problem is to discover further relations between memory
checking and interactive proofs along with other areas of complexity theory.

An obvious open problem is to discover checkers for more complicated data structures.
For example, checkers for heaps or binary search trees. These data structures have a more
complicated structure than RAMs, stacks, or queues since their structure depends on the
values of the data they contain. The structures studied in this paper all have the property
that the value of the data did not play a part in determining how the data was stored. Either
the order of operations or a specific address determined the data requested. In the case of
heaps or binary search trees, the value of the data determines what value a read operation
should return.

Another question is to study how invasiveness increases the power of data structure
checkers. An interesting result would be to show invasiveness lower bounds for checking
RAMs or stacks, or alternatively to show that invasiveness is not needed. A related problem
is to reduce the overhead introduced by the checker per user operation.
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