
CCCG 2010, Winnipeg MB, August 9–11, 2010

k-Star-shaped Polygons∗
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Abstract

We introduce k-star-shaped polygons, polygons for
which there exists at least one point x such that for any
point y of the polygon, segment xy crosses the poly-
gon’s boundary at most k times. The set of all such
points x is called the k-kernel of the polygon. We show
that the maximum complexity (number of vertices) of
the k-kernel of an n-vertex polygon is Θ(n2) if k = 2
and Θ(n4) if k ≥ 4. We give an algorithm for construct-
ing the k-kernel that is optimal for high complexity k-
kernels. Finally, we show how k-convex polygons can
be recognized in O(n2 ·min(1+k, log n)) time and O(n)
space.1

1 Introduction

The kernel of a polygon P is the set of points x such that
xy ⊂ P for all y ∈ P . In other words, the kernel is the
set of points that can see all of P when the boundary of
P blocks all lines of sight. In some applications, lines of
sight may cross the boundary of P to a limitied extent.
We say that two points x and y are mutually k-visible
if xy crosses the boundary of P at most k times, and
define the k-kernel of P to be the set of points x that
are k-visible to every point of P . Note that points in
the k-kernel may be outside2 of P for k ≥ 1. We denote
the k-kernel of P by Mk(P ) (or, when k and P are clear
from the context, M). P is k-convex if P ⊆Mk(P ).

Lee and Preparata [6] describe an optimal O(n) algo-
rithm to find M0(P ). Aicholzer et al. [1] introduce the
notion of k-convexity (using a slightly different defini-
tion) and give an O(n log n) algorithm for recognizing
2-convex polygons, and an O((1 + k)n) algorithm for
triangulating k-convex polygons.

Dean, Lingas, and Sack [5] give algorithms that de-
termine if a point is in the 1-kernel (which they call the
psuedokernel) of an n-vertex polygon P in O(n) time
and that calculate the 1-kernel in O(n2) time. They
show that the latter algorithm is optimal by demon-
strating that the 1-kernel may have Ω(n2) complexity.
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1An applet demonstrating these results can be found at

http://www.cs.ubc.ca/~jpsember/ss.html.
2For example, a transmitter that can penetrate a building’s

walls may ‘see’ the entire building from an outside location.

In this paper, we investigate the concept of k-star-
shaped polygons: polygons with nonempty k-kernels.
We present an efficient algorithm for constructing k-
kernels, and for recognizing k-convex polygons.

2 Properties

Before continuing, we will require some terminology.
Polygons are simple, closed, and bounded by a ccw se-
quence of closed edges directed so that the interior of
the polygon is to the left of the edge. The predecessor
and successor vertices of a vertex s of a polygon are
denoted s− and s+ respectively.

To fully define k-visibility, we must define what con-
stitutes a segment / polygon boundary crossing. The
number of crossings that a segment xy makes with the
boundary of P is equal to the number of edges that in-
tersect xy, where (i) edges of P collinear with xy are
excluded, and (ii) if a vertex of P lies on xy, and the
edges of P incident to the vertex lie on opposite sides
of xy, then only one of the edges is counted. Figure 1
illustrates these conditions.
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Figure 1: Segment / polygon boundary crossings (cross-
ing counts are indicated)

Lemma 1 Every point on the boundary of Mk(P ) lies
on a line containing two vertices of P .

Proof. Suppose x is a boundary point of M that does
not lie on any of the

(
n
2

)
lines containing pairs of ver-

tices of P . Then x is in the interior of a cell of the
arrangement of these lines, and (since x is a boundary
point of M) there exists a point x′ in the interior of the
same cell that is not in M . Hence there exists a point
y ∈ P that is not k-visible from x′; and if we choose x′

to be the first point on
−→
xx′ from which y is not k-visible,

then segment x′y must contain a vertex v of P . Now
consider the family of rays from points on segment xx′
through v. Since x and x′ lie in the same cell of the
arrangement, none of these rays can contain vertices of
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P (other than v). This implies that each of these rays
shares the same sequence of crossings with edges of P .
Now, x′y must cross at least k+ 1 edges of P (since y is
not k-visible from x′); hence the same edge containing y
must intersect −→xv at a point y′ ∈ P that is not k-visible
from x. But then x /∈M , a contradiction. �

Theorem 2 The k-kernel of an n-vertex polygon P has
O(n4) complexity.

Proof. By Lemma 1, there are at most O(n2) lines con-
taining edges of Mk(P ), and these lines can intersect at
most O(n4) times. �

Theorem 3 For k ≥ 4, there exist polygons whose k-
kernels have Θ(n4) complexity.

