
CCCG 2010, Winnipeg MB, August 9–11, 2010

k-Star-shaped Polygons∗

William Evans† Jeff Sember†

Abstract

We introduce k-star-shaped polygons, polygons for
which there exists at least one point x such that for any
point y of the polygon, segment xy crosses the poly-
gon’s boundary at most k times. The set of all such
points x is called the k-kernel of the polygon. We show
that the maximum complexity (number of vertices) of
the k-kernel of an n-vertex polygon is Θ(n2) if k = 2
and Θ(n4) if k ≥ 4. We give an algorithm for construct-
ing the k-kernel that is optimal for high complexity k-
kernels. Finally, we show how k-convex polygons can
be recognized in O(n2 ·min(1+k, log n)) time and O(n)
space.1

1 Introduction

The kernel of a polygon P is the set of points x such that
xy ⊂ P for all y ∈ P . In other words, the kernel is the
set of points that can see all of P when the boundary of
P blocks all lines of sight. In some applications, lines of
sight may cross the boundary of P to a limitied extent.
We say that two points x and y are mutually k-visible
if xy crosses the boundary of P at most k times, and
define the k-kernel of P to be the set of points x that
are k-visible to every point of P . Note that points in
the k-kernel may be outside2 of P for k ≥ 1. We denote
the k-kernel of P by Mk(P ) (or, when k and P are clear
from the context, M). P is k-convex if P ⊆Mk(P ).

Lee and Preparata [6] describe an optimal O(n) algo-
rithm to find M0(P ). Aicholzer et al. [1] introduce the
notion of k-convexity (using a slightly different defini-
tion) and give an O(n log n) algorithm for recognizing
2-convex polygons, and an O((1 + k)n) algorithm for
triangulating k-convex polygons.

Dean, Lingas, and Sack [5] give algorithms that de-
termine if a point is in the 1-kernel (which they call the
psuedokernel) of an n-vertex polygon P in O(n) time
and that calculate the 1-kernel in O(n2) time. They
show that the latter algorithm is optimal by demon-
strating that the 1-kernel may have Ω(n2) complexity.

∗Research supported by NSERC and Institute for Computing,
Information and Cognitive Systems (ICICS) at UBC
†Department of Computer Science, University of British

Columbia, [will,jpsember]@cs.ubc.ca
1An applet demonstrating these results can be found at

http://www.cs.ubc.ca/~jpsember/ss.html.
2For example, a transmitter that can penetrate a building’s

walls may ‘see’ the entire building from an outside location.

In this paper, we investigate the concept of k-star-
shaped polygons: polygons with nonempty k-kernels.
We present an efficient algorithm for constructing k-
kernels, and for recognizing k-convex polygons.

2 Properties

Before continuing, we will require some terminology.
Polygons are simple, closed, and bounded by a ccw se-
quence of closed edges directed so that the interior of
the polygon is to the left of the edge. The predecessor
and successor vertices of a vertex s of a polygon are
denoted s− and s+ respectively.

To fully define k-visibility, we must define what con-
stitutes a segment / polygon boundary crossing. The
number of crossings that a segment xy makes with the
boundary of P is equal to the number of edges that in-
tersect xy, where (i) edges of P collinear with xy are
excluded, and (ii) if a vertex of P lies on xy, and the
edges of P incident to the vertex lie on opposite sides
of xy, then only one of the edges is counted. Figure 1
illustrates these conditions.

x y

P

2 1 1 2 11 1 1 1

Figure 1: Segment / polygon boundary crossings (cross-
ing counts are indicated)

Lemma 1 Every point on the boundary of Mk(P ) lies
on a line containing two vertices of P .

