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Abstract

We study the problem of finding optimal covers of
polygonal regions using multiple mobile guards. By
our definition, a point is covered if, at some time,
it lies within the convex hull of the guards from
which it is visible. The definition captures our de-
sire that guards both “see” and “surround” points
that they cover. Guards move along continuous time-
parameterized curves within a polygonal region P . An
optimal m-guard cover of P is a set of m guard paths
of minimum total length that cover all points in P .

In this paper, we restrict our attention to the case
where P is convex, and m is either two or three. We
first address the apparently simpler problem of opti-
mally covering all points on the boundary, ∂P , of P .
Although the guard paths are not restricted to ∂P , we
prove that in every optimal two-guard boundary cover
the guards remain on ∂P . When there are three guards,
an optimal boundary cover may require a guard to cross
the interior of the polygon. We show, however, that ev-
ery optimal three-guard boundary cover is simple (i.e.,
guard paths do not cross one another). We provide com-
plete characterizations of the form of optimal two- and
three-guard boundary covers for convex polygons that
support polynomial-time algorithms for their construc-
tion. Finally, we show that, for convex P , any optimal
two- or three-guard cover of ∂P is also a (necessarily
optimal) cover of the full polygon P .

1 Introduction

Given a polygon P , we consider the problem of finding
mobile guard paths of minimum total length to cover P .
We require the guards to both “see” and “surround” a
point in order to cover it. In particular, we associate
with a guard i a continuous path Gi(t) (parameterized
by time) contained in P . A point p ∈ P is covered at
time t by a set of guards, if p ∈ CH(

⋃
i:pGi(t)⊂P

Gi(t))
(the convex hull of the guards that see p at time t).
Although similar problems have been studied in the past
[2, 3, 4, 5] the definitions of coverage used do not require
enclosure, i.e. they are based on visibility considerations
alone. Our model also differs from previous work in the
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form of admissible guard paths: we allow paths to start
and end anywhere in P , to cross the interior of P , and
to even intersect.

We restrict our attention to covering convex polygons.
This allows us to focus on the complications that arise
from requiring enclosure in a setting in which visibility
is not an issue. Thus, a point p in a convex polygon P is
covered at time t by a set of guards, if p ∈ CH(

⋃
i Gi(t))

(the convex hull of all the guards at time t).
Furthermore, we initially consider only covering the

boundary, ∂P , of P . In such a cover, we call a maximal
connected subset of ∂P that is not visited (i.e., part of
a guard path) a free (boundary) segment. Having too
many free segments in a boundary cover makes path
intersections unavoidable, since the endpoints of a free
segment are visited by two different guards at the same
time. A boundary cover is simple if the paths of the
guards do not intersect in the interior of P . We show
that every optimal two- or three-guard boundary cover
of a convex polygon is simple. In the two-guard case,
this implies that the guards stay on ∂P , however in
the three-guard case, there are convex polygons whose
optimal cover requires a guard to cross the interior of
P .

We begin by analyzing the problem for two guards to
help set the notation and intuition. The same problem
for three guards turns out to have a surprisingly involved
solution.

2 Two-guard boundary covers of convex polygons

If the two-guard cover is simple then it leaves at most
two free segments on ∂P . Thus a shortest boundary
cover of this type has total length at most |∂P | − |`1| −
|`2| where `1 and `2 are the two longest boundary edges.
The following theorem shows that an optimal boundary
cover has exactly this form. Note that this implies that
we can find an optimal two-guard boundary cover of a
convex polygon with n vertices in O(n) time.

Theorem 1 Every optimal two-guard boundary cover
of a convex polygon P is simple.

Proof. If the boundary cover has fewer than two free
segments then it is not optimal. Let s be the earliest
covered free segment and t the latest. Since s is the
earliest free segment, either a guard starts its path at
the endpoint of s or its starting point is hidden, i.e.,
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it is not the endpoint of any free segment. A similar
argument can be made about t. Therefore s and t are
the only free segments that can be adjacent to path
endpoints (start or end of the paths). We call the rest
of the free segments (if they exist) intermediate.

We show how to untangle intersecting paths and pro-
duce a shorter boundary cover. Assume that P is posi-
tioned in a way that s and t intersect a horizontal line,
which divides ∂P into two series of edges that connect
s and t on top and bottom. Without loss of generality
we assume that s is on the left and t on the right. The
following steps explain how a two-guard boundary cover
can be untangled, see Fig. 1.

• Guard 1 starts its path at the top endpoint of s,
takes the top-most path at each intersection until
it reaches the top endpoint of t.
• Guard 2 starts its path at the bottom endpoint of

s, takes the bottom-most path at each intersection
until it reaches the bottom endpoint of t.

s t

G1

G2 G2

G1

x y

Figure 1: Finding the top-most and bottom-most paths
in a two-guard boundary cover.

