Softwar e Quality Jour nal manuscript No.
(will be inserted by the editor)

Clone Detection via Structural Abstraction

William S. Evans - Christopher W. Fraser - Fei Ma

Received: date / Accepted: date

Abstract This paper describes the design, implementation, andcghiglh of a new algo-
rithm to detect cloned code. It operates on the abstracasyrtées formed by many com-
pilers as an intermediate representation. It extends priok by identifying clones even
when arbitrary subtrees have been changed. These subtagegpnesent structural rather
than simply lexical code differences. In 840,000 lines afaJand C# code, 20-50% of the
clones that we find involve these structural changes, whiehat accounted for by previous
methods. Our method also identifies cloning in declaratisast is somewhat more general
than conventional procedural abstraction.

Keywords Clone detection procedural abstractiorrefactoring

1 Introduction

Duplicated code arises in software for many reasons: cagyepprogramming, common
language constructs, and accidental duplication of fonelity are some common ones.
Code duplication ocloning (especially copy-paste programming) can adversely affeftt
ware quality since it makes it harder to maintain, updatetlerwise change the program.
For example, when an error is identified in one copy, the progner must find all of the
other copies and make parallel changes, since inconsisfetates may introduce bugs,
which degrade code quality. Even the existence of duplicatke can harm software qual-
ity since it can make understanding a system more diffich#; drucial difference in two
nearly-identical copies may be obscured by their overwh@nsimilarity. On the other
hand, cloning is easier than creating a procedure to perfmth the original and a new

W. Evans

University of British Columbia, Department of Computer&wie, Vancouver, BC, V6T1Z4 Canada. E-mail:
will@cs.ubc.ca

Supported by Natural Sciences and Engineering ReseardhcCofiCanada (NSERC) Discovery Grant.

C. Fraser
http://cwraser.webhop. net E-mail: cwfraser@gmail.com

F. Ma
Microsoft, One Microsoft Way, Redmond, WA, 98052 USA. E-mBei.Ma@ microsoft.com

task, and it can be less error-prone (though many errordt fiesm incorrectly or incom-
pletely modifying copies). Since cloned code appears tofaetaf life, identifying it—for
maintenance, program understanding, or code modificagign efactoring [18] or program
compaction)—is an important part of software development.

There is much prior work in this area, operating on sourceed@¢3,21,26], abstract
syntax or parse trees [6, 25, 20], program dependence d2@lhbytecode [5] and assembly
code [12,13,30,16]. The methods also use various matchgtmiques: suffix trees [16, 2,
3,21,25], hashing [6,12, 13, 30], subsequence mining [#6gram slicing [23], and feature
vectors [24,28, 20].

Clone detectors offer a range of outputs. Some mainly flagckhees in a graphical
output, such as a dot-plot [11]. This strategy suits users fect automatic changes to
their source code. Other clone detectors create a revisadesaode, which the user is
presumably free to modify or decline [23]. Still others auttically perform procedural
abstraction [12,13, 30, 16], which replaces the clones ajphocedure and calls. This fully
automatic process particularly suits clone detectorsdpatate on assembly or object code,
since the programmer generally does not inspect this coddsathus unlikely to reject
changes.

Most clone detectors find not only identical fragments ofectdit also copies with
some differences. These slightly different copies couldheory, be abstracted into a single
procedure taking the differences as parameters. Howevast previous methods permit
only what we callexical abstraction; that is, a process akin to a compiler’s lexical analyzer
identifies the elements that can become parameters to thactbd procedure. Typically,
the process treats identifiers and numbers for source codegister numbers and literals
for assembly code as equivalent; or, alternatively, itaept them with a canonical form
(a “wildcard”) in order to detect similar clones. For exampit treats the source codes
i =j +1 andp=qg+4 as if they were identical. In this simple form, lexical alstion can
generate many false positives. A more precise versionnpteized pattern matching [3],
eliminates many of these false positives by requiring afon@ne correspondence between
parallel parameters.

Still, some clones detected using these methods could redtdteacted into procedures
because they do not obey the grammatical structure of thgrgama A clone consisting of
the end of one procedure and the beginning of another is il edbstracted, especially
at the source-code level, and perhaps should not be reesbai a clone. Searching for
clones within the program’s abstract syntax tree (ASTheathan its text, avoids these
ungrammatical clones. This is the main motivation for mdehe detection approaches
using ASTSs.

Clone detection in ASTs suggests a natural generalizafilxical abstraction in which
parameters represent full subtrees of an AST. SubtreesA$ammay correspond to lexical
constructs (identifiers or numbers) but they may also cpaied to more general constructs
that capture more complicated program structures. Thus;alleéhis generalizatioistruc-
tural abstraction.

There is some prior work on clone detection in ASTs, thoughfulty general struc-
tural abstraction as defined above. One method uses a sfilisetAST features as part of a
feature vector describing code fragments and searchesofeesusing feature vector clus-
tering [24]. Another method [6] finds lexical AST clones andagges them by repeatedly
checking if the parents of a set of similar clones form similanes as well. This catches
some structural clones but misses others (e.g. those wéth digsimilar arguments). A third
method linearizes the AST and looks for clones, using stahidghniques, in the resulting

sequence of AST nodes [25]. A fourth clusters feature vediwat summarize parse trees
[20]. We discuss these and other approaches in more detddtion 6.

This paper describes a clone detector based purely on geteretural abstraction in
ASTs. It has no special treatment for identifiers, literbdss, or any other language feature.
It bases parameterization only on the abstract syntax ltredstracts identifiers, literals,
lists, and more, but it does so simply by abstracting fulltseds of an AST.

We ran this clone detector on over 425,250 lines of Java sard over 16,000 lines of
C# source. We both tabulated the results automatically salli@ed selections manually.
In these tests, 20-50% of the clones we found were strucamalrepresent a significant
opportunity to reduce duplication and improve softwarediguthat might have been missed
by lexical abstraction. The measurements also show thargkestructural abstraction on
ASTs is affordable.

These initial experiments, reported at the Working Comfeeson Reverse Engineering,
support our belief that a significant number of clones anectiral in nature and can be
found efficiently with our algorithm [15]. This paper expanoh that work. One issue that
we only slightly addressed in that work is the issue of schigblhe clones that we report
in Figures 3 and 4 arbocal clones, i.e., clones whose occurrences come from the same
file. Findingglobal clones, i.e., clones that may occur in different files witaiget of files,
takes more time. Of course, these may also be the most ititgyetones to a programmer
involved in refactoring, since they are not local and herredess obvious.

Another issue, which is related, is how well our techniqumpares to other clone de-
tectors. We discuss the results of such a comparison indBeBti Since the comparison
involved finding global clones in large test programs (anitaafthl 400,000 lines of Java
source), we demonstrate the scalability of our techniquevelsas measuring its perfor-
mance against other clone detectors.

Even though our algorithm scales well, we introduce andudis¢he performance of a
modified version in Section 2.2 that is faster but may notatete many clones.

2 Algorithm

Our structural abstraction prototype is called Asta. Astzepts a single AST represented as
an XML string. It has been used with ASTs created by JavaMinfdava code [1] and with
ASTs created by the C# compiler Icsc [19]. A custom back enddwaML and Icsc emits
each file as a single AST. A simple tool combines multiple A8its a single XML string

to run Asta across multiple files. The ASTs are easily prpiigted to reconstruct a source
program that is very similar to the original input. The ASTe also annotated with pointers
to the associated source code. There are thus two differays W present AST clones to
the programmer in a recognizable form.