Proof. Suppose x is a boundary point of M that does
not lie on any of the

(
n
2

)
lines containing pairs of ver-

tices of P . Then x is in the interior of a cell of the
arrangement of these lines, and (since x is a boundary
point of M) there exists a point x′ in the interior of the
same cell that is not in M . Hence there exists a point
y ∈ P that is not k-visible from x′; and if we choose x′

to be the first point on
−→
xx′ from which y is not k-visible,

then segment x′y must contain a vertex v of P . Now
consider the family of rays from points on segment xx′
through v. Since x and x′ lie in the same cell of the
arrangement, none of these rays can contain vertices of



22nd Canadian Conference on Computational Geometry, 2010

P (other than v). This implies that each of these rays
shares the same sequence of crossings with edges of P .
Now, x′y must cross at least k+ 1 edges of P (since y is
not k-visible from x′); hence the same edge containing y
must intersect −→xv at a point y′ ∈ P that is not k-visible
from x. But then x /∈M , a contradiction. �

Theorem 2 The k-kernel of an n-vertex polygon P has
O(n4) complexity.

Proof. By Lemma 1, there are at most O(n2) lines con-
taining edges of Mk(P ), and these lines can intersect at
most O(n4) times. �

Theorem 3 For k ≥ 4, there exist polygons whose k-
kernels have Θ(n4) complexity.

Proof. Consider the polygon P of Figure 2. It includes
four sequences of Θ(n) ‘Z’-shaped edge sections, which
induce Θ(n2) aperature pairs. Each aperature gener-

Figure 2: M4(P ) has Θ(n4) complexity (P is bold,
M4(P ) is shaded; some details omitted for clarity)

ates a narrow gap in M , and these gaps intersect Θ(n4)
times in the top left of P . �

3 Constructing the k-kernel

We first define a v-region, a structure associated with
a polygon’s vertex. We will show that a polygon’s k-
kernel is equal to the intersection of the v-regions of the
vertices of the polygon, and provide an efficient algo-
rithm to construct a v-region. This in turn will lead to
an algorithm to construct Mk(P ).

Definition 1 The v-region for vertex s of a polygon P ,
denoted Vs, is the set of points x for which x is k-visible
to every point of P on ray −→xs.

Figure 3: v-region (k = 2)

An example of a v-region is shown in Figure 3.

Theorem 4 Mk(P ) is equal to the intersection of the
v-regions of P .

Proof. Suppose some point x is not in M . Then there
exists some point y ∈ P that is not k-visible to x, which
implies that segment xy contains at least k+1 crossings.
If x is a vertex of P , then x /∈ Vx. Otherwise, we can
rotate ray −→xy around x until it contains a vertex s of
P and some y′ ∈ P , where xy′ contains at least k + 1
crossings. Hence, x /∈ Vs.

Now suppose there exists a vertex s of P where x /∈
Vs. Then the ray −→xs contains some point of P that is
not k-visible to x, which implies x /∈M . �

Let us investigate how v-regions might be con-
structed. Suppose s is a vertex of polygon P . Draw
lines through s and every other vertex of P . These lines
partition the plane into (closed) wedges (2D cones) that
contain no vertex of P in their interiors. Each wedge
A in the partition has a symmetric ‘dual’ wedge Ã in
the partition that is bounded by the same lines as those
bounding A, and the two wedges are separated by re-
gions AL and AR; see Figure 4.

s
A

Ã

62

AL

AR

s−

s+

1
4

3 5

Figure 4: A wedge

We define the clipping list E(A) to be the sequence
of edges of P that cross A or Ã. We orient the edges in



CCCG 2010, Winnipeg MB, August 9–11, 2010

this list to cross from AR to AL. We include the edge
(s−, s), and also the edge (s, s+) if s+ and s− both lie in
AL or both lie in AR. We ignore all remaining edges of
P , including those coincident with the lines bounding
A and Ã. We order the elements of E(A) according
to their signed distance from s, as shown in Figure 4.
E(A)i denotes the ith element of E(A).

We say that a point x is k-clipped by a wedge A of
vertex s if (i) x ∈ A, and (ii) x is strictly to the right of
E(A)k+2 (if k is even), or on or to the right of E(A)k+2

(if k is odd).

