16th Canadian Conference on Computational Geometry, 2004

Computing the Set of All Distant Horizons of a Terrain

Daniel Archanbault*

Abstract

We studytheprodem of computingthesetof all distanthori-
zonsof aterrain,representedaseither: the setof all edges
thatappea in the setof all distanthoiizons; the conrected
setsin theunion of all pointsthatappeain thesetof all dis-
tanthorizons (the setof edge fragments); or a searchstruc-
ture to efficiently calculatethe edgefragments or edgeson
a distanthorizan from a particdar viewing direction. We
describea rancmizedalgorithm that canbe usedto solve
all threeforms of the prodem with anexpectedrun time of
O(n?*¢) for ary e > 0 wheren is thenumberof edgesn the
piecavise linearterrain. We shawv that solving eitherof the
first two versionsof the prodemis 3SUM hard,andwe also
constriet aterrainwith asinglelocal maximaandaquadatic
numter of edgefragmentsin the setof all distanthorizons,
shaving thatour solutionto the secondversionof the prab-
lemis essentiallyoptimal.

1 Introduction

A terrain is a piecavise linear, two-dimensionalfunction in

threedimersions. It is represeted usinga polyhedral mesh
compsedof facesedgesandvertices. Thefunction is de-
fined over the zy-planeandthe function value or z valueof

theterrainis the point’'s height or altitude. Intuitively, adis-

tant horizon of theterrainis a horizan from somehorizontal
viewing direction. Formally, a point on an edgeof the ter-

rain appeas on the distanthorizon if andonly if it suppots
a horizantal line V' (parallelto the zy-plane)that doesnot
properly intersectheterrain Suchaline V' is calleda hori-

zontalvisual line in thevisualhull literature [11] [12].

Our goalis to compue the setof all distanthorizonsof a
terrain. Onemotivation for this goalis to obtainarepresen-
tation of theterraindatathatis lessdetailedandthusfaster
to rencer, but that closelyappioximatesthe view of thetrue
terrainwhenrendeedfrom ary distantview point. We could
queryfor this distanthorizan givena horizantal viewing di-
rection or we could pre-calalate the setof edgesor edge
fragmentsthat cortribute to the setof all distanthorizons.
By rendeing this pre-calclated setof edges, we render an
accuratalistanthorizonindepeidentof the hotizontal view-
ing direction. We therebre consicr threeversionsof the
distanthorizan problem:
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1. The prodem of compding all distant horizon edges
(the setof terrainedges that contibute to at leastone
distanthorizon).

2. The problem of compuing the setof all distant hori-
zon edge fragments (the setof terrain edge fragments
that cortribute to at leastonedistanthorizan). These
edgefragmentsare the comectedsetsin the union of
all pointson the terrainthatappearn at leastonedis-
tanthorizan.

3. The prodem of compuiting a querydatastructue that
retuns the set of edge fragments or the set of edges
from a givenhorizantal viewing direction

The paperplacesour resultsin the context of previous
work, descrilesan algorithmto compue the setof all dis-
tanthorizors of a terrain,andthendiscusseshe comgexity
of eachof the prablemsdescribedabore.

2 Previous and Related Work

Theproblemof computingthehorizan of aterrainof n edges
from asingleviewing directioncanbereducedo computing

the upper ervelopeof n line segmerts in the plane. A sin-

gle horizan hasnearlinearcompleity ©(na(n)) [4] where
a(n) istheinverseAckermam function avelry slow growing

function that canbe consideed constah for mostpractical
values of n. Mary algorithms exist to compue the horizan

from a single view poirt. Atallah [2] describesa divide-
andcongter schemeto compute the upperenvelope of n

line sgments in O(na(n)lgn) time by recusively divid-

ing the line sggments into halvesand pairwisemeiging the
resultam upper ervelopesvia a sweepline techniqe. Her

shbeger [10] improves the runnirg time of the algorithm

to O(nlgn) by carefdly selectingthe halvesin Atallah’s
schemdo ensurethatthe upper envelopeshave linearcom-
plexity ateachlevel. De FlorianiandMagillo [7] descrile a
rancbmizedalgoritim thatcomputesthehorizon of aterrain
in O(na(n)lgn) expededtime. Thealgorithmusesa data
structue that caninsertor remove line segmentsfrom the
hotizon astheviewpoint changsor if theterrainchargesits

level of detail. Stavart [14] develops an algorithm thatcan
computetheappraimatehoiizonof aterrainatall n vertices
of theterrainin parallel. He dividesthe view arourd each
vertex into s sectorsandassumeshatthe elevation within a
sectoris corstant,leadingto analgoiithm with a runtime of

O(nlg®n + sn).