Proof. Consider the polygon P of Figure 2. It includes
four sequences of Θ(n) ‘Z’-shaped edge sections, which
induce Θ(n2) aperature pairs. Each aperature gener-

Figure 2: M4(P ) has Θ(n4) complexity (P is bold,
M4(P ) is shaded; some details omitted for clarity)

ates a narrow gap in M , and these gaps intersect Θ(n4)
times in the top left of P . �

3 Constructing the k-kernel

We first define a v-region, a structure associated with
a polygon’s vertex. We will show that a polygon’s k-
kernel is equal to the intersection of the v-regions of the
vertices of the polygon, and provide an efficient algo-
rithm to construct a v-region. This in turn will lead to
an algorithm to construct Mk(P ).

Definition 1 The v-region for vertex s of a polygon P ,
denoted Vs, is the set of points x for which x is k-visible
to every point of P on ray −→xs.

Figure 3: v-region (k = 2)

An example of a v-region is shown in Figure 3.

Theorem 4 Mk(P ) is equal to the intersection of the
v-regions of P .

Proof. Suppose some point x is not in M . Then there
exists some point y ∈ P that is not k-visible to x, which
implies that segment xy contains at least k+1 crossings.
If x is a vertex of P , then x /∈ Vx. Otherwise, we can
rotate ray −→xy around x until it contains a vertex s of
P and some y′ ∈ P , where xy′ contains at least k + 1
crossings. Hence, x /∈ Vs.

Now suppose there exists a vertex s of P where x /∈
Vs. Then the ray −→xs contains some point of P that is
not k-visible to x, which implies x /∈M . �

Let us investigate how v-regions might be con-
structed. Suppose s is a vertex of polygon P . Draw
lines through s and every other vertex of P . These lines
partition the plane into (closed) wedges (2D cones) that
contain no vertex of P in their interiors. Each wedge
A in the partition has a symmetric ‘dual’ wedge Ã in
the partition that is bounded by the same lines as those
bounding A, and the two wedges are separated by re-
gions AL and AR; see Figure 4.
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Figure 4: A wedge

We define the clipping list E(A) to be the sequence
of edges of P that cross A or Ã. We orient the edges in
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this list to cross from AR to AL. We include the edge
(s−, s), and also the edge (s, s+) if s+ and s− both lie in
AL or both lie in AR. We ignore all remaining edges of
P , including those coincident with the lines bounding
A and Ã. We order the elements of E(A) according
to their signed distance from s, as shown in Figure 4.
E(A)i denotes the ith element of E(A).

We say that a point x is k-clipped by a wedge A of
vertex s if (i) x ∈ A, and (ii) x is strictly to the right of
E(A)k+2 (if k is even), or on or to the right of E(A)k+2

(if k is odd).

Lemma 5 If s is a vertex of polygon P , and x is a point
in the interior of some wedge A of s, then x is within
Vs iff A does not k-clip x.

Proof. Suppose A does not k-clip x. Then ray −→xs will
cross at most k+1 edges of E(A), which implies that −→xs
crosses the boundary of P at most k+1 times. Note also
that no part of P lies to the left of E(A)1, so every point
of P on the ray is k-visible to x; hence x ∈ Vs. If, on the
other hand, A does k-clip x, then ray −→xs crosses at least
k+ 1 edges of E(A), and hence crosses the boundary of
P at least k + 1 times to reach some point of P ; thus,
the point is not k-visible to x, and x /∈ Vs. �

For points x on the boundary of wedges A and B,
we can derive a lemma similar to Lemma 5 that uses
a clipping list incorporating edges of E(A) and E(B);
we omit the details. These lemmas then imply that the
boundary of Vs is a union of subsets of wedges, where
each subset is either unbounded, or is bounded by p-
edges: edges of P with s to their left. These subsets
are bounded on the sides by r-edges, which lie on lines
through s. If the vertices of P are not in general posi-
tion, then r-edges can induce ‘cracks’ in the kernel; see
Figure 5.

Figure 5: Shaded region is M4(P ), dotted line is a
crack

Lemma 6 The v-region for a vertex of a polygon P
with n vertices has O(n) complexity, and can be con-
structed in O(n log n) time.

Proof. Each v-region has O(n) wedges, and by Lemma
5 each wedge is bounded by at most three segments (or
rays); hence a v-region has O(n) size. To construct a

v-region, we use a sweep line algorithm [2]. The sweep
line rotates around s, and stops when it encounters a
polygon vertex. Active lists maintain the clipping lists
for the current wedge. At each event point, the ap-
propriate boundary p-edge and r-edge can be found in
O(log n) time; we omit the details. If a suitable tree
structure (e.g., [4]) is used for the event queues and ac-
tive lists, a v-region can be generated in O(n log n) time.