Lemma 5 If s is a vertex of polygon P , and x is a point
in the interior of some wedge A of s, then x is within
Vs iff A does not k-clip x.

Proof. Suppose A does not k-clip x. Then ray −→xs will
cross at most k+1 edges of E(A), which implies that −→xs
crosses the boundary of P at most k+1 times. Note also
that no part of P lies to the left of E(A)1, so every point
of P on the ray is k-visible to x; hence x ∈ Vs. If, on the
other hand, A does k-clip x, then ray −→xs crosses at least
k+ 1 edges of E(A), and hence crosses the boundary of
P at least k + 1 times to reach some point of P ; thus,
the point is not k-visible to x, and x /∈ Vs. �

For points x on the boundary of wedges A and B,
we can derive a lemma similar to Lemma 5 that uses
a clipping list incorporating edges of E(A) and E(B);
we omit the details. These lemmas then imply that the
boundary of Vs is a union of subsets of wedges, where
each subset is either unbounded, or is bounded by p-
edges: edges of P with s to their left. These subsets
are bounded on the sides by r-edges, which lie on lines
through s. If the vertices of P are not in general posi-
tion, then r-edges can induce ‘cracks’ in the kernel; see
Figure 5.

Figure 5: Shaded region is M4(P ), dotted line is a
crack

Lemma 6 The v-region for a vertex of a polygon P
with n vertices has O(n) complexity, and can be con-
structed in O(n log n) time.

Proof. Each v-region has O(n) wedges, and by Lemma
5 each wedge is bounded by at most three segments (or
rays); hence a v-region has O(n) size. To construct a

v-region, we use a sweep line algorithm [2]. The sweep
line rotates around s, and stops when it encounters a
polygon vertex. Active lists maintain the clipping lists
for the current wedge. At each event point, the ap-
propriate boundary p-edge and r-edge can be found in
O(log n) time; we omit the details. If a suitable tree
structure (e.g., [4]) is used for the event queues and ac-
tive lists, a v-region can be generated in O(n log n) time.

�

Theorem 7 The k-kernel of a polygon P of n vertices
can be constructed in O(n2 log n+κ) time, where κ is the
number of intersections between edges of the v-regions of
P .

Proof. We first use the algorithm given in the proof of
Lemma 6 to construct, in O(n2 log n) time, the v-regions
for the vertices of P . Next, we construct the trapezoidal
decomposition of the edges of these v-regions. This
can be done in O(n2 log n+ κ) (deterministic) time [3],
though a more practical randomized algorithm with the
same (expected) running time exists [7]. Finally, we
perform a linear traversal of this decomposition to find
the edges bounding the common intersection of the n v-
regions, which (by Theorem 4) are the edges bounding
M . The running time of the complete algorithm is thus
dominated by the time spent in the second step. It is
worst-case optimal, since κ can be Ω(n4), matching the
lower bound of Theorem 3. �

4 Complexity of the 2-kernel

There exist polygons whose 2-kernels have quadratic
complexity [1]. In this section we show that no polygon
has a 2-kernel with more than quadratic complexity.

By Theorem 4, the boundary of M is some number
of p-edges and r-edges. Since every vertex of M is the
intersection of two lines that are coincident with p-edges
or r-edges, it suffices to show that there are a linear
number of these lines.

Since there are n edges of P , there are at most a
linear number of lines containing p-edges, as well as r-
edges collinear with edges of P (it can be shown that
this includes cracks). If we ignore symmetric cases, and
categorize an r-edge by the orientation of the polygon
edges and vertices that intersect the line containing the
r-edge, then each remaining r-edge is one of the three
types of Figure 6.

Each of these r-edges, r, is associated with two ver-
tices, u and v. Both u and v are convex in type (1)
and reflex in type (2). In type (3), u is convex, v is
reflex, and an additional parity edge3 of P crosses the
line containing r between u and v.

