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Abstract

We study the decay of an information signal propagat-
ing through a series of noisy channels. We obtain exact
bounds on such decay, and as a result provide a new lower
bound on the depth of formulas with noisy components.
This improves upon previous work of Pippenger and sig-
nificantly decreases the gap between his lower bound and
the classical upper bound of von Neumann. We also dis-
cuss connections between our work and the study of mixing
rates of Markov chains.

1 Introduction

The decay of an information signal as it propagates
through a medium is an unavoidable phenomenon, fa-
miliar in almost every form of communication: sound,
wire, radio and so on.

The problem of signal decay is not restricted to
communication: that it plagues long computations,
as well, was all too apparent to the first users of elec-
tronic computers, and was for example the spur for
Hamming’s interest in coding theory [6]. In this case
the computation is a signal propagating through time.

Von Neumann recognized that, rather than being
technological and passing, this signal decay was an
essential difficulty for large-scale computations. Con-
sequently he was interested in whether, and at what
cost, a computer with noisy components might simu-
late one with ideal, noiseless components [10].

In this paper we investigate the propagation of in-
formation signals in noisy media. We study a basic
question which is relevant to any such propagation,
whether in communication or in computation. To set
the framework we first recall the well known “data pro-
cessing lemma” for information. Let X be a random
variable denoting the message chosen at the source.
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Let X be input to a communication channel, and let
the random variable Y be the output of that channel,
let Y in turn be input to another communication chan-
nel, and let Z be the output of that channel. (Thus Z
depends on X solely through Y.) The mutual informa-
tion I(X;Y") (definitions below) is a nonnegative real
number measuring the information available about X
after the first channel; likewise I(X; Z) measures the
information available after the second channel. The
data processing lemma states that no matter what the
properties of the second channel, I(X;7) < I(X;Y).

I(X;Y)
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I(X; 2)

If the second channel is noisy then one may expect
that this inequality be strict, and further, that the sig-
nal decay affect the capabilities of the communication
or computation system.

Our objective is therefore to obtain, as a function
of the Y — Z channel alone, a tight upper bound on
the ratio I(X; 2)/I(X;Y).

Thus the bound is required to hold for every distri-
bution on X and for every form of dependence of Y
on X. The desire for an inequality which is true under
such a stringent requirement is motivated by the in-
tended application of the inequality: namely inferring
the global properties of communication or computa-
tion systems from the local properties of their compo-
nents.

The first inequality of this type on the ratio
I(X;Z)/I(X;Y) was derived by Pippenger (for binary
channels) as a key step in his method for showing a
lower bound on the depth, and an upper bound on the



maximum tolerable component noise, of noisy formu-
las [7].

In this paper we improve Pippenger’s inequality,
and obtain the exact upper bound on the maximum
achievable “signal strength ratio” I(X;Z2)/I(X;Y),
for every binary channel.

As a corollary we improve both Pippenger’s lower
bounds on depth, and upper bounds on tolerable com-
ponent noise, for noisy formulas.

1.1 Formula Depth

Among the fundamental concerns in computation
are the depth and size of circuits required to compute
Boolean functions. Depth of circuits, in particular,
measures latency of computation. This is of critical
importance in circuits for real-time computation (e.g.
the FFT); and it is central to the study of parallel
complexity classes.

In view of the limitations of physical circuits, von
Neumann asked whether circuits with noisy compo-
nents can compute the same functions as circuits with
reliable gates; and if so, at what cost in latency
(depth)? He considered circuits composed of compu-
tational gates each with a bounded number of inputs.
In the noisy circuit each gate failed (produced a 0
instead of a 1 or vice versa) independently with prob-
ability e.

Von Neumann provided the following positive, but
qualified, response to this question: Every circuit with
noiseless gates can be simulated by a circuit with noisy
gates, whose depth is at most a constant times the
depth of the original circuit, provided that the prob-
ability of error in each component of the circuit is no
more than some ¢ < 1/2. (e depends on the number
of inputs to a gate.)