To explain Asta, we use common graph theoretic terminolagyreotation. For exam-
ple, V(G) and E(G) denote the nodes and edges of a gr&plA subtree is any connected
subgraph of a tree. A subtree of a rooted tree is also rootddtsunoot is the node that is
closest to the root in the original tree. Ancestor of a node in a rooted tree is a node on the
path from the root to that node. If nodeis an ancestor of nodethenw is adescendant of
nodeu. A full subtree of a rooted tred” is subtree ofl" containing a node df’ and all of its
descendents if.

A pattern is a labeled, rooted tree some of whose leaves may be labdledne spe-
cial wildcard label,?. Leaves with this label are calldwles. A pattern P matches a la-
beled, rooted tred" if there exists a functiorf : V(P) — V(T') such thatf(root(P)) =

root(T), (u,v) € E(P) if and only if (f(u), f(v)) € E(T), and for allv € V(P), ei-
ther (1) labefv) = label(f(v)), andv and f(v) have the same number of children, or (2)
labelv) = 7. In our case] is a full subtree of an abstract syntax tree and the pattaep-
resents a macro, possibly taking arguments. Eachhinle? represents a formal parameter
that is filled by the computation represented by the full ébdfT rooted atf (v).

An occurrence of a patternP in a labeled, rooted treg is a subtree of that P matches.
Multiple occurrences of a single pattefhin an abstract syntax tree represent cloned code.
A clone is a pattern with more than one occurrence. $ize of a pattern is the number of
nodes in the pattern, excluding holes.

In what follows, trees and patterns appear in a functiondly-parenthesized prefix
form. For example,

add(?,constant(7)) = add
/\

? const ant

|
7

denotes a pattern with one hole. When a pattern is used todgonecedure, holes corre-
spond to formal parameters in the definition and to actualraemts at invocations. Holes
must replace a full subtree. For example,

?(1 ocal (a), formal (b))

is not a valid pattern because the hole replaces an opematoobthe full subtree labeled
with that operator. This restriction suits conventionadgramming languages, which gen-
erally do not support abstraction of operators. Languagés igher order functions do
support such abstraction, so Asta would ideally be extendexdfer operator wildcards if
it were used with ASTs from such languages. Algorithms armesarmental results for the
extended version of Asta can be found in [27].

2.1 Pattern generation

Asta produces a series of patterns that represent clonedic@dgiven abstract syntax tree
S. It first generates a set of candidate patterns that occeast twice inS and have at most
H holes { is an input to Asta.) It then decides which of these pattesmaitput and in what
order.

Candidate generation starts by creating a set of simplerpattGiven an integer pa-
rameterD, Asta generates, for each nod@n S, at mostD patterns calledaps. Thed-cap
(1 < d < D) for v is the pattern obtained by taking the degtsubtree rooted at and
adding holes in place of all the nodes at degitlf the subtree rooted at has no nodes at
depthd (i.e. the subtree has depth less tliathen nodey has nad-cap. Asta also generates
a pattern called thiaill-cap for v, which is the full subtree rooted atFor example, ifD = 2
and the full subtree rooted ats:

add(|l ocal (a), sub(local (b),formal (c)))

then Asta generates the 1-ca@d(?, ?) and the 2-camdd(| ocal (?), sub(?,7?)) as
well as the full-capadd(| ocal (a), sub(l ocal (b), formal (c))). The set of all
caps for all nodes it$ forms the initial set/7, of candidate patterns.

Asta finds the occurrences of every cap by building an astoeray called thelone
table, indexed by pattern. Each entry of the clone table is a lisiooluirrences of the pattern
in S. Asta removes fronil any cap that occurs only once.

Karp, Miller, and Rosenberg [22] present a theoreticalttneat of the problem of find-
ing repeated patterns in trees (as well as strings and qrfBlysir problem 1 is identical
to the problem of finding ali-caps: “Find all depthi substructures of which occur at
least twice inS (possibly overlapping), and find the position $hof each such repeated
substructure.” Unfortunately, they present algorithrret 8olve problem 1 only for strings
and arrays. Their tree algorithms are designed to find therceaces of a given subtree in
S (a problem that we solve using an associative array, i.shihg).

After creating the set/I, of repeated caps, Asta performs the closure ofpdtéern
improvement operation on the set. Pattern improvement creates a neerpdiy replacing
or “specializing” the holes in an existing pattern. Givenait@rn P, pattern improvement
produces a new patter® by replacing every hole in P with a patternf'(v)* such that (i)
F(v) has at most one hole (thug, has at most the same number of holesPasand (ii)

Q occurs whereveP occurs (i.e.F'(v) matches every subtree, from every occurrenc®,of
that fills holewv). It is possible that for some holesthe only patterr¥'(v) that matches all
the subtrees is a hole. In this case, no specialization sdouholev.

In order to perform pattern improvement somewhat efficiemie store with each node
uw in S a list of patterns that match the full subtree rooted:afhis structure is called
the match table. The list is ordered by the number of nodes in the pattern oregdesing
order. Given a patter® to improve and a hole in P, Asta finds an arbitrary occurrence
of P (with matching functionf) in S and finds the list of patterns stored with the node
f(v). Asta considers the patterns in this list, in order, as catds forF'(v). Any candidate
with more than one hole is rejected (to satisfy conditioh (i) order to satisfy condition
(i), a candidate pattern must match the subtree rootgd:gtfor all matching functionsf
associated with occurrences Bf Another way of saying this is that every nogley) (over
all matching functionsf from occurrences of) must be the root of an occurrence of the
candidate pattern. Thus Asta looks up the candidate patiettre clone table and checks
that eachf(v) is the root of an occurrence in that table entry. (We actustitye this list
of occurrences as an associative array indexed by the rabeafccurrence, so the check
is quite efficient.) See Figure 1 for an illustration of pattenprovement. Asta repeats the
pattern improvement operation on every patterii/iradding any newly created patterns to
I1, until no new patterns are created.

Pattern improvement is a conservative operation. It ordaters a more specialized pat-
tern if it occurs in the same places as the original pattesmeSpatterns can't be specialized
without reducing the number of occurrences. We may still twanspecialize these pat-
terns because our focus is on finding large patterns that atteast twice. Asta performs a
greedy version of pattern specialization, calbest-pair specialization, that attempts to pro-
duce large patterns that occur at least twice. It does thigebiprming pattern improvement
but requires only that the specialization preserves twdefdccurrences of the original
pattern.