3We can think of these edges as enforcing a parity condition:
the polygon edges that cross a particular line, when ordered by
crossing position along the line, will alternate between crossing
from right to left and crossing from left to right.



22nd Canadian Conference on Computational Geometry, 2010

3

1

2

r

u

v

rv

u

rv

u

Figure 6: Types of r-edge (M is lightly shaded)

Consider type (1). Point x is a point interior to M ,
arbitrarily close to r. Now, suppose some vertex v′ of
P , together with u, induces a second r-edge r′ of type
(1) (and an analogous point x′). We can assume, with-
out loss of generality, that v′ is right of −→uv; see Figure 7.
Suppose some edge of P crosses ray −→uv. Then, to satisfy

rv

u x

v′

r′x′

Figure 7: Type (1) r-edge

parity, there must be two such edges crossing −→uv; but
then the ray from x through v will cross the boundary
of P four times, implying x /∈ M , a contradiction. By
a similar argument, no edge of P crosses ray

−→
uv′, oth-

erwise x′ /∈ M . We now have a contradiction, since P
is no longer connected (e.g., there is no path within P
from v′ to u). Thus v is the only vertex inducing a type
(1) r-edge with u.

Let us examine type (2). Suppose some vertex v′ of
P , together with u, induces a second r-edge r′ of type

(2). We can assume v′ is right of −→uv. Now, rays −→uv and−→
uv′ must cross additional edges t and t′ of P to exit the
polygon, as shown in Figure 8. An argument similar
to that for the type (1) edge shows that no additional
edges of P will cross either these rays or segment xu,
implying x ∈ P . It also implies that v′ appears between
t′ and t in the ccw traversal of the boundary of P , as
shown, otherwise v′ is on the boundary of a hole in P .
Now observe that there exists a point y ∈ P such that

rv

u x

v′

r′

y

t′

t

Figure 8: Type (2) r-edge

segment xy crosses the boundary of P between t′ and
v′, and again between v′ and t. Also, since xu ⊂ P
and uv′ ⊂ P , xy must cross the boundary of P at two
additional points, otherwise u is on the boundary of a
hole in P . Hence y is not 2-visible to x, implying x /∈M ,
a contradiction.

If r is of type (3), then suppose u and some vertex v′

of P induce a second r-edge r′ of type (3). We can as-
sume v′ is right of −→uv; see Figure 9. Let t and t′ be the

rv

u x

r′

t

t′

v′

y

Figure 9: Type (3) r-edge

parity edges associated with the two r-edges. An argu-
ment similar to that for the type (1) edge shows that no
additional edges of P cross −→uv,

−→
uv′, or xu. Arguments



CCCG 2010, Winnipeg MB, August 9–11, 2010

similar to that for the type (2) edge show that v′ appears
between t′ and t in the ccw traversal of P ’s boundary,
and that some point y ∈ P exists such that xy crosses
the boundary of P twice (to the right of

−→
uv′) and twice

more (to the left of
−→
uv′). Hence y is not 2-visible to x,

a contradiction.
We have thus shown that each vertex of P can play

the role of vertex u in (including symmetric cases) at
most O(1) r-edges of types (1), (2), or (3). This im-
plies that there are O(n) of these r-edges, lying on O(n)
distinct lines. We therefore conclude:

Theorem 8 M2(P ) has O(n2) complexity.

We leave as an open problem whether or not there ex-
ist polygons whose 3-kernels have greater than quadratic
complexity.

5 k-Convexity

We now show how the k-convexity of a polygon can be
determined by examining its v-regions.

Lemma 9 It is possible to determine if the v-region for
a vertex s of a polygon P contains P in O(n ·min(1 +
k, log n)) time.

Proof. We present two algorithms for determining if
the v-region of s contains P , which when run in parallel,
yield the stated running time. They are motivated by
the following insight: to determine if P ⊆ Vs, only the
size of a clipping list is significant, not its elements,
since some x ∈ P will lie outside of Vs if and only if
there exists some (k + 3)rd element of a clipping list of
a wedge of s.

