
Software Quality Journal manuscript No.
(will be inserted by the editor)

Clone Detection via Structural Abstraction

William S. Evans · Christopher W. Fraser · Fei Ma

Received: date / Accepted: date

Abstract This paper describes the design, implementation, and application of a new algo-
rithm to detect cloned code. It operates on the abstract syntax trees formed by many com-
pilers as an intermediate representation. It extends priorwork by identifying clones even
when arbitrary subtrees have been changed. These subtrees may represent structural rather
than simply lexical code differences. In 840,000 lines of Java and C# code, 20-50% of the
clones that we find involve these structural changes, which are not accounted for by previous
methods. Our method also identifies cloning in declarations, so it is somewhat more general
than conventional procedural abstraction.

Keywords Clone detection· procedural abstraction· refactoring

1 Introduction

Duplicated code arises in software for many reasons: copy-paste programming, common
language constructs, and accidental duplication of functionality are some common ones.
Code duplication orcloning (especially copy-paste programming) can adversely affectsoft-
ware quality since it makes it harder to maintain, update, orotherwise change the program.
For example, when an error is identified in one copy, the programmer must find all of the
other copies and make parallel changes, since inconsistentupdates may introduce bugs,
which degrade code quality. Even the existence of duplicatecode can harm software qual-
ity since it can make understanding a system more difficult; the crucial difference in two
nearly-identical copies may be obscured by their overwhelming similarity. On the other
hand, cloning is easier than creating a procedure to performboth the original and a new

W. Evans
University of British Columbia, Department of Computer Science, Vancouver, BC, V6T1Z4 Canada. E-mail:
will@cs.ubc.ca
Supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.

C. Fraser
http://cwfraser.webhop.netE-mail: cwfraser@gmail.com

F. Ma
Microsoft, One Microsoft Way, Redmond, WA, 98052 USA. E-mail: Fei.Ma@microsoft.com

2

task, and it can be less error-prone (though many errors result from incorrectly or incom-
pletely modifying copies). Since cloned code appears to be afact of life, identifying it—for
maintenance, program understanding, or code modification (e.g. refactoring [18] or program
compaction)—is an important part of software development.

There is much prior work in this area, operating on source code [2,3,21,26], abstract
syntax or parse trees [6,25,20], program dependence graphs[23], bytecode [5] and assembly
code [12,13,30,16]. The methods also use various matching techniques: suffix trees [16,2,
3,21,25], hashing [6,12,13,30], subsequence mining [26],program slicing [23], and feature
vectors [24,28,20].

Clone detectors offer a range of outputs. Some mainly flag theclones in a graphical
output, such as a dot-plot [11]. This strategy suits users who reject automatic changes to
their source code. Other clone detectors create a revised source code, which the user is
presumably free to modify or decline [23]. Still others automatically perform procedural
abstraction [12,13,30,16], which replaces the clones witha procedure and calls. This fully
automatic process particularly suits clone detectors thatoperate on assembly or object code,
since the programmer generally does not inspect this code and is thus unlikely to reject
changes.

Most clone detectors find not only identical fragments of code but also copies with
some differences. These slightly different copies could, in theory, be abstracted into a single
procedure taking the differences as parameters. However, most previous methods permit
only what we calllexical abstraction; that is, a process akin to a compiler’s lexical analyzer
identifies the elements that can become parameters to the abstracted procedure. Typically,
the process treats identifiers and numbers for source code orregister numbers and literals
for assembly code as equivalent; or, alternatively, it replaces them with a canonical form
(a “wildcard”) in order to detect similar clones. For example, it treats the source codes
i=j+1 andp=q+4 as if they were identical. In this simple form, lexical abstraction can
generate many false positives. A more precise version, parameterized pattern matching [3],
eliminates many of these false positives by requiring a one-for-one correspondence between
parallel parameters.

Still, some clones detected using these methods could not beabstracted into procedures
because they do not obey the grammatical structure of the program. A clone consisting of
the end of one procedure and the beginning of another is not easily abstracted, especially
at the source-code level, and perhaps should not be recognized as a clone. Searching for
clones within the program’s abstract syntax tree (AST), rather than its text, avoids these
ungrammatical clones. This is the main motivation for most clone detection approaches
using ASTs.