When reaching an intermediate free segment xy, a
guard will choose a path that leaves the boundary at
one endpoint of xy, walks around the interior of the
xy-pocket (made by xy and the interior bottom-most
(or top-most) paths around xy) and gets to the other
endpoint of xy, see Fig. 1.

Since in the original boundary cover, both guards
start at s and end at t, any cut that separates s from t
crosses each of the guard paths. This implies that the
total length of the top- and bottom-most paths is at
most the length of the original boundary cover.

By the triangle inequality, we can shorten the top-
and bottom-most paths by replacing the interior path
of an xy-pocket with xy. We refer to this replacement of
a pocket with its free segment as flattening the pocket.
By flattening all pockets, we create new paths from s to
t for the guards that are limited to ∂P and still form a
boundary cover of P . �

3 Three-guard boundary covers of convex polygons

When we increase the number of guards to three, it
may appear that, as in the two-guard case, an optimal
boundary cover exists in which all guards remain on ∂P .
However, for certain convex polygons, crossing the inte-
rior is required to make an optimal cover. Figures 2 and
3 show optimal boundary covers where a guard must
cross the interior of the polygon one or more times.
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Figure 2: Optimal boundary cover may cross interior.
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Figure 3: Optimal boundary cover may cross interior
twice.

It may even appear possible at this point that for
some convex polygon an optimal boundary cover re-
quires guard paths to intersect, i.e., is not simple. We
will show that this is not the case, that is every optimal
boundary cover is simple.

In most cases, intersecting guard paths can be un-
tangled nicely. For example, in Fig. 4, the paths G1

and G2 intersect but can be untangled (see the grey
highlights) without lengthening the paths. However,
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Figure 4: A simple untangling step.

there are some cases that can only be partially untan-
gled since we might encounter pockets that cannot be
flattened without possibly increasing the total length of
the guard paths. Figures 5 and 6 show boundary cov-
ers that have been partially untangled using a method
similar to the two-guard method. The regular pock-
ets along the paths have been flattened, but the shaded
pocket in Fig. 5 cannot be flattened since the pocket
contains a path endpoint and the interior path of the
pocket doesn’t connect x and y. Thus, although it does
not appear so in the figure, the interior path of an xy-
pocket could be shorter than xy.

In the following theorem, we argue that all bound-
ary covers that can only be partially untangled result
in a set of paths that have one of the two general forms
shown in Figures 7 and 8. (For example, the highlighted
curves of Fig. 5 are of the form shown in Fig. 7.) We
call these two forms the single and double intersection
forms, respectively. In fact, the paths in these forms
may not provide a proper boundary cover. However,
they do provide a relaxed boundary cover in the sense
that every point on the boundary is either visited by
a guard or is part of a segment connecting two points
Gi(t1) and Gj(t2) for i 6= j, where t1 and t2 may dif-
fer. We show that for a relaxed boundary cover in these
forms there is always a shorter simple relaxed boundary
cover. This is a consequence of the following two decep-
tively simple lemmas, whose lengthy proofs constitute a
major part of the first author’s thesis [1] and have been
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Figure 5: The pocket cannot be flattened and no further
untangling is possible.
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Figure 6: Another example that cannot be untangled.
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Figure 7: Single intersection form.
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Figure 8: Double intersection form.

omitted from this abstract.

Lemma 2 [1, Theorem 1] If a relaxed boundary cover
{G1, G2, G3} has the single intersection form (Fig. 7)
with interior segments S1 and S2 then there exist two
free segments M1 and M2 such that (i) |M1| + |M2| <
|S1|+ |S2| and (ii) ((G1∪G2∪G3)\(S1∪S2))∪M1∪M2

can be partitioned into a simple relaxed boundary cover.

Lemma 3 [1, Theorem 2] If a relaxed boundary cover
{G1, G2, G3} has the double intersection form (Fig. 8)
with interior segments S1, S2 and S3 then there exist
three free segments M1, M2 and M3 such that (i) |M1|+
|M2| + |M3| < |S1| + |S2| + |S3| and (ii) ((G1 ∪ G2 ∪
G3)\(S1 ∪ S2 ∪ S3))∪M1 ∪M2 ∪M3 can be partitioned
into a simple relaxed boundary cover.

The proof of the following theorem reduces the gen-
eral problem of untangling a non-simple boundary cover
to the two special cases captured in the preceding lem-
mas.

Theorem 4 Every optimal three-guard boundary cover
of a convex polygon P is simple.

Sketch of Proof. Untangling a non-simple three-guard
boundary cover is similar to the two-guard case, but
some additional complications need to be addressed.
One critical issue is that the paths that arise in the
untangling process may not admit a parameterization
that makes them a proper boundary cover. We start

by ignoring parameterization and show that any non-
simple three-guard boundary cover can be transformed
into a shorter simple relaxed boundary cover.