CCCG 2004, Montreal, Quebec, August 9-11, 2004

Therehasbeensomework doneon bowundingthe nunber
of combnatorially distinct orthagraphic views of a terrain.
Two suchviews aredistinctif the two setsof edgesfaces,
vertices andintersectionwisiblein thetwo projectiors from
thetwo viewing directicnsaredistinct. De Berg etal. shav a
lowerbownd of Q(n®a(n)) for ary e > 0 [5], while Agawal
andSharirshav an upper bourd of O(n®+¢) forary e > 0
([1] and[9]). A critical partof theproofin [9] is dualizingthe
n edgesf theterraininto n setsof n — 1 bivariate functiors
of bounded,constah degree andtaking the upper ervelope
of each.Our algorithm usesa similar dudization transfam
to compue the setof all distanthorizans andthe resulting
functions canbe showvn to be of bourded, constaih degree.
We describehis algorithmin the next section.

3 Computing the Set of All Distant Horizons

An edgeappear®n thedistanthorizan if andonly if it sup-
portsa horizantal visual line. If we intersecta terrainwith

an arbitray vertical planen thenonly the edgewhosein-

tersectionpoint is of highestaltitude suppots a horizontal
line in 7 that satisfiesthis definition (figure 1 right). All

otherhoiizontal tangentsin 7 to the edgesthat intersectr
mustpropely intersectheterrain. Thus,we couldcompue
thesetof distanthorizans by transfaming eachterrainedge
e into a surfacepatch(m, b, f.(m,b)) in a dual (m,b, h)-
space wherethe partial function f.(m, b) is the heigh of
the edgee in the vertical planew whosevettical prgection
hasslopem andy-intercet b. Let the edgee have vertices
(z1,y1, h1) and(z2,y2, h2). For afixedslopem, by (m) =
y1 — x1m givesthey-interceptof the unique horizontalline
with slopem passinghroud the vertex (z1,y1,h1). Sim-
ilarly, ba(m) = y2 — zam for (x2,y2,hs). The function
f(m, b) for this edgeis givenby?:

( b — by (m)

T
b € [b1(m), b2(m)],
fe(m,b) =< b1 (m) # ba(m)
max(hl, h2) b= b1 (m) = b2 (m)
{ undefired otherwise

We canuseanupperenvelope calculation[9], [13], or [3]
to compute the upperervelopeof the surfacepatclesasso-
ciatedwith the terrainedgesin dual (m, b, h)-space. This
uppe ervelope canbe compuedin O(n?t€) forany e > 0
time [9] and solvesversions(1) and(2) of the prodem as
statedn theintroduction.

Ipotentally, problemscould arisewhenm = oo, but this casecanbe
handedasa specid case.

@

/7r (m, b)

Figurel: Thediagramshawstwo views of theterrain. Left:
Verticalprgectionof = andtheterrain. Theconceitric poly-
gors of different colous representhe contou lines of the
terrainat different altitudes. Right: The vertical slice = of
theterrain.

4 Query Data Structure for a Fixed Distant Horizon

We canusethe output of the abave describedalgaithm to
quey for a distanthoiizon given a horizantal viewing di-
rection In particdar, oncethe upper ervelopein (m, b, h)-
spacds known, a querydatastructue canbe constrietedin
O(n?*¢1gn) timefor ary e > 0, to determire theedgefrag-
mentsor the edges thatlie onthedistanthorizan fromahor
izontal viewing direction. We corstruct this datastructue
by prgecting the upper ernvelopedown onto the mb-plare
from above. The mb-planeis thendivided into a numkber
of regions,which arecalledpatches, wherea bivariatefunc-
tion f.(m,b) realizesthe upperervelope. By deternining
the extentof a patchin them direction, we createintervals
of hoiizontalviewing directilnsfor which anedgefragment
apparson the distanthorizon We load theseintenals into
aninterva tree[6] sothatthey canbe efficiently searched
If we only wantto know the edgesthat appea on the dis-
tanthorizan, we memge overlappingintervals resultingfrom
thesameedgeinto a singleintenal. If we wantto know the
precisedistanthorizan, we storethe equatims definingthe
bowndaryof the patchewith theintenal.

Givenahorizantalviewing directionm, thes edgesonthe
distanthorizon canbe determiredin O(lgn + s) time since
eachof the s edgesis repated exactly once. The precise
distanthorizon or edgefragnentsonit canbedetermiredin
O(lgn + k) time wherek is the numker of edgefragments
on this distanthorizan. Thevalueof s is at mostn andthe
valueof k is atmostO(na(n)).