Clone detection in ASTs suggests a natural generalization of lexical abstraction in which
parameters represent full subtrees of an AST. Subtrees of anAST may correspond to lexical
constructs (identifiers or numbers) but they may also correspond to more general constructs
that capture more complicated program structures. Thus, wecall this generalizationstruc-
tural abstraction.

There is some prior work on clone detection in ASTs, though not fully general struc-
tural abstraction as defined above. One method uses a subset of the AST features as part of a
feature vector describing code fragments and searches for clones using feature vector clus-
tering [24]. Another method [6] finds lexical AST clones and enlarges them by repeatedly
checking if the parents of a set of similar clones form similar clones as well. This catches
some structural clones but misses others (e.g. those with a few dissimilar arguments). A third
method linearizes the AST and looks for clones, using standard techniques, in the resulting

3

sequence of AST nodes [25]. A fourth clusters feature vectors that summarize parse trees
[20]. We discuss these and other approaches in more detail inSection 6.

This paper describes a clone detector based purely on general structural abstraction in
ASTs. It has no special treatment for identifiers, literals,lists, or any other language feature.
It bases parameterization only on the abstract syntax tree.It abstracts identifiers, literals,
lists, and more, but it does so simply by abstracting full subtrees of an AST.

We ran this clone detector on over 425,250 lines of Java source and over 16,000 lines of
C# source. We both tabulated the results automatically and evaluated selections manually.
In these tests, 20-50% of the clones we found were structuraland represent a significant
opportunity to reduce duplication and improve software quality that might have been missed
by lexical abstraction. The measurements also show that general structural abstraction on
ASTs is affordable.

These initial experiments, reported at the Working Conference on Reverse Engineering,
support our belief that a significant number of clones are structural in nature and can be
found efficiently with our algorithm [15]. This paper expands on that work. One issue that
we only slightly addressed in that work is the issue of scalability. The clones that we report
in Figures 3 and 4 arelocal clones, i.e., clones whose occurrences come from the same
file. Findingglobal clones, i.e., clones that may occur in different files withina set of files,
takes more time. Of course, these may also be the most interesting clones to a programmer
involved in refactoring, since they are not local and hence are less obvious.

Another issue, which is related, is how well our technique compares to other clone de-
tectors. We discuss the results of such a comparison in Section 5. Since the comparison
involved finding global clones in large test programs (an additional 400,000 lines of Java
source), we demonstrate the scalability of our technique aswell as measuring its perfor-
mance against other clone detectors.

Even though our algorithm scales well, we introduce and discuss the performance of a
modified version in Section 2.2 that is faster but may not detect as many clones.

2 Algorithm

Our structural abstraction prototype is called Asta. Asta accepts a single AST represented as
an XML string. It has been used with ASTs created by JavaML from Java code [1] and with
ASTs created by the C# compiler lcsc [19]. A custom back end for JavaML and lcsc emits
each file as a single AST. A simple tool combines multiple ASTsinto a single XML string
to run Asta across multiple files. The ASTs are easily pretty-printed to reconstruct a source
program that is very similar to the original input. The ASTs are also annotated with pointers
to the associated source code. There are thus two different ways to present AST clones to
the programmer in a recognizable form.

To explain Asta, we use common graph theoretic terminology and notation. For exam-
ple,V (G) andE(G) denote the nodes and edges of a graphG. A subtree is any connected
subgraph of a tree. A subtree of a rooted tree is also rooted and its root is the node that is
closest to the root in the original tree. Anancestor of a node in a rooted tree is a node on the
path from the root to that node. If nodeu is an ancestor of nodev thenv is adescendant of
nodeu. A full subtree of a rooted treeT is subtree ofT containing a node ofT and all of its
descendents inT .