�

Theorem 7 The k-kernel of a polygon P of n vertices
can be constructed in O(n2 log n+κ) time, where κ is the
number of intersections between edges of the v-regions of
P .

Proof. We first use the algorithm given in the proof of
Lemma 6 to construct, in O(n2 log n) time, the v-regions
for the vertices of P . Next, we construct the trapezoidal
decomposition of the edges of these v-regions. This
can be done in O(n2 log n+ κ) (deterministic) time [3],
though a more practical randomized algorithm with the
same (expected) running time exists [7]. Finally, we
perform a linear traversal of this decomposition to find
the edges bounding the common intersection of the n v-
regions, which (by Theorem 4) are the edges bounding
M . The running time of the complete algorithm is thus
dominated by the time spent in the second step. It is
worst-case optimal, since κ can be Ω(n4), matching the
lower bound of Theorem 3. �

4 Complexity of the 2-kernel

There exist polygons whose 2-kernels have quadratic
complexity [1]. In this section we show that no polygon
has a 2-kernel with more than quadratic complexity.

By Theorem 4, the boundary of M is some number
of p-edges and r-edges. Since every vertex of M is the
intersection of two lines that are coincident with p-edges
or r-edges, it suffices to show that there are a linear
number of these lines.

Since there are n edges of P , there are at most a
linear number of lines containing p-edges, as well as r-
edges collinear with edges of P (it can be shown that
this includes cracks). If we ignore symmetric cases, and
categorize an r-edge by the orientation of the polygon
edges and vertices that intersect the line containing the
r-edge, then each remaining r-edge is one of the three
types of Figure 6.

Each of these r-edges, r, is associated with two ver-
tices, u and v. Both u and v are convex in type (1)
and reflex in type (2). In type (3), u is convex, v is
reflex, and an additional parity edge3 of P crosses the
line containing r between u and v.

3We can think of these edges as enforcing a parity condition:
the polygon edges that cross a particular line, when ordered by
crossing position along the line, will alternate between crossing
from right to left and crossing from left to right.
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Figure 6: Types of r-edge (M is lightly shaded)

Consider type (1). Point x is a point interior to M ,
arbitrarily close to r. Now, suppose some vertex v′ of
P , together with u, induces a second r-edge r′ of type
(1) (and an analogous point x′). We can assume, with-
out loss of generality, that v′ is right of −→uv; see Figure 7.
Suppose some edge of P crosses ray −→uv. Then, to satisfy

rv

u x

v′

r′x′

Figure 7: Type (1) r-edge

parity, there must be two such edges crossing −→uv; but
then the ray from x through v will cross the boundary
of P four times, implying x /∈ M , a contradiction. By
a similar argument, no edge of P crosses ray

−→
uv′, oth-

erwise x′ /∈ M . We now have a contradiction, since P
is no longer connected (e.g., there is no path within P
from v′ to u). Thus v is the only vertex inducing a type
(1) r-edge with u.

Let us examine type (2). Suppose some vertex v′ of
P , together with u, induces a second r-edge r′ of type

(2). We can assume v′ is right of −→uv. Now, rays −→uv and−→
uv′ must cross additional edges t and t′ of P to exit the
polygon, as shown in Figure 8. An argument similar
to that for the type (1) edge shows that no additional
edges of P will cross either these rays or segment xu,
implying x ∈ P . It also implies that v′ appears between
t′ and t in the ccw traversal of the boundary of P , as
shown, otherwise v′ is on the boundary of a hole in P .
Now observe that there exists a point y ∈ P such that
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t

Figure 8: Type (2) r-edge

segment xy crosses the boundary of P between t′ and
v′, and again between v′ and t. Also, since xu ⊂ P
and uv′ ⊂ P , xy must cross the boundary of P at two
additional points, otherwise u is on the boundary of a
hole in P . Hence y is not 2-visible to x, implying x /∈M ,
a contradiction.

If r is of type (3), then suppose u and some vertex v′

of P induce a second r-edge r′ of type (3). We can as-
sume v′ is right of −→uv; see Figure 9. Let t and t′ be the
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Figure 9: Type (3) r-edge

parity edges associated with the two r-edges. An argu-
ment similar to that for the type (1) edge shows that no
additional edges of P cross −→uv,

−→
uv′, or xu. Arguments
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similar to that for the type (2) edge show that v′ appears
between t′ and t in the ccw traversal of P ’s boundary,
and that some point y ∈ P exists such that xy crosses
the boundary of P twice (to the right of

−→
uv′) and twice

more (to the left of
−→
uv′). Hence y is not 2-visible to x,

a contradiction.
We have thus shown that each vertex of P can play

the role of vertex u in (including symmetric cases) at
most O(1) r-edges of types (1), (2), or (3). This im-
plies that there are O(n) of these r-edges, lying on O(n)
distinct lines. We therefore conclude:

Theorem 8 M2(P ) has O(n2) complexity.