This answer has two especially interesting features.
The first is the limit ¢ on component failure, above
which the construction fails. The second is that the
construction requires a slow-down (i.e. increase in
the depth) by a factor strictly greater than 1. For
a long time it was not known whether these fea-
tures were necessary, or were artifacts of von Neuman-
n’s construction. Finally, Pippenger showed through
an elegant information-theoretic argument that both
features were necessary, at least in noisy formulas
(circuits with out-degree 1) [7]. Shortly afterward
Feder extended Pippenger’s bound to general noisy
circuits [3].

Using more precise information theoretic bounds
developed in this paper, we improve Pippenger’s re-
sult to show:

Theorem 1 Let f be a function which depends es-
sentially on n inputs. Let F' be a formula of depth
¢ using gates with at most k inputs, where each gate
fails independently with probability (1—¢€)/2. Suppose
F' computes the function f with probability > 1 — 6,
where 6 < 1/2. Let A =1— H(§).

o Ifé2 > 1/k then
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o IfE2<1/k thenn < 1/A

This result is the best known except in the case of
k = 3 where, by different methods, Hajek and Weller
have shown that to achieve 6 < 1/2 for arbitrary n,
& must be greater than 2/3 [5]. This matches the
threshold for ¢ in von Neumann’s construction.

The application of our information theoretic anal-
ysis to the lower bound on formula depth follows the
outline of Pippenger’s argument which, very briefly,
has the following structure. First he observes that
in order for a function depending essentially on all
inputs to be computed with high reliability, the mu-
tual information (in the Shannon sense, defined be-
low) between each input variable and the output must
be high. Next he shows that when some intermedi-
ate result in the computation is affected by random
noise, the mutual information between it and the in-
put strictly decreases. Computation gates can com-
pensate for this loss, up to a point, by combining the
information of their predecessors; but the necessity of
doing this forces the formula to be large.

Thus the argument depends essentially on two
properties of mutual information. First, a subaddi-
tivity property. Let X be a random variable repre-
senting the value of one input to the formula, with
the remaining variables fixed. Subadditivity means
that the mutual information between X and the out-
put Y of a gate, before being affected by noise, is no
more than the sum of the mutual information between
X and the inputs to the gate. Pippenger establishes
this claim using the data processing lemma for mutual
information, and the fact that in a formula the inputs
to the gate are conditionally independent given X.

After the gate performs its computation, its output
Y is affected by random noise. Let Z be the result-
ing random variable. (Z equals Y with probability
(1+¢)/2,and Y with probability (1 —¢)/2.) The sec-
ond property of mutual information that we need is
that the ratio I(X; Z)/I(X;Y) is bounded by a func-
tion of the noise parameter £. Pippenger shows that



Figure 1: Bounds on I(X; Z)/I(X;Y).

the input signal fed into the path, and the output sig-
nal which emerges from the path after being affected
by a noisy channel at each level.

With this formulation in mind, we view the input
value X = 0 or X = 1 as the outcome of a random
experiment. The random variable Y| representing the
value of the signal partway through the path, may be
thought of as a noisy signal reporting on the outcome
of the experiment. That is, each experimental out-
come will give rise to a different conditional probabil-
ity distribution on the random variable Y. The mutual
information I(X;Y") measures how statistically distin-
guishable these two conditional distributions are. Af-
ter passing through a noisy channel, the distributions
become less distinguishable and so the mutual infor-
mation decreases.

Thus our investigation may be viewed in another
way. The two possible values 0,1 of a random vari-
able along the path may be regarded as the states of a
two-state Markov chain, and propagation of the signal
through each noisy channel may be viewed as a time
step of the Markov chain. In this light, we are inter-
ested in showing a rapid mixing rate for the chain. In
particular, we are interested in showing that two dis-
tributions on {0, 1}, corresponding to the conditional
distributions given X = 0 or X = 1, quickly become
statistically indistinguishable.