For each pair of occurrenceg; andT; (1 < i < j < r) of a given patternP with r
occurrences, Asta produces a new patt@/nthat is identical taP except that every hole
in P is replaced by a patterfi;; (v) such that (a)f;;(v) has at most one hole, and @);
matchesT; and7}. The larges);; (overl < i < j < r) is the best-pair specialization
of P. By “largest”, we mean the pattern with the most non-holeesodvith ties broken

1 The notation emphasizes the fact that each hole may be fiikbdavdifferent pattern.

add?!
I ocal2/\add4
a|3 /\
| ocal ® add”
|
a’ I ocmal 10
a|9 bll
Clone Table Clone Table
pattern: occurs at: pattern: occurs at:
add(?7,?7) | 1,47 add(?,7) | 1,4,7
local (?) | 258,10 local (?) | 2,5,8,10
a | 3,69 a | 3,69
local (a) | 2,58 local (a) | 2,5,8
add(l ocal (a), ?) 1,4,7
Match Table Match Table
node: matched by: node matched by:
1 [add(7,?) 1 [add(Tocal (a),?), add(7,?)
2 [Tocal (a),local (?) 2 [Tocal (a),local (?)
3] a 3] a
4 [Tadd(7,7) 4 [add(Tocal(a),?), add(?7, 7
5 [Tocal (a),local (?7) 5 [Tocal (a),l ocal (?)
6| a 6 [a
7 | add(?,?) 7 | add(local (a),?7), add(?7,7?)
8 | Tocal (a),local (?) 8 [lTocal (a),local (?)
9| a 9] a
10 [Tocal (7) 10 [Tocal (7)
11 11

Fig. 1 An abstract syntax tree and its clone and match tables @&#) inserting alli-caps and removing
singleton patterns. The same tables (right) after patrapravement ohdd(7, ?) . Note thatadd(?, 7) is
now a dominated pattern.

arbitrarily. Asta creates the best-pair specializatiorefeery patterrP in the set of patterns,
I1, and adds those patternsfib It then computes, again, the closurelbiusing the pattern
improvement operation. As the final step in candidate géioaraAsta removes fronil all
dominated patterns. A pattern is dominated if it was improved by the pattern iaye@ment
operation.

2.2 Iterative Algorithm

Asta can be expensive to run on large collections of filed) boterms of memory usage
and time. In particular, the clone table and match table Isé&e proportional to the total
number of occurrences of all patterns. The full-caps aloitiehave a total size (number of
nodes) equal to the square of the AST size, if the AST has dbatlis linear in the number
of nodes. Also best-pair specialization takes time propoal to the square of the number
of occurrences of the pattern being specialized.

One way to avoid this cost is to perform an iterative versibAsia’s pattern improve-
ment and best-pair specialization. The iterative versiopattern improvement specializes
holes using only 1-caps. That is, a pattern is improved byrftnd hole in the pattern so that

all occurrences of the pattern fill the hole with the same 1-ddpliKe in regular pattern
improvement, we do not insist that the 1-cap have at most olee)l5o improvement pro-
gresses incrementally, increasing the depth of the paligiat most one in each iteration.
We repeat this iterative improvement until no new pattereseeated. Even though progress
is incremental, each iteration is fast, and we do not havedimta@in a match table except
for 1-caps, since we only specialize using 1-caps. We alswldle initial calculation and
storage ofd-caps and full-caps, since we can start our iterative imgmeant with1-caps.
The real disadvantage is that because we startwidps and because pattern improvement
will improve a pattern (by specializing a hole) only if thepmoved pattern has the same oc-
currences as the original, we may fail to find a big clone tlaatdnly a few occurrences. We
addressed this problem in the original version of Asta wéktkpair specialization, however
this is slow if the number of occurrences of the pattern igdasince we perform pattern
improvement for every pair of occurrences. Instead, intidfive version of Asta, we per-
form an iterative version of best-pair specialization edlkerative specialization. Given a
pattern and its occurrences, we create subsets of at leastctarrences so that the pattern
can be iteratively improved for each subset. In other waditts occurrences in a subset all
fill at least one hole of the pattern with the saimeap. For example, in the following AST

sub!
add? add?
©
add? add® & €

/\ /\
a® b® a’” bpd

the patterradd(?, 7) occurs at nodes 2, 3, 6, and 9, and cannot be improved usitegrpat
improvement. However, iterative specialization consdbe subse{3, 6,9} of occurrences
and for that subset the pattern can be improveddw(a, ?) .

To create the subsets, we consider each hole of the pattepeatition the set of occur-
rences into subsets based on whatp fills that hole in an occurrence. In our example, con-
sidering the first hole, we create the partitigf2}, {3, 6,9} }. Considering the second hole,
we create the partitiofi{2}, {3, 6}, {9} }. The subsets that have at least two occurrences and
are not contained within another such subset are the onesevioupattern improvement.
In our example, we use onl{s, 6,9} for pattern improvement, since the other subsets have
size one or are contained {8, 6,9}.

By repeating iterative improvement and iterative spezadion, we eventually find all
of the patterns that the original version of Asta finds. Toelbte is that we find many other
patterns as well. Without a limit on the number of holes in @igva, the set of patterns that
are iteratively improved and specialized gets too largeti@rother hand, it may be that to
grow, iteratively, a 1-cap to a 10-cap with few holes, we riegatoduce a pattern with many
holes along the way. However, it is difficult to tell if a givgattern with many holes will
eventually improve/specialize to a good pattern. We cheoodienit iterative specialization
to only those patterns with at mo&t holes. We allow iterative improvement to produce pat-
terns with more thar/ holes. This compromise seems to produce reasonably gonds;lo
but it does miss clones that the original version finds. Thusur experiments we have used
the original version of Asta. We discuss the performanceuofraplementations of both the
original and iterative versions of Asta in Section 7.

2.3 Thinning, ranking, and reporting

Asta finds many candidate clones, sometimes too many, satididates are thinned and
ranked before output. Asta supports a wide range of optionthinning and ranking.

Thinning uses simple command-line options that give thoketshfor number of nodes
and number of holes. All results in this paper omit clonesaurten nodes or over five holes.
The ASTs average approximately 14 nodes per line, so somérgublones are reported.
Though sub-line clones are often too small to warrant refawg, they can yield substantial
savings when abstracted for the purpose of code compaction.

Clones may be ranked along several dimensions:

Size: Size is the number of AST nodes or the number of chamdiskens, or lines of
source code, in the clone, not counting holes.

Frequency: A clone may be ranked according to its size (nflite) or its estimated sav-
ings, which is the product of its size and the number of nogHapping occurrences,
minus one to account for the one occurrence that must remaalatter ranking (op-
tion Al |) favors clones whose abstraction would most decreaselbwed® size, but
it often produces small, frequent clones. Automatic tootsprocedural abstraction are
indifferent to clone size, but manual refactoring is not. p¥evide options to suit both
applications.

Similarity: Similarity is the size of the clone divided byetlaverage size of its occurrences.
If the clone has no holes, every occurrence is the same sthe atone and the similar-
ity is 100%. Clones that take large subtrees as parameteesrhach lower similarity
percentages. The optid?er cent indicates that clones should be ranked by their sim-
ilarity.

Ranking does more than simply order the clones for outpug. rEport generator drops
clones that overlap clones of higher rank. Thus rankings feheor small clones will list
them early and can eliminate larger overlapping clones.

Command-line options select from the options above. Fomgig, the default option
string used below isNode One”, which counts nodes, favors the largest clone (ignoring
the number of occurrences), and doesn’t consider how sithiéaclone and its occurrences
are.

Asta is currently a platform to evaluate clone detection @4, and provides only a
crude user interface. It produces a list of clones as an HTbttuchent with three parts: a
table with one row per pattern, a list of patterns with theicwrrences, and the source code.
Each part hyperlinks to an elaboration in the next part.

3 Clone Distribution

Our primary goal is to report a list of clones that merit prhawel abstraction, refactoring,
or some other action. What merits abstraction is a subgdecision that is difficult to
quantify. It is therefore difficult to quantitatively measthow well a system achieves this
goal. Historically, research in clone detection (procetlabstraction) for code compaction
used the number of source lines (or instructions) saved afistraction as a measure of
system performance. This goal is easy to quantify. A clorté wielements (lines, tokens,
characters, or nodes) andccurrences savegr — 1) element$. Subtracting one accounts
for the one copy of the clone that must remain.