We leave as an open problem whether or not there ex-
ist polygons whose 3-kernels have greater than quadratic
complexity.

5 k-Convexity

We now show how the k-convexity of a polygon can be
determined by examining its v-regions.

Lemma 9 It is possible to determine if the v-region for
a vertex s of a polygon P contains P in O(n ·min(1 +
k, log n)) time.

Proof. We present two algorithms for determining if
the v-region of s contains P , which when run in parallel,
yield the stated running time. They are motivated by
the following insight: to determine if P ⊆ Vs, only the
size of a clipping list is significant, not its elements,
since some x ∈ P will lie outside of Vs if and only if
there exists some (k + 3)rd element of a clipping list of
a wedge of s.

The first algorithm is simply that of Lemma 6, mod-
ified so that if a clipping list for a wedge ever has more
than k + 2 edges, it returns false; otherwise, it returns
true. Its running time is O(n log n).

The second algorithm performs ccw traversal of P ,
starting from s, and uses a doubly-linked circular list of
nodes to determine the maximum number of crossings of
any line through s. There are two types of nodes: vertex
nodes, which are ordered by the vertex’s polar angle
around s, and edge nodes, which connect neighboring
vertex nodes. Each node has a dual whose angle is offset
by π. The nodes include a crossing count, and the sum
of the crossing counts for a primal / dual node pair
represents the number of crossings that a line through
the node’s vertex or edge and s will make with that
portion of the boundary of P traversed so far.

Initially, there are four vertex nodes, corresponding
to the two vertices incident with s and their duals, plus
four connecting edge nodes; see Figure 10. The algo-
rithm traverses edges of P , maintaining pointers to the
current primal and dual nodes, and moves ccw or cw

s

primal

dual

1

1

0

0

1

1

1

0

Figure 10: Initial vertex (circle) and edge (rectangle)
nodes, with crossing counts

around the node list, depending upon the direction of
the current edge of P with respect to s (for ease of ex-
position, we assume no edges not incident with s lie on
rays from s). The crossing count of the primal is incre-
mented every time the node is traversed. As each new
vertex of P is reached, the current edge node is split and
primal and dual nodes for the new vertex are inserted.
If the vertex represents a change in ccw / cw direction,
the crossing count of the primal vertex is incremented,
in accordance with Figure 1.

If the sum of the crossing counts for a primal / dual
pair ever exceeds k + 2, then this is evidence of a pair
of points of P that are not mutually k-visible, and the
algorithm returns false; otherwise, when the traversal is
complete, it returns true. Observe that (i) each traver-
sal step increments some node’s crossing count; (ii) the
algorithm halts if any such count exceeds k + 2; (iii)
each node can be traversed, and new nodes can be in-
serted, in constant time; and (iv) at most O(n) nodes
are created in total. Hence the algorithm performs at
most O(n · (k + 1)) steps. �

By Theorem 4, polygon P is k-convex iff every v-
region of P contains P . Hence, by applying the algo-
rithm of Lemma 9 (which requires O(n) space) to each
vertex of P , we get the following result.

Theorem 10 k-convex polygons can be recognized in
O(n2 ·min(1 + k, log n)) time and O(n) space.

Observe that if k is fixed, k-convex polygons can be
recognized in O(n2) time.
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helpful discussions, and the anonymous reviewers for
their comments.

References

[1] O. Aichholzer, F. Aurenhammer, F. Hurtado, P. Ramos,
and J. Urrutia. Two-convex polygons. In Proc. 25th

European Workshop on Computational Geometry Eu-
roCG’09, pages 117–120, Brussels, Belgium, 2009.

[2] J. L. Bentley and T. Ottmann. Algorithms for report-
ing and counting geometric intersections. IEEE Trans.
Computers, 28(9):643–647, 1979.

[3] B. Chazelle and H. Edelsbrunner. An optimal algorithm
for intersecting line segments in the plane. J. ACM,
39(1):1–54, 1992.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms, second edition,
2001.

[5] J. A. Dean, A. Lingas, and J. R. Sack. Recognizing
polygons, or how to spy. The Visual Computer, 3(6):344–
355, 1988.

[6] D. T. Lee and F. P. Preparata. An optimal algorithm for
finding the kernel of a polygon. J. ACM, 26(3):415–421,
1979.

[7] K. Mulmuley. A fast planar partition algorithm. I. In
Foundations of Computer Science, 1988., 29th Annual
Symposium on, pages 580–589, Oct 1988.


