k-Star-shaped Polygons*

William Evans[†]

Abstract

We introduce k-star-shaped polygons, polygons for which there exists at least one point x such that for any point y of the polygon, segment \overline{xy} crosses the polygon's boundary at most k times. The set of all such points x is called the k-kernel of the polygon. We show that the maximum complexity (number of vertices) of the k-kernel of an n-vertex polygon is $\Theta(n^2)$ if k = 2and $\Theta(n^4)$ if $k \ge 4$. We give an algorithm for constructing the k-kernel that is optimal for high complexity kkernels. Finally, we show how k-convex polygons can be recognized in $O(n^2 \cdot \min(1+k, \log n))$ time and O(n)space.¹

1 Introduction

The kernel of a polygon P is the set of points x such that $\overline{xy} \subset P$ for all $y \in P$. In other words, the kernel is the set of points that can see all of P when the boundary of P blocks all lines of sight. In some applications, lines of sight may cross the boundary of P to a limitid extent. We say that two points x and y are mutually k-visible if \overline{xy} crosses the boundary of P at most k times, and define the k-kernel of P to be the set of points x that are k-visible to every point of P. Note that points in the k-kernel may be outside² of P for $k \ge 1$. We denote the k-kernel of P by $M^k(P)$ (or, when k and P are clear from the context, M). P is k-convex if $P \subseteq M^k(P)$.

Lee and Preparata [6] describe an optimal O(n) algorithm to find $M^0(P)$. Aicholzer et al. [1] introduce the notion of k-convexity (using a slightly different definition) and give an $O(n \log n)$ algorithm for recognizing 2-convex polygons, and an O((1 + k)n) algorithm for triangulating k-convex polygons.

Dean, Lingas, and Sack [5] give algorithms that determine if a point is in the 1-kernel (which they call the psuedokernel) of an *n*-vertex polygon P in O(n) time and that calculate the 1-kernel in $O(n^2)$ time. They show that the latter algorithm is optimal by demonstrating that the 1-kernel may have $\Omega(n^2)$ complexity. In this paper, we investigate the concept of k-starshaped polygons: polygons with nonempty k-kernels. We present an efficient algorithm for constructing kkernels, and for recognizing k-convex polygons.

2 Properties

Jeff Sember[†]

Before continuing, we will require some terminology. Polygons are simple, closed, and bounded by a ccw sequence of closed edges directed so that the interior of the polygon is to the left of the edge. The predecessor and successor vertices of a vertex s of a polygon are denoted s^- and s^+ respectively.

To fully define k-visibility, we must define what constitutes a segment / polygon boundary crossing. The number of crossings that a segment \overline{xy} makes with the boundary of P is equal to the number of edges that intersect \overline{xy} , where (i) edges of P collinear with \overline{xy} are excluded, and (ii) if a vertex of P lies on \overline{xy} , and the edges of P incident to the vertex lie on opposite sides of \overline{xy} , then only one of the edges is counted. Figure 1 illustrates these conditions.

Figure 1: Segment / polygon boundary crossings (crossing counts are indicated)

Lemma 1 Every point on the boundary of $M^k(P)$ lies on a line containing two vertices of P.

Proof. Suppose x is a boundary point of M that does not lie on any of the $\binom{n}{2}$ lines containing pairs of vertices of P. Then x is in the interior of a cell of the arrangement of these lines, and (since x is a boundary point of M) there exists a point x' in the interior of the same cell that is not in M. Hence there exists a point $y \in P$ that is not k-visible from x'; and if we choose x' to be the first point on $\overrightarrow{xx'}$ from which y is not k-visible, then segment $\overrightarrow{x'y}$ must contain a vertex v of P. Now consider the family of rays from points on segment $\overrightarrow{xx'}$ through v. Since x and x' lie in the same cell of the arrangement, none of these rays can contain vertices of

^{*}Research supported by NSERC and Institute for Computing, Information and Cognitive Systems (ICICS) at UBC

[†]Department of Computer Science, University of British Columbia, [will,jpsember]@cs.ubc.ca

¹An applet demonstrating these results can be found at http://www.cs.ubc.ca/~jpsember/ss.html.

 $^{^2 {\}rm For}$ example, a transmitter that can penetrate a building's walls may 'see' the entire building from an outside location.

P (other than *v*). This implies that each of these rays shares the same sequence of crossings with edges of *P*. Now, $\overline{x'y}$ must cross at least k + 1 edges of *P* (since *y* is not *k*-visible from *x'*); hence the same edge containing *y* must intersect \overline{xv} at a point $y' \in P$ that is not *k*-visible from *x*. But then $x \notin M$, a contradiction.

Theorem 2 The k-kernel of an n-vertex polygon P has $O(n^4)$ complexity.