Such bounds are usually demonstrated with respect
to the Ly, Ly or L., norm, but it is not obvious
that these measures satisfy the subadditivity property
which is required in order to decompose the formula
into a sum over paths. Nevertheless, by considering
the norm after processing at the gate, we prove in
theorem 4 that indeed any L. norm, c finite, is sub-
additive. (For mutual information, subadditivity is



evident already before processing.) Using this theo-
rem, we can show Pippenger’s lower bound via these
norms, without reference to information theory (see
section 6). However, this method does not appear to
be strong enough to show the lower bound of theo-
rem 1, which we argue through mutual information.
Mixing rates of large Markov chains have been stud-
ied extensively, in terms of combinatorial properties
related to the connectivity of the chains. (For back-
ground see the survey papers of Vazirani [9] and of
Dyer and Frieze [2].) By contrast we focus on the
detailed properties of small, connected chains.

2 Definitions

We use px to denote a probability distribution on
random variable X. Similarly, py|x=, or py|, denotes
a probability distribution on random variable Y con-
ditioned on X = z.

The entropy of a distribution p is

Zp ) log p(«

For distributions p and ¢, the Kullback Liebler di-
vergence (or relative entropy) from ¢ to p is
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The mutual information between two random vari-
ables X and Y is

I(X;Y) =

e
2. 2 008 e

A binary channel takes a binary value input and
produces an output bit according to a probability dis-
tribution which depends on the input value.

If the input to the channel is a random variable
X with distribution px then the channel outputs a
random variable Y whose distribution is py = px -
A. In particular, py (0) = px(0)a + px (1)(1 — b) and
py (1) = px(0)(1 —a) + px(1)b.

For background on information theory the texts of
Gallager [4] and Cover and Thomas [1] as well as Shan-
non’s original paper [8] are recommended.

3 Reduction to Weak Signal Case

Our first step relies upon a geometric interpretation
of mutual information. Let py|q and py|; be the dis-
tributions on Y conditional on each input possibility
X = 0,1; and let py be the average of these distri-
butions (with the weights px(0),px(1)). From the
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Figure 2: A general binary channel and its correspond-
ing row-stochastic matrix.

definitions we have:

Py oY)

I(ij) = pr(x)szW(y)lo ( )
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Here h is the altitude marked in figure 3. Thus mutual
information can be interpreted as a discrete second
derivative of the entropy function H.

Now suppose we pass the random variable Y
through a channel A and obtain the output Z. For
each x = 0,1, the distribution pz|, equals py|, - A.
Just as for Y, the mutual information I(X; Z) is the
discrete second derivative among the points H(pz|o),
H(pz) and H(pz1), where pz is the average of pz|o
and pyz|; weighted by px (0) and px(1). Thus, I(X; Z)
is the altitude A’ in figure 3. Recall that we wish to
obtain an upper bound, as a function of the channel
A, on the ratio I(X; Z)/I(X;Y). This is equivalent
to determining the maximum over all py o, py1 and
all weights px, of the ratio h’/h.

We will find the maximum ratio h’/h by explicitly
identifying parameters for which it is attained. Our
first step in determining these parameters relies on a
very general fact about maximizing the ratio between
two discrete second derivatives. For any function f,
any two values z,y in the domain of f, and any p €
[0,1], let fa(z,y,p) = f(pz + (1 —p)y) — pf(z) — (1 -
p)f(y) denote the discrete second derivative of f.

Lemma 1 For any strictly concave functions f, g on
the interval [0, 1], and any p € [0, 1], the ratio

r(z,y) = g2(z,y,p)/ f2(2,y,p)



Figure 3: Visualization of I(X;Y) and I(X; Z)

is mazimized in the limit |x — y| — 0.

The lemma holds for more general functions f and
g but for brevity we restrict ourselves to the above
statement.

Proof: Let z* and y* be a closest pair of points which
achieve the maximum ratio r. We obtain a contradic-
tion by finding a closer pair z,y which achieve at least
ratio r. Say z* < y* (otherwise reflect the interval
[0,1] about 1/2).