The general idea is to create new paths for the guards
by finding the top-most and bottom-most paths as in
the two-guard case. If a top-most (or bottom-most)
path starting at s reaches a path endpoint before reach-
ing an endpoint of t, we backtrack to the last visited
intersection and follow the next top-most (or bottom-
most) path. See, for example, the top-most path in
Fig. 5. The path of the third guard connects the two re-
maining path endpoints in the original boundary cover.
It is then possible to show that the new set of paths
(after further untangling) are either (i) simple, (ii) form
a single intersection (if the third guard’s path connects
one path endpoint on the top to another at the bottom
of P , see Fig. 5), or (iii) form a double intersection (if
the third guard’s path connects two path endpoints on
the same side, see Fig. 6).

However, finding the top-most or bottom-most paths
may not be possible, for example, if the path of a guard
in the original boundary cover that starts at s (or ends
at t) does not intersect any other path. We show that all
boundary covers of this type that are not simple can be
untangled to either a simple relaxed boundary cover or
a set of paths that form a single intersection, see Fig. 9
(the highlighted curves show the untangled paths). For
further details on this case see [1, Chapter 4].

s t
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Figure 9: Finding the top- or bottom-most path is not
possible.

Even if the top- and bottom-most paths can be found,
they may not be shorter than the original boundary
cover, since it is possible that they use some part of the
original boundary cover more than once, as shown in
Fig. 10 (segment a is used by both). If this is the case,
then there is a cut (a curve) that separates P into Ps

(containing s) and Pt (containing t) that intersects only
one path (at a) of the original boundary cover. Such a
boundary cover can be untangled to a single intersection
form [1], see the highlighted curves in Fig. 10.

Thus any three-guard boundary cover can be untan-
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Figure 10: The cut intersects only one path.

gled to a simple relaxed boundary cover or a single or
double intersection form. Since Lemmas 2 and 3 provide
shorter simple relaxed boundary covers for the single or
double intersection form, the outcome is a simple re-
laxed boundary cover that is shorter than the original.

To complete the proof, it suffices to show that any
optimal simple relaxed three-guard boundary cover is,
under suitable parameterization, also an optimal simple
proper boundary cover.

We begin by proving that a simple relaxed boundary
cover has at most four free segments. Suppose there are
more than four free segments. It follows that at least
one guard must visit an endpoint of two non-consecutive
(around P ) free segments. Thus its path must cross the
interior of P and cut P into two polygons PL and PR

each of which contains at least one free segment. Since
no guard can cross this path and since each free segment
must be visited by two different guards, one guard is
constrained to PL and another to PR. Thus the number
of free segments in PL and PR is at most two, which
contradicts our assumption.

If there are at most three free segments then none of
the guards need to leave ∂P , thus choosing the three
longest edges of P as free segments will lead to the
shortest boundary cover of this form. If there are four
free segments then an optimal simple relaxed boundary
cover has only one guard crossing the interior of P (see
[1]) and Figures 2 and 3 show the possible forms of such
a boundary cover. As in Figures 2 and 3, we can eas-
ily parameterize the guard paths to provide a proper
boundary cover. �

If P has n vertices, finding the shortest boundary
cover with three free segments requires finding the three
longest edges of P , which can be accomplished in O(n)
time. Finding the shortest simple boundary cover with
four free segments, requires the algorithm to choose the
four free edges so that the sum of the other n− 4 edges
and the interior paths are minimized. There are

(
n
4

)
possible choices of four free edges. For each choice, we
calculate the shortest corresponding simple boundary
cover of each of the two possible forms. In a boundary
cover as in Fig. 3, the point x where G2 leaves ∂P is
either at a vertex or a point inside an edge e. The latter
will be chosen if the point that is distance ad/(a + b)
from the projection of p on the line ` through e is inside
e, where a, b, and d are the lengths indicated in Fig. 11.
Such a point minimizes the interior part of G2 since
|p̂x|+ |xq| is minimized when p̂q is a straight line, where

p
q

x

p̂

d

ad
a+b

a b
`

Figure 11: |px|+ |xq| is minimized when p̂q is a straight
line.

p̂ is the reflection of p across `. Finding all possible
points where G2 may leave ∂P takes O(n) time. Thus
the algorithm finds the shortest simple boundary cover
in O(n5) time. We expect that it will be possible to
improve this algorithm by analyzing the shape of P .

4 Polygon Coverage

The shortest two- and three-guard boundary covers of
a convex polygon P are also shortest polygon covers of
P . For the two-guard case, this is straight-forward.

For the three-guard case, if the guards remain on
the boundary of P then there are three free segments
covered at times t1 ≤ t2 ≤ t3. Let G1 and G2 cover
the free segment at time t2. The triangle with vertices
G1(t2), G2(t2), G3(t2) covers some part of P and parti-
tions the remainder of P into two parts. One of these
parts is covered by G1 and G3 and the other by G2 and
G3. If a guard crosses the interior of P (as in Figures 2
and 3) its path partitions P into two or three parts.
Each of these parts is covered by a pair of guards.

As a result, the shortest two- and three-guard bound-
ary covers of an n-vertex polygon P that we find in O(n)
and O(n5) time, respectively, are also polygon covers.
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