Proof. By Lemma 1, there are at most $O(n^2)$ lines containing edges of $M^k(P)$, and these lines can intersect at most $O(n^4)$ times.

Theorem 3 For $k \geq 4$, there exist polygons whose kkernels have $\Theta(n^4)$ complexity.

Proof. Consider the polygon P of Figure 2. It includes four sequences of $\Theta(n)$ 'Z'-shaped edge sections, which induce $\Theta(n^2)$ aperature pairs. Each aperature gener-

Figure 2: $M^4(P)$ has $\Theta(n^4)$ complexity (P is bold, $M^4(P)$ is shaded; some details omitted for clarity)

ates a narrow gap in M, and these gaps intersect $\Theta(n^4)$ times in the top left of P.

3 Constructing the *k*-kernel

We first define a *v*-region, a structure associated with a polygon's vertex. We will show that a polygon's *k*kernel is equal to the intersection of the v-regions of the vertices of the polygon, and provide an efficient algorithm to construct a v-region. This in turn will lead to an algorithm to construct $M^k(P)$.

Definition 1 The v-region for vertex s of a polygon P, denoted V_s , is the set of points x for which x is k-visible to every point of P on ray \overrightarrow{xs} .

Figure 3: v-region (k = 2)

An example of a v-region is shown in Figure 3.

Theorem 4 $M^k(P)$ is equal to the intersection of the *v*-regions of *P*.

Proof. Suppose some point x is not in M. Then there exists some point $y \in P$ that is not k-visible to x, which implies that segment \overline{xy} contains at least k+1 crossings. If x is a vertex of P, then $x \notin V_x$. Otherwise, we can rotate ray \overline{xy} around x until it contains a vertex s of P and some $y' \in P$, where $\overline{xy'}$ contains at least k+1 crossings. Hence, $x \notin V_s$.

Now suppose there exists a vertex s of P where $x \notin V_s$. Then the ray \overrightarrow{xs} contains some point of P that is not k-visible to x, which implies $x \notin M$.

Let us investigate how v-regions might be constructed. Suppose s is a vertex of polygon P. Draw lines through s and every other vertex of P. These lines partition the plane into (closed) wedges (2D cones) that contain no vertex of P in their interiors. Each wedge A in the partition has a symmetric 'dual' wedge \tilde{A} in the partition that is bounded by the same lines as those bounding A, and the two wedges are separated by regions A_L and A_R ; see Figure 4.

Figure 4: A wedge

We define the *clipping list* E(A) to be the sequence of edges of P that cross A or \tilde{A} . We orient the edges in this list to cross from A_R to A_L . We include the edge (s^-, s) , and also the edge (s, s^+) if s^+ and s^- both lie in A_L or both lie in A_R . We ignore all remaining edges of P, including those coincident with the lines bounding A and \tilde{A} . We order the elements of E(A) according to their signed distance from s, as shown in Figure 4. $E(A)_i$ denotes the i^{th} element of E(A).

We say that a point x is k-clipped by a wedge A of vertex s if (i) $x \in A$, and (ii) x is strictly to the right of $E(A)_{k+2}$ (if k is even), or on or to the right of $E(A)_{k+2}$ (if k is odd).

Lemma 5 If s is a vertex of polygon P, and x is a point in the interior of some wedge A of s, then x is within V_s iff A does not k-clip x.

Proof. Suppose A does not k-clip x. Then ray \overrightarrow{xs} will cross at most k+1 edges of E(A), which implies that \overrightarrow{xs} crosses the boundary of P at most k+1 times. Note also that no part of P lies to the left of $E(A)_1$, so every point of P on the ray is k-visible to x; hence $x \in V_s$. If, on the other hand, A does k-clip x, then ray \overrightarrow{xs} crosses at least k+1 edges of E(A), and hence crosses the boundary of P at least k+1 times to reach some point of P; thus, the point is not k-visible to x, and $x \notin V_s$.

For points x on the boundary of wedges A and B, we can derive a lemma similar to Lemma 5 that uses a clipping list incorporating edges of E(A) and E(B); we omit the details. These lemmas then imply that the boundary of V_s is a union of subsets of wedges, where each subset is either unbounded, or is bounded by pedges: edges of P with s to their left. These subsets are bounded on the sides by r-edges, which lie on lines through s. If the vertices of P are not in general position, then r-edges can induce 'cracks' in the kernel; see Figure 5.

Figure 5: Shaded region is $M^4(P)$, dotted line is a crack

Lemma 6 The v-region for a vertex of a polygon P with n vertices has O(n) complexity, and can be constructed in $O(n \log n)$ time.