The function ¢ is bounded since it is a continuous
function on a closed and bounded interval. Since f
and ¢ are strictly concave it follows that 0 < r <
0. By suitable affine linear transformations of f and
g we can reduce to the case in which the functions
are equal at the endpoints (i.e. f(z*) = g(2*) and
F(y*) = 9(y*)); and we can scale the maximum ratio
rto 1 (thus f(pz* + (1 —p)y*) = g(pz* + (1 —p)y*)).

We now produce a pair z,y with |z — y| < |z* — y*|
and r(z,y) > r(z*,y*). There are two cases. If g(z) >

f(z) for some z € [2*,y*] then let « be the greatest
value less than z, for which f(z) = g(2); and let y be
the least value greater than z, for which f(y) = g(y).
Observe that  # y, and also that at least one of z, y
is not at an endpoint z* or y*, since by assumption
flpe*+(1—p)y*) = g(pz*+(1—p)y*). Further observe
that g(2’') > f(2') for all 2’ € [z,y], and in particular
for 2/ = px + (1 — p)y. Hence z,y are as desired.

In the other case g(z) < f(z) for all z € [z, y*].
Then any pair z,y such that pz + (1 — p)y = pz* +
(1—p)y* and such that 2* < z < y < y*, will complete
the proof. a

We can now reexamine the ratio of signal strengths,
I(X;Z)/I(X;Y). We find that the fraction of infor-
mation about X which is preserved going through
channel A is maximized for a pair of distributions
py|x=0 and py|x=; which are almost indistinguish-
able:

Corollary 1 The ratio I(X;Z2)/I(X;Y) is maxi-
mized in the limit |py|x=0 — py|x=1] — 0.

(Recall that py|x=o and py|x=1 correspond to points
on the unit interval. The distance function is induced
from the interval.)

Proof: Fix any weights px(0) and px(1l). Then
I(X;Y) and I(X;Z) are the discrete second deriva-
tives of strictly concave functions, namely the restric-
tions of the entropy function to various subintervals of
[Oa 1] O

Observe also that unless the channel is either per-
fectly noiseless or perfectly noisy, that is unless the
entries of A are all 0’s and 1’s, the corollary will hold
strictly; which is to say that the maximum ratio is
achieved only in the limit of very close distributions.
Thus only when it is carrying a very weak signal can
a (nontrivial) noisy channel perform at its peak effi-
ciency.

For example suppose we transmit one bit of infor-
mation over a long cable; and suppose that each me-
ter of the cable introduces some random noise which
is symmetric in the sense that it affects 0’s and 1’s
with the same frequency. We will later see that in this
symmetric case, the signal strength ratio is maximized
when each of the distributions py|x=¢ and py|x=1
are asymptotically close to the uniform distribution
(in which 0’s and 1’s are equally likely). This is also
the distribution each signal eventually approaches as
it travels along this cable. Hence the corollary implies
that the greatest information loss occurs in the first
part of the cable.

For a homogeneous cable this observation could
be more simply made by examining powers of the



matrix describing the properties of a meter of ca-
ble. Our result shows that this is actually a general
phenomenon regarding transmission over noisy chan-
nels, rather than being a property of multiplication of
stochastic matrices.

Another lesson which is suggested by the corollary
is that if several signals carry information about an
event, one may wish to propagate each signal sepa-
rately rather than combine the information into a sin-
gle, clearer signal. Of course the corollary must be
applied with care since not every weak signal achieves
the minimum loss.

4 Signal Decay

In the previous section, we showed that the ratio
r = I(X;Z)/1(X;Y) is maximized for a pair of in-
finitesimally close distributions. This greatly simpli-
fies the task of identifying the maximizing distribu-
tions since instead of having to consider two indepen-
dent parameters (specifying the distributions), we can
range over just one parameter (specifying one of the
distributions), and express r with a series expansion
in terms of the distance between the two distributions.

Another simplification that results from restricting
to the case of infinitesimally separated distributions is
that, if p and p+e represent a close pair of distributions
on Y, then

I(X;Z)
I(X;Y)

— D((p + 6) AHP ) A) + O(G)

D(p+ €llp)
In particular, the weights px(0), px(1) vanish from
the problem. Our task reduces to maximizing the con-
stant term in the expansion of D((p+¢)-Al|p-A)/D(p+
¢|lp) over all distributions p.