2 This does not consider the cost of the- 1 call instructions that replace— 1 of the occurrences.

A focus on savings tempts one to use a greedy heuristic tbakels clones based on the
number of, for example, source lines they save. The cloregdisult may not be the ones
that subjectively merit abstraction. For example, the eltdrat saves the most source lines
in an eight-queens solver written in C# is the rather dubious

for (int i =0; i <7, i++)
=7

To our eyes, reporting clones based on the number of nodée iclane itself (rather than
the number in all occurrences) produced better clones,aat feom the point of view of
manual refactoring. Whenever our ranking factored in nunabeccurrences, we tended to
see less attractive clones. However, it may be that the parpbperforming clone detection
is, in fact, to compact the source code via procedural atigtra For that application, small,
frequent clones are desirable.

We explore both our primary goal of finding clones that mdv&teaction and the histor-
ical goal of maximizing the number of source lines saved afbstraction. The first goal we
equate with finding large clones (with many nodes). To acdsimghis, we rank clones by
size (number of nodes) and report the size of the non-ov@rgglones that we find (Fig-
ures 3 and 4). The second, historical goal, we approach fyngclones by the number of
nodes saved and report the percentage of nodes saved aftiercéibn (Figure 5). In both
cases, we follow Asta’s ranking of clones to select, in a dyefashion, those clones that
(locally) most increase the measure (eliminating from feitconsideration the clones they
overlap).

3.1 Clones for abstraction

Asta has been run on a corpus of 1,141 Java files (fronj &hea directory of the Java 2
platform, standard edition (version 1.£pand 58 C# files (mostly from the lcsc compiler
[19]). Figure 2 gives their sizes. For each file (ordered bymber of AST nodes along the
z-axis), the figures show the number of nodes, charactemngpland lines. Since these are
(roughly) related by constant factrs what follows, we will use node counts as a proxy
for size of source code, avoiding measures that are moreidad by formatting.

Figures 3 and 4 show the numbers of non-overlapping clongarajus sizes found in
the largest files of the Java and C# corpora. There are manlcdames but also a significant
number that merit abstraction.

We hand-checked all 48 clones of at least 80 nodes in the G#ga, and found that
44 represent copying that we would want to eliminate. Thihlsiuccess ratio suggests that
many of the smaller clones should also be actionable. Thebauwf significantly smaller
clones prohibits grading by hand, but skimming suggests @hé0-node threshold gives
many actionable clones and that a 20-node threshold is pplobzo low, just as 80 is too
high.

The size of actionable Java clones is similar. A sampling@hdde clones revealed
many useful clones, while many 20-node clones are too smallatrant abstraction. As
one example, the following 59 node pattern with 3 holes ac&Grtimes across several Java
files:

3 http:/fjava.sun.com/j2se/1.4.2/download.html

4 Letn,c,t, and? be the number of nodes, characters, tokens, and lines in &ditelavan ~ 0.55¢ ~
4.0t ~ 13.54. For C#,n ~ 0.39c ~ 1.45t ~ 14.9¢.

10

100000 « characters
e nodes

10000 ° fokens
lines

1000

100

10

1141 Java sour cefiles
100000« characters .

s nodes

100004 ° tokens

lines

1000+

100

10+

58 C# sourcefiles

Fig. 2 Java and C# source file metrics. Each column of four dots septs the number of characters, nodes,
tokens, and lines in one file. The columns are ordered by nuofbhedes.

for (int i=0; i<?; i+4)
if (72o[i] '= 23[i])

return fal se;

One of its occurrences (jnava/ awt / i mage/ Col or Model . j ava) has arguments; =
numConponent s, 75=nBi t s, and?3=nb. Another (inj ava/ net / | net 6Addr ess.

j ava) has argumentd; =1 NADDRSZ, ?5=i paddr ess, and?s=i net Addr . i paddr ess.
This is one of the smallest examples of a structural clonerttight be worthy of parame-
terization. Notice that the third hole matches both a ldxaca structural parameter. Notice
also that the clone detector has discovered an instance afthy comparators offered by a
variety of libraries.

One of the potential benefits of allowing clone parameterbetdarger subtrees than
single leaves is the possibility of detecting more than fewical inconsistencies in copy-
paste clones. For example, one of the structural clonegdfouthe C# source contains the
following line®:

5 The entire clone comprises 231 nodes (21 source lines)aicsnone hole, and occurs twice.

] 1 N 1 " 11 1
2009 4 1 2 1
] 1 1 1
g | 2 1
B 150 ! 2 !
e] 1 12 1 11 2
5] 1 1 1 1 11 1 11 1
o] 1 1 1 1 12 1
2] 2 2 2 1 2 2
€ 100 1 1 4 1 1 113 2 1
g 1009 1 2 11 1 11 2 6
o 1 11 3 1 11 1 3 2 1 3 3 1
B 1 11 1 11 111 1 3 1 2 3 3 3 3 2 3 1 2 3 2
o 1 2 2 12 3 1 8 311 2 1 1 11 1 1 35 2 4 4 6
6] 3532355 22 5 1 2 4 17 3 3 13 233723 49
o 1 2 7 2 1 2 3 7 41 6 3 6 3 1 4 5 7 6 4 4 2 2 6 6 2 1 7 14 14
1 82 8 485 3 49 27 736 7 465 35 61013 6 17 11 5 14 16 19
1 14 4 10 10 24 16 8 17 14 5 35 17 18 12 13 17 26 14 20 21 37 21 27 31 47 29 4 56 45 54
1 28 29 35 38 44 47 43 59 39 13 46 51 27 36 50 39 57 56 51 69 66 50 75 80 55 85 21 143 89 133
0 T | T T T T T | | T T I | 1
00% \fé ,ﬁé{ @% & & qdj q‘*’% & '194’ & @Q;L & & P fb‘é 0‘5(% & q"’d’ i %%4’ 0’3;{’ & 096’ b"fé
NIESENESSNEGESENENENEN SN NN NN NN I N NN NN N L 1 Ao

The 30 largest sourcefiles (labeled by number of nodes)

Fig. 3 Number of non-overlapping clones in Java source files. Famgite, the 54 in the rightmost column indicates that theelstrgource file (44,616 nodes) has 54 nol
overlapping clones, each with 20-30 nodes. An asteriskc@ids a clone whose size is off the scale. (The maximum oze ¢las 913 nodes.)

T

12

N * * * *
200 1 .t
~] 1
(4] | 1
g 101 3
o -
2 150 15
5] 1 2 1
5] 1
2] 1 1 1
€ 1 3 3
£ 100 1 1 2 1
o] 1 2 1 11 1 11 1
'm] 1 1 3 1 5 4 2 1
©] 11 1 2 1 2 1 3 3 4 5
S o] 1 2 2 2 2 2 2 12 911
O] 1 11 2 1 1 4 1 451 9 6 820
] 11 1 1 2 101 13 1 2 4 7 7 8 9 9 13 17 34
1 3 1 113 3 1 7 1 3 3 1 3 3 4 5 3 4 9 1311 16 18 6 27 34 48
1] 5 2 4 9 9 7 1012 8 2 14 10 17 14 6 12 16 8 14 26 17 30 44 36 39 43 102139
0 T T | T | T | | T | | | T I T | T T | T I T |6 |é4"{_’| | 1
PRSI A SRR I A A R I IR A - SRS AR SR I S LI I i e
LSSV EN AN S S O 4 3R N R R O SR R St A

The 30 largest sourcefiles (labeled by number of nodes)

Fig. 4 Number of non-overlapping clones in C# source files. For etajrthe 48 in the rightmost column indicates that the largesirce file (37,364 nodes) has 48 non-
overlapping clones, each with 20-30 nodes. An asteriskc@ids a clone whose size is off the scale. (The maximum fze ¢las 605 nodes.)