Proof. Each v-region has O(n) wedges, and by Lemma 5 each wedge is bounded by at most three segments (or rays); hence a v-region has O(n) size. To construct a

v-region, we use a sweep line algorithm [2]. The sweep line rotates around s, and stops when it encounters a polygon vertex. Active lists maintain the clipping lists for the current wedge. At each event point, the appropriate boundary p-edge and r-edge can be found in $O(\log n)$ time; we omit the details. If a suitable tree structure (e.g., [4]) is used for the event queues and active lists, a v-region can be generated in $O(n \log n)$ time.

Theorem 7 The k-kernel of a polygon P of n vertices can be constructed in $O(n^2 \log n + \kappa)$ time, where κ is the number of intersections between edges of the v-regions of P.

Proof. We first use the algorithm given in the proof of Lemma 6 to construct, in $O(n^2 \log n)$ time, the v-regions for the vertices of P. Next, we construct the trapezoidal decomposition of the edges of these v-regions. This can be done in $O(n^2 \log n + \kappa)$ (deterministic) time [3], though a more practical randomized algorithm with the same (expected) running time exists [7]. Finally, we perform a linear traversal of this decomposition to find the edges bounding the common intersection of the n v-regions, which (by Theorem 4) are the edges bounding M. The running time of the complete algorithm is thus dominated by the time spent in the second step. It is worst-case optimal, since κ can be $\Omega(n^4)$, matching the lower bound of Theorem 3.

4 Complexity of the 2-kernel

There exist polygons whose 2-kernels have quadratic complexity [1]. In this section we show that no polygon has a 2-kernel with more than quadratic complexity.

By Theorem 4, the boundary of M is some number of p-edges and r-edges. Since every vertex of M is the intersection of two lines that are coincident with p-edges or r-edges, it suffices to show that there are a linear number of these lines.

Since there are n edges of P, there are at most a linear number of lines containing p-edges, as well as r-edges collinear with edges of P (it can be shown that this includes cracks). If we ignore symmetric cases, and categorize an r-edge by the orientation of the polygon edges and vertices that intersect the line containing the r-edge, then each remaining r-edge is one of the three types of Figure 6.

Each of these r-edges, r, is associated with two vertices, u and v. Both u and v are convex in type (1) and reflex in type (2). In type (3), u is convex, v is reflex, and an additional *parity* edge³ of P crosses the line containing r between u and v.

 $^{^{3}}$ We can think of these edges as enforcing a parity condition: the polygon edges that cross a particular line, when ordered by crossing position along the line, will alternate between crossing from right to left and crossing from left to right.

Figure 6: Types of r-edge (M is lightly shaded)

Consider type (1). Point x is a point interior to M, arbitrarily close to r. Now, suppose some vertex v' of P, together with u, induces a second r-edge r' of type (1) (and an analogous point x'). We can assume, without loss of generality, that v' is right of \vec{uv} ; see Figure 7. Suppose some edge of P crosses ray \vec{uv} . Then, to satisfy

Figure 7: Type (1) r-edge

parity, there must be two such edges crossing \overrightarrow{uv} ; but then the ray from x through v will cross the boundary of P four times, implying $x \notin M$, a contradiction. By a similar argument, no edge of P crosses ray $\overrightarrow{uv'}$, otherwise $x' \notin M$. We now have a contradiction, since P is no longer connected (e.g., there is no path within P from v' to u). Thus v is the only vertex inducing a type (1) r-edge with u.

Let us examine type (2). Suppose some vertex v' of P, together with u, induces a second r-edge r' of type

(2). We can assume v' is right of \vec{uv} . Now, rays \vec{uv} and $\vec{uv'}$ must cross additional edges t and t' of P to exit the polygon, as shown in Figure 8. An argument similar to that for the type (1) edge shows that no additional edges of P will cross either these rays or segment \overline{xu} , implying $x \in P$. It also implies that v' appears between t' and t in the ccw traversal of the boundary of P, as shown, otherwise v' is on the boundary of a hole in P. Now observe that there exists a point $y \in P$ such that

Figure 8: Type (2) r-edge

segment \overline{xy} crosses the boundary of P between t' and v', and again between v' and t. Also, since $\overline{xu} \subset P$ and $\overline{uv'} \subset P$, \overline{xy} must cross the boundary of P at two additional points, otherwise u is on the boundary of a hole in P. Hence y is not 2-visible to x, implying $x \notin M$, a contradiction.

If r is of type (3), then suppose u and some vertex v'of P induce a second r-edge r' of type (3). We can assume v' is right of \overline{uv} ; see Figure 9. Let t and t' be the

Figure 9: Type (3) r-edge

parity edges associated with the two r-edges. An argument similar to that for the type (1) edge shows that no additional edges of P cross $\overrightarrow{uv}, \overrightarrow{uv'}$, or \overline{xu} . Arguments

similar to that for the type (2) edge show that v' appears between t' and t in the ccw traversal of P's boundary, and that some point $y \in P$ exists such that \overline{xy} crosses the boundary of P twice (to the right of $\overrightarrow{uv'}$) and twice more (to the left of $\overrightarrow{uv'}$). Hence y is not 2-visible to x, a contradiction.