There is a parameter space in which this maximiza-
tion problem is addressed most simply, and in which
the locus of maximization and value of the maximum,
are expressed most naturally. We now give this repa-
rameterization and then solve for the maximum.

Let p be a probability distribution, p = (p(0), p(1)).
Define o(p) = (1/p(0), v/p(1)). Geometrically ¢ maps
the segment between (1,0) and (0,1) in R? (the
standard parameterization of the probability distribu-
tions), to the quarter circle, centered at the origin,
between (1,0) and (0, 1).

Write the L, distance of two vectors u =

(u(0),u(1)) and v = (v(0),v(1)) in R? as: |Ju —v||]z =

1/2
(o i) = v()?)
Let € = (€(0),€(1)) be such that €(0) + €(1) = 0.
Thus both p and p + € are probability distributions.
If €(0),¢(1) << p(0),p(1) then D(p + €||p) is approx-

imated by a power series expansion in €. However,

the coefficients of this expansion vary depending on
p. The map o has the property that the first term
of the power series expansion no longer has a depen-
dence on the probability distribution about which the
expansion is being taken. In fact, after reparameteri-
zation by o, the first term in the divergence is simply
proportional to the square of the Lo distance between
the two vectors on the circle corresponding to the two
distributions:

Lemma 2 D(p+¢|lp) = gllo(p+€) —o(p)[|3 + O(<)

Proof: By series expansion. a

There is some intuition for this reparameterization.
It is well known that the divergence D(p + ¢||p) mea-
sures how statistically distinguishable the two distri-
butions p + € and p are. (E.g. how many coin-tossing
trials are required to reliably distinguish a coin with
bias p + € from one with bias p.) A fixed € is more
significant for a highly biased distribution p, than for
p near {1/2,1/2}. This is clearest when considering
p=1{0,1} and p+e = {e(0),1 —¢(0)}, in which case a
coin with bias p will never be mistaken for a coin with
bias p 4+ €. The map o stretches the ends of the seg-
ment to capture this dependence on p exactly, so that
the statistical distinguishability of two nearby distri-
butions is simply captured by their L, distance on the
circle.

Beyond simplifying the form taken by the diver-
gence, the parameterization of distributions by points
on the circle is especially natural for the following the-
orem.

Theorem 2 Let X and Y be boolean random vari-
ables. Let the channel A be

A= a l—a | _ sina cos?a
Tl 1-0 b T | sin?B  cos?p

Let 7 be the boolean random wariable output by the
channel A on input Y. Then

1(X; 2)/1(X;Y) < sin*(a — ).

Observe that @ and / are the angles (at the origin) to
the points specifying the most extreme possible distri-
butions on Z.

Proof: As discussed, it suffices to show that

D((p+¢) - Allp-A)
D(p + ¢|lp)

for any distribution p = (p(0),p(1)) on Y. The re-
sulting distribution on Z is pz(0) = p(0)sin® a + (1 —

< sin?(a — f) (1)



p(0))sin? 3,pz(1) = 1 — p(0)sin® a — (1 — p(0)) sin? 3.
Substituting A into the ratio (1), and expanding in
terms of ¢, we find that

D((p+¢) - Allp-A)
D(p+ ¢|lp)

5 p(0)p(1)
pz(0)pz(1)

By differentiation one can determine that this expres-
sion is maximized for the distribution p specified by

_ < cos 3 sin 3

cos Bsin B + cos asina’ cos Bsin f + cos asin o

= (sin? @ — sin? 3)

cos asin v >

The value of the ratio for this distribution is sin?(a —

B). O
5 Depth of Noisy Formulas

Let f be a Boolean function which depends essen-
tially on n arguments. Pippenger’s argument shows
that any formula which computes the function f with
high probability using noisy k-input gates must have
depth at least Rlog, n with a certain R > 1 depend-
ing on the noise level. This implies a lower bound on
the factor by which the depth of a formula must in-
crease when going from the perfect to the noisy gate
model. In particular, suppose there exists a gate which
computes a function ¢ that depends essentially on &
inputs, and no gate that depends essentially on more
than &k inputs. The function f which is the d-fold com-
position of ¢ depends essentially on n = k¢ inputs and
can be computed by a depth d formula in the perfect
gate model. Pippenger’s result implies a ratio of R
between the depths of formulas for f in the noisy-gate
and perfect-gate models.