13

return nmal forned("real-literal”, 7);

where one copy of the clone has t np. ToSt ri ng() and the other copy has=t mp.
This may be a legitimate difference, but it may also indiatopy that missed being up-
dated. Clone detectors that merely regularize variableesawould not detect the match
between these structural parameters and might miss sueht@bterrors.

3.2 Clones for compaction

We now consider the historical goal of maximizing the numisienodes saved by abstrac-
tion. Reporting total savings is complicated by the fact thaaries significantly with the
threshold on clone size. Figure 5 shows that, for our C# riee total savings drops from
24% to 1% as the threshold for clone size increases from 18Q@mbdes. If maximizing
total savings is our goal, we should allow the automaticrabtibn of small clones, even
though these clones may not be large enough to merit ahistrany hand. If we would
rather avoid abstracting small clones, thresholds bet28eemd 80 nodes eliminate many
of the small, dubious clones and still yield savings of 4-16%

30
_§ 25 m Java cross-module
5 mmm Java intra-module
$ 204 == C# intra-module
3
c
% 154
oy
8 104
o
(&)
g 5 I
0- e —
10 20 40 80 160
Node Threshold

Fig. 5 Percentage of nodes eliminated by abstraction

We should emphasize that our results (the wide bars in Figlur@present the execution
of Asta on each individual file in isolation. If instead, wéoal Asta to find clones that occur
in multiple files, we obtain greater savings. Figure 5 shdwegdifference for the Java corpus
(the narrow bars). The savings across multiple files is obthby finding clones that occur
anywhere within the approximately 400,000 lines of Javasmu

By comparison, Baker [2] reports saving about 12% by abstgclones of at least
30 lines in inputs with 700,000 to over a million lines of codbe reports that most 20-
line clones are actionable and that most 8-line clones dréBagter et al. also report saving
roughly 12% on inputs of about 400,000 lines of code; theyusma threshold and conclude
that most clones are on the order of 10 lines.

14

Our threshold of 20 nodes is far smaller than Baker's 304meshold. That we still
observe mostly actionable clones at this threshold may Herstood as a difference in the
definition of actionable, or as a difference in the corpora, source languages, oraalish
mechanism. Our smaller threshold is matched by our smaifartisizes: our largest file
contains about 45,000 lines of source. As mentioned, we pply @ur techniques across
multiple files (as shown in Figure 5), but there is also redumg and duplication within
individual files.

Remarkably, the savings we obtain by abstracting actienalbhes within isolated files
is roughly the same as that obtained by both Baker and Baktal. &his is somewhat
disappointing since our system finds clones based not onlexioal abstraction (as in
Baker and Baxter et al.) but also on structural abstractdther there are very few clones
that are purely structural in nature, or individual files t@n fewer clones (that we view
as actionable) than the large corpora examined by Baker amteBet al. The following
section makes the case for the latter interpretation.

4 Lexical versusstructural abstraction

Prior clone detection algorithms are based on lexical abgtm, which abstracts lexical
tokens. Structural abstraction can abstract arbitraryreeb and thus should be expected
to find more clones. One objective of this research has bedateymine if this generality
translates into practical benefit and, if so, to charaatdtiz gain.

Clones are easily classified as lexical or structural. Arugence of a clone itexical
if each of the clone’s holes is occupied by an actual argurthexttis an identifier or literal.
If a clone has two or more lexical occurrences, then it mightehbeen found by lexical
abstraction and is thus calledexical clone; otherwise, it is called atructural clone.

In the ASTs produced by JavaML and Icsc, identifiers anddiseappear as leaves but,
depending on context, can be wrapped in or hung below one oe mmwary nodes. We
classify arguments or holes conservatively: if an arguriseateaf or a chain of unary nodes
leading to a leaf, then we count it as a lexical abstractiamy @ore complex arguments
are counted as structural abstractions. For example, segpe clon&[?] = Xx; occurs
twice:

a[i] = x;

ali+1] = x;

The argument to the first occurrence is lexical becauselitdies only a leaf and, perhaps,
a unary node that identifies the type of leaf. The argumenhéostecond occurrence is,
however, structural because it includes a binary AST node.

Asta’s HTML output optionally shows the arguments to eaatuo@nce of each clone,
and it classifies each argument as lexical or structuralaBse Asta can generate clones that
a human might reject, we checked a selection of C# sourcebfjiésnd. Figure 4 includes
48 clones of 80 or more nodes. 32 were structural and 16 weieale28 of the structural
clones and all of the lexical clones were deemed useful. @tsignificant fraction of these
large clones are structural, and most of them merit abstract

There are, of course, too many clones to check all of them loyg,heo we present
summary data on the ratio of structural to lexical clonegs Téatio naturally varies with the
thresholds for holes and clone size.

First, fixing the hole threshold at 3 and raising the nodesttot from 10 to 160 gives
the top half of Figure 6. As the threshold on clone size rigesta naturally finds fewer
clones, but note that structural clones account for an &sing fraction of the clones found.

15

SN e o 0 A
NN AN S NN NN AR < Y
70—
)
S 604
S Java
® 50 == C#
5
8 40-
%
ko] 30
o)
& 204
g
5 10
o
O_
10 20 40 80 160
Node Threshold o >
sy S B Ll N O
IR S AN N S NN N
70—
)
5 604
S mm Java
© 50 == C#
3
S 404
B
45 30
S
& 20—
g
5 10
a
0
0 1 2 3 4 5

Hole Threshold

Fig. 6 Percentage of structural clones for various node and hadshiblds. The number above each column
denotes the total number of clones for the given threshold.

If, instead, we vary the hole threshold, we obtain the bothah of Figure 6, in which
the node threshold is fixed at 10 and the hole threshold vémes zero to five. The ratio
of structural to lexical clones rises because each additioole increases the chance that a
clone will have a structural argument and thus become straigtself.

Clones with zero holes are always lexical because they haagguments at all, much
less the complex arguments that define structural cloneslid®ably, the number of struc-
tural clones grows with the number of holes. At the same tttreenumber of lexical clones
may decline slightly because some of the growing numberroésiral clones out-compete
some of the lexical clones in the rankings.

16

Clones with fewer holes are generally easier to exploit,gadibrary routines with fewer
parameters are easier to understand and use. Even if wietreatrrefactoring effort to one-
parameter macros, we still see that 20% of the opporturiitiedve structural abstraction,
which is significant. Optimizations are deemed successitli much smaller gains, and
improving source code is surely as important as improvingcttrode. Figure 6 explores
a large range of the configuration options that are mostylikelbe useful, and it shows
significant numbers of structural clones for all of the nowil settings.

5 Comparison

The purpose of this paper is to introduce and experimergaiyuate a technique for finding
structural clones in programs; and to see if such clones are worth liagoithese clones
are based on the abstract syntax tree structure of the pnogagher than the source code,
and are chosen to be suitable for procedural abstractionpro@edure taking arbitrarily
complex parameters. This is in contrast to most of the exjstione detection systems,
which are based on source code text and consider clones tmlt@r sequences of source
lines.