5 3SUM Hardness of Computing All Distant Hori-
zon Edges

In this section,we shawv that the prodem of compuing all
distanthorizan edges,or even deternining the cardirality
of this set,is 3SUM hard. This leadsoneto believe that
algoithms with sub-giadratic run times to compue the
solutionto this prablem are unlikely to exist. The 3SUM
harchessreductia is from the GeomBase problem [8] and
is similar to Gajentaarand Overmars’ [8] rediction from
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GeomBase to Separatorl. The Geombase prablem hasthe
following definition:

GeomBase: Given a set of n points with integer co-
ordinates on three horizontal linesy = 0, y = 1, and
y = 2, determine whether there exists a non-horizontal line
containing three points.

A terrainequivdentto aninstanceof the GeomBase prab-
lemis shavnin figure2. The O(nlgn) constrietion of this
terrainis asfollows. Sortthe setof pointson eachof the
linesy =0,y = 1, andy = 2 by x-coadinate.Let max and
min bethe maximum andminimum x-coordinate. Between
ary two horizontally adjacehpoints(z 1, y) and(zs, y) with
x1 < x2, createa horizantal line segmentwith endoints
(z1 + 3,y,1) and(z, — §,y,1). Forall points (z,y), place
two verticesat (z,y + 6,0) with 0 < § < 1. Connet these

four pointsinto structues'@' calleddits. Therestof the
constrietionis shavnin figure 2.

If we intersecta horizantal planewith this terrainat ary
altitude between0 and 1, we have a nunber of holizontal
segmeris in the planewith a horizontal distancelessthan
i betweenary adjaceh pair. It hasbeenshown in [8] that
this horizontal distances sufficiently smallto ensurethata
line passeghrough onepair of sggmeris on eachof y = 0,
y = 1,andy = 2, if andonly if threepointswerecollinearin
theorigind instanceof the GeomBase prodem. Thus,aline
passeghrowh threeslits if andonly if threepointsin the
original GeomBase prodem were collineatr Oncewe have
computedall distanthorizon edgeswe answer‘yes” to the
GeomBase prodem if andonly if anedgeadjacento a slit
appeas on the distanthorizan. This canbe donein O(n)
time andconcludesour reduction.

Although thisdemorstrategheproblem of deternining all
distanthorizan edgess 3SUM hard the reductionrequires
Q(n) local maxima It is still unknown if the problemis
3SUM hardwhenthe terrainhasa constanturnber of lo-
cal maxima. It is relatively straightforward to showv that
thereexists a terrain of m local maxima with Q(mn) dis-
tanthorizan edgefragnents. However, in the next section,
we demorstratethe prodem of compuing all distanthori-
zonedgefragmentstakes(n?) time even for terrairs with
asinglelocal maximum.

6 An Q(n?) Lower Bound for Computing all Distant
Horizon Edge Fragments

In thissectionwe presenaterrainI’ with asinglelocalmax-
imum and Q(n?) edgefragments. It follows immediately
from this exanple thatary algoithm to compute all distant
horizan edgefragmentswould take atleastQ(n 2) time. The
intersectionl’, of terrainT' with a horizontal planez = h

givesa simply connetedregion. The points on the convex

hull of this simply connectedegion arethe points that sup-
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Figure2: A terraincreatedrom aninstanceof GeomBase.
Thesolid verticesin thediagramareatheigh 1. Thehollow
vetticesareat height0.
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Figure3: Top down view of theterrainT with Q(n?) edge
fragments. Its intersectiorl’;, with a horizantal planeat an
altitudez € [h*,h™] is shavn in grey andthe convex hull

of theintersectionis shavn asathick blackline.

pott ahorizantal visualline in this plane.We court thenum-
ber of edgefragmentsby courting the nurber of timesan
intersectio pointbetween: = h andanedgeof T' appears
or disappea from the corvex hull of T, asthesweepplane
z = h is loweredthrough the terrainfrom highestto low-
estaltitude. Theseeverts corresppnd to the startor end of
an edgefragment sincethe edgeeitherbegins or ceaseso
support a horizantal visualline atthesepoints.

In figure 3, the edgesthat causethe Q(n2) edgefrag
mentshave verticeslabelleda}, a7, b, andd; for all
i €{0,1,2...n} andj € {0,1,2...n}. The altitude of
evely vertex labelleda or b is h* andthealtitudeof ev-
ery vertex labelleda; orb;” is h~ with h~ = h* —n. All

theverticeslabellede areat analtitudelessthanh— andthe