Theorem 3 (Pippenger) Let f be a function which
depends essentially on n inputs. Let F' be a formula of
depth ¢ using gates with at most k inputs, where each
gate fails independently with probability (1 —£)/2 > 0.
Suppose F' computes the function f with probability
>1—6, where § <1/2. Let A=1— H(é).

lognA
o IfE>1/k then ¢ > [&n5

o If¢ <1/k thenn<1/A

The idea of the proof is to show that for each in-
put to F' the following two conditions hold. On one
hand, since F' correctly computes f with high prob-
ability, the information between the output and the
input must be large. On the other hand, since each
gate fails with probability (1 — £)/2, the information
between the output and the input along any one path
between them of length [ is exponentially small in .

Since each gate in F' has at most k inputs, this im-
plies that the depth of F' must be large in order to
have many paths between each input and the output.

Notice that every gate increases the distance (path
length) of its inputs to the output. However, it also
increases the number of paths from inputs to output.
If the gate is too noisy, the additional paths it pro-
vides will not compensate for the loss in signal clarity.
Eventually, the output will bear little relation to the
inputs. Thus, there is a threshold on the noisiness of
the gates. Above this threshold, gates are too noisy
to allow sustainable computation and we cannot com-
pute functions of an arbitrary number of inputs.

Using theorem 2, we improve on Pippenger’s
bounds for the threshold and for the factor by which
the depth must increase.

Theorem 1 Let f be a function which depends es-
sentially on n inputs. Let F' be a formula of depth
¢ using gates with at most k inputs, where each gate
fails independently with probability (1—¢)/2. Suppose
F' computes the function f with probability > 1 — 6,
where 6 < 1/2. Let A =1— H(§).

o If& > 1/k then ¢ > 2225

o IfE2<1/k thenn < 1/A

Proof: The proof method follows Pippenger, but the
proof is included in its entirety for completeness (see
the appendix). |

Our result improves on Pippenger’s in two ways.
First, we increase the threshold below which compu-
tation in the noisy gate model is infeasible. For k = 3
this threshold is known exactly. Von Neumann shows
that a noisy formula which is correct with probability
1—46 > 1/2 is possible if £ > 2/3. Hajek and Weller
show that such computation for arbitrary n is impos-
sible if ¢ < 2/3. Their result applies only to k = 3,
therefore the best lower bound on the threshold for
k > 3 is Pippenger’s bound of ¢ > 1/k. We improve
this bound to & > 1/\/E

Second, we increase the factor by which the depth
of the noisy formula must increase. To compute a
function which depends essentially on n inputs, Pip-
penger shows that a noisy formula must have depth
greater than logn by at least a factor 1/log(k¢). Our
result is that this factor must be at least 1/log(k&?).

6 Subadditivity under any L. Norm

Both Pippenger’s result and our result rely on the
subadditivity of mutual information. That is, the mu-
tual information between the output Y of a gate and a



random variable X, is at most the sum over the inputs
Y; to the gate, of the mutual information between Y;
and X (assuming that the Y; are conditionally inde-
pendent given X). The corresponding statement for
L. norms, c¢ finite, is that the L. distance between
the conditional distributions py|x=¢ and py|x= is at
most the sum of the L, distances between the con-
ditional distributions py, x=o¢ and py, x=1. For our
purpose we wish subadditivity to hold for any gate,
regardless of the Boolean function computed by the
gate.