The first algorithm is simply that of Lemma 6, mod-
ified so that if a clipping list for a wedge ever has more
than k + 2 edges, it returns false; otherwise, it returns
true. Its running time is O(n log n).

The second algorithm performs ccw traversal of P ,
starting from s, and uses a doubly-linked circular list of
nodes to determine the maximum number of crossings of
any line through s. There are two types of nodes: vertex
nodes, which are ordered by the vertex’s polar angle
around s, and edge nodes, which connect neighboring
vertex nodes. Each node has a dual whose angle is offset
by π. The nodes include a crossing count, and the sum
of the crossing counts for a primal / dual node pair
represents the number of crossings that a line through
the node’s vertex or edge and s will make with that
portion of the boundary of P traversed so far.

Initially, there are four vertex nodes, corresponding
to the two vertices incident with s and their duals, plus
four connecting edge nodes; see Figure 10. The algo-
rithm traverses edges of P , maintaining pointers to the
current primal and dual nodes, and moves ccw or cw

s

primal

dual

1

1

0

0

1

1

1

0

Figure 10: Initial vertex (circle) and edge (rectangle)
nodes, with crossing counts

around the node list, depending upon the direction of
the current edge of P with respect to s (for ease of ex-
position, we assume no edges not incident with s lie on
rays from s). The crossing count of the primal is incre-
mented every time the node is traversed. As each new
vertex of P is reached, the current edge node is split and
primal and dual nodes for the new vertex are inserted.
If the vertex represents a change in ccw / cw direction,
the crossing count of the primal vertex is incremented,
in accordance with Figure 1.

If the sum of the crossing counts for a primal / dual
pair ever exceeds k + 2, then this is evidence of a pair
of points of P that are not mutually k-visible, and the
algorithm returns false; otherwise, when the traversal is
complete, it returns true. Observe that (i) each traver-
sal step increments some node’s crossing count; (ii) the
algorithm halts if any such count exceeds k + 2; (iii)
each node can be traversed, and new nodes can be in-
serted, in constant time; and (iv) at most O(n) nodes
are created in total. Hence the algorithm performs at
most O(n · (k + 1)) steps. �

By Theorem 4, polygon P is k-convex iff every v-
region of P contains P . Hence, by applying the algo-
rithm of Lemma 9 (which requires O(n) space) to each
vertex of P , we get the following result.

Theorem 10 k-convex polygons can be recognized in
O(n2 ·min(1 + k, log n)) time and O(n) space.

Observe that if k is fixed, k-convex polygons can be
recognized in O(n2) time.



22nd Canadian Conference on Computational Geometry, 2010

Acknowledgment

The authors would like to thank Maarten Löffler for
helpful discussions, and the anonymous reviewers for
their comments.

References

[1] O. Aichholzer, F. Aurenhammer, F. Hurtado, P. Ramos,
and J. Urrutia. Two-convex polygons. In Proc. 25th

European Workshop on Computational Geometry Eu-
roCG’09, pages 117–120, Brussels, Belgium, 2009.

[2] J. L. Bentley and T. Ottmann. Algorithms for report-
ing and counting geometric intersections. IEEE Trans.
Computers, 28(9):643–647, 1979.

[3] B. Chazelle and H. Edelsbrunner. An optimal algorithm
for intersecting line segments in the plane. J. ACM,
39(1):1–54, 1992.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms, second edition,
2001.

[5] J. A. Dean, A. Lingas, and J. R. Sack. Recognizing
polygons, or how to spy. The Visual Computer, 3(6):344–
355, 1988.

[6] D. T. Lee and F. P. Preparata. An optimal algorithm for
finding the kernel of a polygon. J. ACM, 26(3):415–421,
1979.

[7] K. Mulmuley. A fast planar partition algorithm. I. In
Foundations of Computer Science, 1988., 29th Annual
Symposium on, pages 580–589, Oct 1988.