Nevertheless, it is interesting to compare Asta againgrattone detection systems to
see if the focus on structural clone detection causes Astes®other clones. Therefore, we
ran Asta on the set of Java test programs considered by Bellah in the Bauhaus project’s
comparison of clone detection tools [8, 7]. The test programarenet beans- j avadoc®
(19K SLOC),ecl i pse-ant 7 (35K SLOC),ecl i pse-j dt cor e® (148K SLOC), and
j 2sdk1. 4. 0-j avax- swi ng® (204K SLOC); a total of about 400K source lines of code.
The clone detection tools, by name of corresponding authene:

Baker Dup [2]: a line-based detector that replaces identifier andditeames systemati-
cally so that lines that are the same, except that one may aselj where the other
uses ndex1 andi ndex2, will match. It uses a suffix tree to find sequences of these
matches.

Baxter O oneDRY [6]: an AST-based detector that uses hashing to clustefssifuail sub-
trees and then selects clones from the clusters.

Kamiya CCFi nder [21]: a line-based detector similar to Baker’s except teatsal token-
based transformations are applied to normalize the sowfoeebfinding matches.
Kamiya+ is a version o€CFi nder tuned for the comparison.

Merlo CLAN [24,28]: a metric-based detector that clusters code fragsnesing feature
vectors.

Merlo+ is a version ofCLAN tuned for the comparison.

Rieger Dupl oc [14]: a line-based detector that does no token-based sutixsti and uses
hashing to match lines. It then finds sequences of matchesd big examining the dot-
plot [11] matrix of line-to-line matches.

The authors of each tool submitted a listing of clone paiasdidates, that the tool found
within each program. A clone pair is an ordered pair of sowase itervals{(f1, s1,e1),
(f2, s2, e2)) (ordered lexicographically) wherg and f, are (perhaps different) filenames;

http://javadoc.netbeans.org
http://www.eclipse.org
http://www.eclipse.org
http://java.sun.com

A trademark of Semantic Designs Inc.

6
7
8
9

=

0

17

netbeans ant jdtcore j2sdk

asta 180(118) 389(202) 9090(1492) 4318(1362)
Baker 344 245 22589 7220

Baxter 33 42 3593 3766

Kamiya 5552 950 26049 21421
Kamiya+ 1543 865 19382 18134

Merlo 80 88 10111 2809

Merlo+ 85 88 10471 2912

Rieger 223 162 710 N/A

Fig. 7 Numbers of clone pairs representing at least six contigsousce lines reported by each tool (row)
for each test program (column). The numbers in parenthesiadta are the numbers of different clones. (A
clone may have many occurrences resulting in many clons.pdine numbers in all rows other than for Asta
are from Bellon's thesis [7].

ands; < e; are line numbers irf;. The idea is that the lines;,s; + 1,...,e1 In fi are
similar to the liness, so + 1,...,ez 1N fo.

The performance of each tool was measured in several waysnBasures of particular
interest arerecall, the fraction of “real” clone pairs reported aipdecision, the fraction
of reported clone pairs that are “real”. Calculating reeaild precision requires knowing
the set of “real” clone pairs, which is impossible. Bellonaétused a sampling approach
to approximate recall and precision. Bellon sampled 2% efghbmitted clone pairs and
decided, subjectively based on the similarity of the twarsewode intervals, if each sample
was acceptable as a real clone pair or not. The set of acéemamples (perhaps slightly
modified) formed a reference set of clone pairs. To approvamecall, Bellon et al. used the
fraction of reference clone pairs that the tool found. Torapipnate precision, they looked
at the fraction of sampled clone pairs from the tool that waeeptablé! A good tool
would find most of the reference clone pairs, and would not fowmany unacceptable
clone pairs.

Since Asta did not participate in the evaluation, we canagighat fraction of its clones
Bellon would find acceptable. Thus, we cannot obtain the sappeoximate measure of
precision that Bellon found for the other tools. Howeverl@efound that:

“In general, tools that report a large number of candidage® la higher recall and a
higher number of rejected [unacceptable] candidates.”

Figure 7 shows the number of clone pairs that each tool, dieiuAsta, finds for each test
program. If Bellon's general observation is true, then Asta reasonable precision. Note
that the table includes only those clone pairs that reptestdrast six contiguous lines of
source code. Asta finds many more clones that are smallerttiaéror, because they are
arbitrary subtrees of the AST, do not represent contiguousce lines. Also, Asta reports
only non-overlapping clones, so Asta may fail to report séenge clone pairs because they
overlap with others.

We approximate recall in the same manner as Bellon et al. Wethes same set of
reference clone pairs and report the number of these founlstayand the other tools in
Figure 8. The figure contains two numbers for each tool arigptegram. The first number
is the number of references that wekefound by the tool, and the second is the number that
weregood-found. A reference clone pait™ = ((f1,s7,el), (f2,s5,€3)) is ok-found by a

11 They actually reported the fraction of sampled clone péias wereunacceptable.

18

netbeans ant jdtcore j2sdk
refs 55 30 1345 777
asta 20:7 13:7 503:243 454:258
Baker 31:14 19:15 996:455 570:455
Baxter 9:3 6:6 307:230 345:283

Kamiya 43:23 29:20 890:446 704:396
Kamiya+ 43:25 29:20 890:445 704:396

Merlo 13:7 11:9 748:526 289:256
Merlo+ 13:7 11:9 766:544 294:259
Rieger 25:11 13:9 58:27 N/A

Fig. 8 Numbers of reference clone pairs that are ok-found : goadddor each tool (row) and each test
program (column). The first row is the number of referenceelpairs in each test program. The numbers in
all rows other than for Asta are from Bellon’s thesis [7].

tool if the tool reports a clone pait = ((f1, s1,e1), (f2, s2, e2)) such that:

I[s7,e;] N [si; el > p

ok(C*,C) = min — -
() 'L:l,?mln{|[3i7ei]|7|[sivei]|}

and it is good-found if:
goodC*,C) = - 112:

where we uséu, b] to denote the seta,a + 1, ...,b}. In Bellon et al.'s comparisom was
chosen to b@.7. Basically, these are measures of overlap between two plaing and since
ok(C*,C) < good C*, C), good-found implies ok-found.

Essentially, Asta’s performance is comparable to that oft& tool, which is not sur-
prising since both methods are AST-based. Since Belloredihesreference clone pairs from
the clone pairs reported by the tools other than Asta, weatxpat the structural clones that
Asta finds would not be represented in the reference set.&diffierences between Asta
and Baxter would not be apparent in this comparison.