Recall that the L. distance of two vectors p, ¢ each
of length 2, is

llp = alle = (p(0) — g(0)|° + |p(1) — q(1)])"/° .

The following theorem proves that all L., for fi-
nite ¢, have the subadditivity property. The proof is
fundamentally different from the proof of the subad-
ditivity of mutual information. In the case of mutual
information, one can show that the random variable
which is the cross product of the inputs to the gate,
has at most the sum of the information at those inputs.
Thus subadditivity is shown before the processing at
the gate. Then by the data processing lemma, any
computation performed by the gate will not increase
the information.

In the case of L, norms, the argument does not in-
clude a data processing lemma. Rather, given the set
of conditional distributions at the inputs, we identify
the gate whose computation boosts the norm of the
conditional distributions at the output the most. We
then prove subadditivity of the norm after the pro-
cessing at the gate.

Theorem 4 Let g be a Boolean function of k inputs,
each a random variable Y;. Lel p; = py, x=0 and q; =
Py x=1 be the conditional distributions on Y; given
the value of X, and assume that the p; are mutually

independent; as are the ¢;. Let 7 = g(Y1,---,Y:). For
any finite c,
k
lpz1x=0 — Pzx=1]lc < Z llpi — gl
i=1
Proof:
For p and ¢ probability distributions over {0, 1},

llp—qll. = 212/C||p— ¢||1. Thus we need only prove the

theorem for ¢ = 1.

Since the conditional distributions p; (and ¢;) are
independent, the conditional distribution on the prod-
uct Y3 X --- x Yy given X is the product of the in-
dividual distributions p; (or ¢;). For example, the

probability of Y1 = y1, -, Y = yr given X = 0 is
[1pi(yi). Let p(y) = [Ipi(yi) and q(y) = [[ai(w:)
where y = y1 - -y (p and ¢ are probability distribu-
tions over {0, l}k)

It follows that the maximum value of ||pzx=0 —
Pzix=1|[1 is achieved for the function (gate) g which
assigns 0 to all vectors y € {0, l}k with p(y) > q(y),
and assigns 1 to all vectors y with p(y) < q(y).

We prove the theorem by induction on k. The case
k = 1 is trivial. Suppose the theorem holds for &
inputs. We add a new input Yj;4; with conditional
distributions pr41 given X = 0 and ¢x41 given X = 1.
The right side of the inequality increases by ||pr+1 —
gk+1|/1. Thus to prove the inequality we need only
show that

> (Upe+1(0)p(y) — qe4+1(0)g(v)]

y€{0,1}*
F1Pe+1(1)p(y) — gk41(Da(y)])
< D ) — 9@ + llprar — gl

ye{0,1}*

This is true if, for all y,

|PE+1(0)p(y) — qx+1(0)g(y)] (2)

+pr+1(L)p(y) — ae+1(1)q(y)]

< p(y) — a(y)| + min{p(y), 2(y) HIpr+1 — qr4ll2
since Ey min{p(y), ¢(y)} < 1. We now show (2) is
true by case analysis. To simplify notation, let a =

p(y), b = q(y), 7 = pe41(0), and s = qz41(0). Thus
we wish to show that

|ra— sb| 4+ |(1 — r)a — (1 — s)b] (3)

< la —b| + 2min{a,b}|r — s|

First, we may assume without loss of generality that
a > b. Observe that ra — sb and (1 —r)a — (1 — s)b
cannot both be negative because that would imply a <
b. We are left with three cases.
Case 1: ra—sb and (1—r)a—(1—s)b are both positive.
In this case, the sum of their absolute values is a — b
which cancels with the a — b on the right side of (3)
leaving 0 < 2|r — s| min{a, b}.
Case 2: ra — sb is negative and (1 — r)a — (1 — s)b is
positive. In this case,

|ra — sb|+ |(1 —r)a — (1 — s)b] — |a — b

=sb—ra+(l—r)ja—(1—s)b—a+b
= —2ra+2sb < 2b(s—r)



< 2|r — s|min{a, b}

Case 3: Follows from case 2 by symmetry with 1 — r
replacing 7, and 1 — s replacing s. a