We have thus shown that each vertex of P can play the role of vertex u in (including symmetric cases) at most O(1) r-edges of types (1), (2), or (3). This implies that there are O(n) of these r-edges, lying on O(n)distinct lines. We therefore conclude:

Theorem 8 $M^2(P)$ has $O(n^2)$ complexity.

We leave as an open problem whether or not there exist polygons whose 3-kernels have greater than quadratic complexity.

5 *k*-Convexity

We now show how the k-convexity of a polygon can be determined by examining its v-regions.

Lemma 9 It is possible to determine if the v-region for a vertex s of a polygon P contains P in $O(n \cdot \min(1 + k, \log n))$ time.

Proof. We present two algorithms for determining if the v-region of s contains P, which when run in parallel, yield the stated running time. They are motivated by the following insight: to determine if $P \subseteq V_s$, only the size of a clipping list is significant, not its elements, since some $x \in P$ will lie outside of V_s if and only if there exists some $(k + 3)^{rd}$ element of a clipping list of a wedge of s.

The first algorithm is simply that of Lemma 6, modified so that if a clipping list for a wedge ever has more than k + 2 edges, it returns false; otherwise, it returns true. Its running time is $O(n \log n)$.

The second algorithm performs ccw traversal of P, starting from s, and uses a doubly-linked circular list of nodes to determine the maximum number of crossings of any line through s. There are two types of nodes: vertex nodes, which are ordered by the vertex's polar angle around s, and edge nodes, which connect neighboring vertex nodes. Each node has a dual whose angle is offset by π . The nodes include a crossing count, and the sum of the crossing counts for a primal / dual node pair represents the number of crossings that a line through the node's vertex or edge and s will make with that portion of the boundary of P traversed so far.

Initially, there are four vertex nodes, corresponding to the two vertices incident with s and their duals, plus four connecting edge nodes; see Figure 10. The algorithm traverses edges of P, maintaining pointers to the current primal and dual nodes, and moves ccw or cw

Figure 10: Initial vertex (circle) and edge (rectangle) nodes, with crossing counts

around the node list, depending upon the direction of the current edge of P with respect to s (for ease of exposition, we assume no edges not incident with s lie on rays from s). The crossing count of the primal is incremented every time the node is traversed. As each new vertex of P is reached, the current edge node is split and primal and dual nodes for the new vertex are inserted. If the vertex represents a change in ccw / cw direction, the crossing count of the primal vertex is incremented, in accordance with Figure 1.

If the sum of the crossing counts for a primal / dual pair ever exceeds k + 2, then this is evidence of a pair of points of P that are not mutually k-visible, and the algorithm returns false; otherwise, when the traversal is complete, it returns true. Observe that (i) each traversal step increments some node's crossing count; (ii) the algorithm halts if any such count exceeds k + 2; (iii) each node can be traversed, and new nodes can be inserted, in constant time; and (iv) at most O(n) nodes are created in total. Hence the algorithm performs at most $O(n \cdot (k + 1))$ steps. \Box

By Theorem 4, polygon P is k-convex iff every vregion of P contains P. Hence, by applying the algorithm of Lemma 9 (which requires O(n) space) to each vertex of P, we get the following result.

Theorem 10 k-convex polygons can be recognized in $O(n^2 \cdot \min(1+k, \log n))$ time and O(n) space.

Observe that if k is fixed, k-convex polygons can be recognized in $O(n^2)$ time.

Acknowledgment

The authors would like to thank Maarten Löffler for helpful discussions, and the anonymous reviewers for their comments.

References

- O. Aichholzer, F. Aurenhammer, F. Hurtado, P. Ramos, and J. Urrutia. Two-convex polygons. In Proc. 25th European Workshop on Computational Geometry EuroCG'09, pages 117–120, Brussels, Belgium, 2009.
- [2] J. L. Bentley and T. Ottmann. Algorithms for reporting and counting geometric intersections. *IEEE Trans. Computers*, 28(9):643–647, 1979.
- [3] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. J. ACM, 39(1):1–54, 1992.
- [4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms, second edition, 2001.
- [5] J. A. Dean, A. Lingas, and J. R. Sack. Recognizing polygons, or how to spy. *The Visual Computer*, 3(6):344– 355, 1988.
- [6] D. T. Lee and F. P. Preparata. An optimal algorithm for finding the kernel of a polygon. J. ACM, 26(3):415–421, 1979.
- [7] K. Mulmuley. A fast planar partition algorithm. I. In Foundations of Computer Science, 1988., 29th Annual Symposium on, pages 580–589, Oct 1988.