Asta produces structural clones that none of the other fowls Figure 10 9 shows the
number of Asta clones that the other tools ok-find. In this parison, an Asta clone is
ok-found by another tool if any pair of the clone’s occurremare ok-found by the tool. Ap-
proximately 40% of the clones Asta finds are not ok-found leydther tools. The unfound
clones are all structural, and while some of them are smallcamtain mostly high-level
program structure nodes, some are worthy of attention. ¥ample, the two occurrences:

for (int i=0; i<dirs.length; i++) {

if ('dirs[i].endsWth(File.separator)) {
dirs[i] += File.separator; }

File dir = project.resolveFile(dirs[i]);
FileSet fs = new FileSet();
fs.setDir(dir);
fs.setlncludes("*");
cl asspat h. addFi l eset(fs); } } }

for (int i=0; i<dirs.length; i++) {
if ('dirs[i].endsWth(File.separator)) {
dirs[i] += File.separator; }
File dir = attributes.getProject().resolveFile(dirs[i]);

baker (II0000000000 DOROR000R0 00 000 0 00 00 00 0000 00 D000 WO 0 i u

baxter f § | WO LINOID W (1) | |

kamiya (IS00MON000N0N0 000N 000 00 0 0000 00 0 0000 00 00 000 0 i u [
kamiya-+ (00000080 0000 00 000 000 00 00 0 00008 00 08 0080 00 000 000 40 i]

merio JHINNIIN | i 1] |
merlo+ (NHNIIN 0 MIWN i imiumun i |

rieger WNINIVONININ 0 NONOONON O ONO OO ON OO UNO 000D 0 00 | |

netbeans

baker nemeaImngr e L m |
baxter BRI I Lu |
kamiya nmriis ue 8 el | (|
kamiya+ nmiisis ue 8 el | I |

merlo (N (]! 1] |
merlo+ (N []| i |

rieger siminnyr voen | |

ant

jdtcore

baker
baxter
kamiya
kamiya+
merlo
merlo+
rieger

baker L i R g A e (] [A
t2cxter JINIAH 00U ORI w1l
kamiya e ey e n e i e
kamiya+ 0 0O 0O OO RN OO RO IR
rerlo | AN AN VRN 0O OO OOV e omee cmee e e
merlo-+ | I NN MR AN OO QT OO OMREONR O e e e e e

rieger

j2sdk

Fig. 9 Asta clones found by other tools.

20

netbeans ant jdtcore j2sdk
asta 118 202 1492 1362
Baker 60 (51%) 67 (33%) 879 (59%) 545 (40%)
Baxter 21 (18%) 28 (14%) 530 (36%) 297 (22%)

Kamiya 62 (53%) 73(36%) 819 (55%) 497 (36%)
Kamiya+ 59 (50%) 70 (35%) 802 (54%) 485 (36%)

Merlo 35(30%) 34 (17%) 570 (38%) 295 (22%)
Merlo+ 35(30%) 34 (17%) 571 (38%) 297 (22%)
Rieger 52 (44%) 59 (29%) 54 (4%) N/A (N/A)

any 69 (58%) 91 (45%) 1030 (69%) 707 (52%)

Fig. 10 Number (percent) of Asta clones that are ok-found by each(tow) and each test program (col-
umn). The first row is the number of clones Asta finds in eachgesgram. The last row is the number of
Asta clones ok-found by any other tool.

FileSet fs = new FileSet();
fs.setDir(dir);
fs.setlncludes("*");

cl asspat h. addFi | eset (fs); } }

elude detection by the other tools since their middle linéferdin a structural way. Also,
only Baxter and Asta find the structural clone that has thesaroences:

public static void setAsText (String text) {
if(!'text.equals(""))

return;
for (int i =0; i <10 ; i++)
if ("magic" == text) {
set Val ue(new Long(100L));
return; }

set Val ue(new Long(OL)); }

public void setAsText (String text) {
if(!'text.equals(""))
return;
for (int i =0; i < tags.length ; i++)
if (tags[i] == text) {
set Val ue(new Long(val ues[i]));
return; }
set Val ue(new Long(OL)); } }

Note that the test in the for-loop body of the first occurreappears to be independent of
the for-loop index, and seems to call for some action. Thesenples clearly show that
structural clone detection is useful in improving the oiyadif the software.

Interestingly, Figure 10 shows that Asta’s clones l&ss similar to clones found by
Baxter's AST-based tool than to those found by other toolgs Thighlights the fact that
these two AST-based tools are substantially differentéwthy that they search for clones.
Section 6 compares the two approaches in more detail.

Subsequently, Baker has revisited Bellon’s comparisorrapdrticular the performance
of Dup [4]. Baker discusses several factors of the experimentals¢hat influenced that
performance detrimentally, and suggests that the tru@mesance (recall and precision) of

Dup is much better.

21

6 Related work

The most closely related work to ours is by Baxter et al. [6bylerform clone detection in
ASTs; the Bauhaus clone detectordi m is said [8] to be a variation on this technique.
Baxter et al. use a hash function to place each full subtrélbeoAST into a bucket. Then
every two full subtrees within a bucket are compared. Thé Hiasction is chosen to be
insensitive to identifier names (leaves) so that these caal@neters in a procedural ab-
straction. The resulting lexical clones are extended ugsvantil the parents fall below a
similarity threshold. This process generates some stralatlones but Asta generates more.
For example, a large subtrger > can rendetd(z, y) and A(z, z) dissimilar, but Asta finds
the cloneA(z, ?) regardless. In order to allow larger subtrees to be paramdaxter et al.
could use an even more insensitive hash function. Howdwercdst of this is an increased
bucket size and a larger set requiring pairwise comparidsta avoids this by growing
larger matches from smaller ones, essentially hashingrgtédiv levels of each full subtree
(the d-caps) and then extending them as needed. This methoddiyd$uplicated subtree
not just duplicated full subtrees.

Yang [31] uses a language’s grammatical structure (and Asparticular) to calculate
the difference between two programs via dynamic programgntite addresses a different
problem than clone detection, but his method could be useth&b purpose and could be
used to find the general subtree clones that we find. Howeweauld require2(n?) time
on ann node AST, which is impractical for all but the smallest pags.

Koschke et al. [25] also detect clones in ASTs. They segalie AST and use a suffix
tree to find full subtree copies. This technique does not jiestnuctural parameters.

Jiang et al. [20] cluster feature vectors that summarizéreeb of a parse tree or AST.
The vectors count the number of nodes in each of several aréésg By using locality-
sensitive hashing, they can promptly identify trees withikir vectors, without comparing
all pairs of trees. The trade-off is that the vectors confteges with the same summary
characteristics but different structures.

The tools CCFinder [21] and CP-Miner [26] also do not find eemvith structural pa-
rameters. CCFinder is a token-based, suffix-tree algorittahallows parameterized clones
by performing a set of token transformation rules on the inB®-Miner converts each basic
block of a program into a number and looks for repeated sexpsenf these numbers, possi-
bly with gaps. It also allows parameterized clones by raigifey identifiers and constants.
Neither method produces structural parameters.

Tools that automatically perform procedural abstractiather than simply flagging po-
tential clones, also permit some degree of parameterizatiche abstracted procedure.
These tools typically operate on assembly code and most afigister renaming [12,13,
30]. Cheung et al. [9] take advantage of instruction predioafound, for example, in the
ARM instruction set [29]) to nullify instructions that déf between similar code fragments.
The parameters to the abstracted representative procatkitbe predication flags, which
select the instructions to execute for each invocation. flagesetting could select an en-
tirely different sequence of instructions than anothewdwer for the representative to be
small, many instructions should be common to many fragmeénghortest common super-
sequence algorithm finds the best representative for a séndér fragments. The method
is not intended for a large number of fragments with manypatars.

Another generalization uses slicing to identify non-cgatius duplicates and then moves
irrelevant code out of the way [23]. This extension catchesenclones than lexical abstrac-
tion, but parameterization remains based on lexical elésndinis extension is orthogonal

22

to this paper’'s generalization. The two methods could be tgether and ought to catch
more clones together than separately.