The L. distance between any pair of distributions,
upon being passed through a noisy channel, decreases
by a factor of £&. Hence the L. norm can replace the
mutual information in Pippenger’s proof, to yield a
lower bound on the depth of noisy circuits with the
same multiplicative increase and the same threshold,
provided by Pippenger. Thus that result can be ar-
gued with the tools generally employed in the study
of mixing of Markov chains. In addition this approach
is technically attractive as we need not invoke a prob-
ability distribution on each input X. However the
results of the present paper, which depend upon a &2
drop in the signal strength, appear to be beyond the
reach of the argument through L. norms.
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A  Proof of Theorem 1

Let z1 - - - 2, be the inputs to the function f. Since
f depends essentially on all inputs, for each input x;
there exists a setting of the other n—1 inputs so that f
1s either the function z; or ;. Let F; be the formula F
with this setting for the n—1 inputs other than z;. Let
X be a Boolean random variable uniformly distributed
over {0,1}. Let F;(X) be the random variable which
is the output of F; when z; = X. Note that since
F; contains noisy gates, the random variable F;(X)
is not determined entirely by X. However, by our
assumption that F' is correct with high probability,
either Pr(F;(X) = X) > 1 -6 or Pr(F;(X) = X) >
1 — 6. By Fano’s Lemma (see [1]),

I(Fi(X); X) 2 A (4)

In other words, since F;(X) and X are correlated, the
mutual information between them is large.

To upper bound this information, it is convenient
to think of a formula G with random input X as a
k-ary tree in which leaves correspond to the input X
or the constants 0 or 1 and internal nodes correspond
to noisy gates. We claim that

G X) < 3 )

PeG

where P is the set of paths in G from leaves with input
X to the root and |P| is the number of nodes (gates)
along this path.

The proof is by induction on the number of gates
in G. If G is a constant leaf, both sides of the in-
equality vanish. If G is a X leaf then I(G(X); X) =
H(px)=1and |[P|=0s0 ) p &Pl = 1. Otherwise,
let G1(X) -+ Gr(X) be the inputs to the gate at the
root of G. Let g be the function computed by this
gate, in the absence of noise.

I(g(G1(X), -+, Gr(X)); X)

< I(G1(X), -, Gr(X); X)

IN

> HGH(X); X)



The first inequality follows from the data processing
lemma. The second inequality uses the fact that,
since the gates fail independently and G is a formula,

G1(X) - Gp(X) are conditionally independent given
X

Since the gate is noisy, its output G(X) is
9(G1(X), -+, Gx(X)) complimented with probability
(1 = ¢€)/2. This corresponds to passing the result of ¢
through the binary symmetric channel

+¢ 1-¢
2 7
)
7 2
By theorem 2,

I(G(X); X) < E1(g(G1(X), -, Gr(X)); X)

§£QZI<Gi<X);X)

Applying the inductive hypothesis to each term of the
sum, we obtain the required bound.

Combining the bounds (4) and (5) and summing
over all F; gives

nA <y g (6)

PeF

The theorem follows easily. First suppose £? > 1/k.

Then

Z £2|P| < kchc

PeF
where ¢ is the depth of F'. This says that when £2 >
1/k, the expression ) pcp &Pl is maximized for F
equal to the complete k-ary tree of depth ¢. If F'is
not complete, adding k children to a leaf at depth I < ¢
increases the sum by k£20+D — ¢21 Since &2 > 1/k
this is strictly positive. Note that even if we allow
gates with less than k inputs, the bound still holds.
Combining this with (6), we obtain

nA S kc€2c

which implies the first result of the theorem.
For the second result, suppose €2 < 1/k. We claim
that there exists 1 < i < n such that

S /P < 1/
PeF;

The claim follows by an averaging argument and the
fact that )" pcp 1/kIPl < 1 (which can be proven by
induction).

Combining (4) and (5) with the above claim, we
obtain

A<y @M<y 1k <1/n
PeF; PeF;

which implies the second result of the theorem. a