Finding clones in an AST might appear to be a special caseeopthblem of mining
frequent subtrees [10,32], but closer examination shoasttte two problems operate at
two ends of a spectrum. Algorithms that mine frequent treas $iuge forests for subtrees
that appear under many roots. The size and exact number ofrences are secondary to
the “support” or number of roots that hold the pattern. An A#iEed clone detector makes
the opposite trade-off. The best answer may be a clone titar®only twice, if it is big
enough. Size and exact number of occurrences are impo8apport is secondary; indeed,
some interesting clones may occur in only one tree of thesfore

7 Discussion

Asta has been written in Icon [17], Java, and C++. The Icogsigartakes a few seconds on
most C# corpus files and about 7 minutes on the largest. Idateipreted and dynamically
typed, and the program has not been optimized for speedgse tlanning times are high.
The Java version, implementing the iterative version obAitkes a few seconds on all Java
corpus files, even the largest. Finding all clones acrostledl in the 440,000 line corpus
took less than one hour. The C++ implementation, which imglets both the iterative and
original versions of the algorithm, takes at most 10 minftesative) and less than 40
minutes (original) on all Java test programs.

Our structural abstraction method can benefit from variadab@ming (a technique de-
scribed by Baker [3]) since variables that can be named stamly in all clone occurrences
no longer need to be represented as holes in the clone. Thisae the number of param-
eters that need to be passed to the abstracted procedure ¢alth that replace the clone
occurrences, and thus these clones save more when alidagteocedures. Experimental
results show an extra savings of about 20% for our Java cavpes combining structural
abstraction with variable renaming [27].

In summary, we have designed, implemented, and experichenith a new method
for detecting cloned code and thus helping programmersawepsoftware quality. Hereto-
fore, abstraction parameterized lexical elements suctieasifiers and literals. Our method
generalizes these methods and abstracts arbitrary fuiteasbof an AST. In a variety of
programs totaling over 400,000 lines of Java and C# cod&020-of the clones that we
found were structural and thus beyond previous methodsdidhacked samples found ac-
tionable candidates and few false positives. In comparisather clone detection tools, on
an additional 400,000 lines of Java code, we obtained simelults. We have shown that
the new method is affordable and finds a significant numbelooles that are not found by
lexical methods.

References

1. Badros, G.J.: JavaML: a markup language for Java sourde. c€omputer Networks (Amsterdam,
Netherlands: 19993(1-6), 159-177 (2000)

2. Baker, B.S.: On finding duplication and near-duplicatiotarge software systems. In: Proceedings of
the IEEE Working Conference on Reverse Engineering, pRB861995)

3. Baker, B.S.: Parameterized duplication in strings: Athes and an application to software mainte-
nance. SIAM Journal on Computir$(5), 1343-1362 (1997)

4. Baker, B.S.: Finding clones with Dup: Analysis of an expent. IEEE Trans. Software Engineering
33(9), 608-621 (2007)

23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Baker, B.S., Manber, U.: Deducing similarities in Javarses from bytecodes. In: Proc. USENIX
Annual Technical Conference, pp. 179-190 (1998)

. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier,:IClone detection using abstract syntax trees.

In: Proceedings of the International Conference on Soéiiéaintenance, pp. 368-377 (1998)

. Bellon, S.: Vergleich von techniken zur erkennung dugiten quellcodes. Master’s thesis, Univ. of

Stuttgart (2002). Thesis number 1998

. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merte,, Comparison and evaluation of clone detec-

tion tools. IEEE Trans. Software Engineeri8g(9), 577-591 (2007)

. Cheung, W., Evans, W., Moses, J.: Predicated instrucfioncode compaction. In: Proceedings of the

7th International Workshop on Software and Compilers fobEdded Systems, pp. 17—-32 (2003)

Chi, Y., Nijssen, S., Muntz, R.R., Kok, J.N.: Frequenitsee mining—an overview. Fundamenta Infor-
maticae66(1-2), 161-198 (2005)

Church, K., Helfman, J.: Dotplot: A program for explaigelf-similarity in millions of lines of text and
code. Journal of Computational and Graphical Statig{2$, 153-174 (1993)

Cooper, K.D., McIntosh, N.: Enhanced code compressioreibedded RISC processors. In: ACM
Conference on Programming Language Design and Implenmmtap. 139-149 (1999)

Debray, S.K., Evans, W., Muth, R., de Sutter, B.: Compéehniques for code compaction. ACM Trans.
Progr. Lang. Syst2(2), 378-415 (2000)

Ducasse, S., Rieger, M., Demeyer, S.: A language indigpérapproach for detecting duplicated code.
In: Proceedings of the IEEE International Conference onv&sé Maintenance (ICSM), pp. 109-118
(1999)

Evans, W., Fraser, C.W., Ma, F.: Clone detection viacttral abstraction. In: Proceedings of the IEEE
Working Conference on Reverse Engineering, pp. 150—-1537(20

Fraser, C., Myers, E., Wendt, A.: Analyzing and compngsassembly code. In: Proc. of the ACM
SIGPLAN Symposium on Compiler Construction, vol. 19, pp74121 (1984)

Griswold, R.E., Griswold, M.T.: The Icon Programmingngaage. Peer-to-Peer Communications
(1996)

Griswold, W.G., Notkin, D.: Automated assistance fangram restructuring. ACM Transactions on
Software Engineering and Methodolog(8), 228-279 (1993)

Hanson, D.R., Proebsting, T.A.: A research C# compil®aftware-Practice and Experien8é(13),
1211-1224 (2004)

Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARDafble and accurate tree-based detection of
code clones. In: Proceedings of the 29th International €enfce on Software Engineering, pp. 96—105
(2007)

Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A muitiguistic token-based code clone detection
system for large scale source code. |IEEE Trans. Software&sing28(7), 654—-670 (2002)

Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid iddicttion of repeated patterns in strings, trees, and
arrays. In: Proc. ACM Symposium on Theory of Computing, #5-4136 (1972)

Komondoor, R., Horwitz, S.: Using slicing to identifylication in source code. In: Proceedings of the
Eighth International Symposium on Static Analysis, pp.3®{2001)

Kontogiannis, K.A., DeMori, R., Merlo, E., Galler, M. eBnstein, M.: Pattern matching for clone and
concept detection. Automated Software Enginee8ng7—108 (1996)

Koschke, R., Falke, R., Frenzel, P.: Clone detectionguabstract syntax suffix trees. In: Proceedings of
the IEEE Working Conference on Reverse Engineering, pp-263 (2006)

Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-Miner: Findingpy-paste and related bugs in large-scale
software code. |IEEE Trans. Software Engineef(g), 176—192 (2006)

Ma, F.: On the study of tree pattern matching algorithms @pplications. Master’s thesis, Department
of Computer Science, University of British Columbia (2006)

Mayrand, J., Leblanc, C., Merlo, E.: Experiment on theomuatic detection of function clones in a
software system using metrics. In: Proceedings of the |IEfE&fhational Conference on Software Main-
tenance, pp. 244-253 (1996)

Seal, D. (ed.): ARM Architecture Reference Manual, sdaedn. Addison-Wesley (2001)

Sutter, B.D., Bus, B.D., Bosschere, K.D.: Sifting owt thud: Low level C++ code reuse. In: Proceedings
of the 17th ACM SIGPLAN Conference on Object-oriented Paogming, Systems, Languages, and
Applications, pp. 275-291 (2002)

Yang, W.: Identifying syntactic differences betweem farograms. Software-Practice and Experience
21(7), 739-755 (1991)

Zaki, M.J.: Efficiently mining frequent trees in a forest: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Daitairld, pp. 71-80 (2002)