A pattern is a labeled, rooted tree some of whose leaves may be labeled with the spe-
cial wildcard label,?. Leaves with this label are calledholes. A patternP matches a la-
beled, rooted treeT if there exists a functionf : V (P) → V (T) such thatf(root(P)) =

4

root(T), (u, v) ∈ E(P) if and only if (f(u), f(v)) ∈ E(T), and for allv ∈ V (P), ei-
ther (1) label(v) = label(f(v)), andv andf(v) have the same number of children, or (2)
label(v) = ?. In our case,T is a full subtree of an abstract syntax tree and the patternP rep-
resents a macro, possibly taking arguments. Each holev in P represents a formal parameter
that is filled by the computation represented by the full subtree ofT rooted atf(v).

An occurrence of a patternP in a labeled, rooted treeS is a subtree ofS thatP matches.
Multiple occurrences of a single patternP in an abstract syntax tree represent cloned code.
A clone is a pattern with more than one occurrence. Thesize of a pattern is the number of
nodes in the pattern, excluding holes.

In what follows, trees and patterns appear in a functional, fully-parenthesized prefix
form. For example,

add(?,constant(7)) ≡ add

? constant

7

denotes a pattern with one hole. When a pattern is used to forma procedure, holes corre-
spond to formal parameters in the definition and to actual arguments at invocations. Holes
must replace a full subtree. For example,

?(local(a),formal(b))

is not a valid pattern because the hole replaces an operator but not the full subtree labeled
with that operator. This restriction suits conventional programming languages, which gen-
erally do not support abstraction of operators. Languages with higher order functions do
support such abstraction, so Asta would ideally be extendedto offer operator wildcards if
it were used with ASTs from such languages. Algorithms and experimental results for the
extended version of Asta can be found in [27].

2.1 Pattern generation

Asta produces a series of patterns that represent cloned code in a given abstract syntax tree
S. It first generates a set of candidate patterns that occur at least twice inS and have at most
H holes (H is an input to Asta.) It then decides which of these patterns to output and in what
order.

Candidate generation starts by creating a set of simple patterns. Given an integer pa-
rameterD, Asta generates, for each nodev in S, at mostD patterns calledcaps. Thed-cap
(1 ≤ d ≤ D) for v is the pattern obtained by taking the depthd subtree rooted atv and
adding holes in place of all the nodes at depthd. If the subtree rooted atv has no nodes at
depthd (i.e. the subtree has depth less thand) then nodev has nod-cap. Asta also generates
a pattern called thefull-cap for v, which is the full subtree rooted atv. For example, ifD = 2

and the full subtree rooted atv is:

add(local(a),sub(local(b),formal(c)))

then Asta generates the 1-capadd(?,?) and the 2-capadd(local(?),sub(?,?)) as
well as the full-capadd(local(a),sub(local(b),formal(c))). The set of all
caps for all nodes inS forms the initial set,Π, of candidate patterns.

5

Asta finds the occurrences of every cap by building an associative array called theclone
table, indexed by pattern. Each entry of the clone table is a list ofoccurrences of the pattern
in S. Asta removes fromΠ any cap that occurs only once.

Karp, Miller, and Rosenberg [22] present a theoretical treatment of the problem of find-
ing repeated patterns in trees (as well as strings and arrays). Their problem 1 is identical
to the problem of finding alld-caps: “Find all depthd substructures ofS which occur at
least twice inS (possibly overlapping), and find the position inS of each such repeated
substructure.” Unfortunately, they present algorithms that solve problem 1 only for strings
and arrays. Their tree algorithms are designed to find the occurrences of a given subtree in
S (a problem that we solve using an associative array, i.e., hashing).

After creating the set,Π, of repeated caps, Asta performs the closure of thepattern
improvement operation on the set. Pattern improvement creates a new pattern by replacing
or “specializing” the holes in an existing pattern. Given a patternP , pattern improvement
produces a new patternQ by replacing every holev in P with a patternF (v)1 such that (i)
F (v) has at most one hole (thus,Q has at most the same number of holes asP), and (ii)
Q occurs whereverP occurs (i.e.F (v) matches every subtree, from every occurrence ofP ,
that fills holev). It is possible that for some holesv, the only patternF (v) that matches all
the subtrees is a hole. In this case, no specialization occurs for holev.

In order to perform pattern improvement somewhat efficiently, we store with each node
u in S a list of patterns that match the full subtree rooted atu. This structure is called
the match table. The list is ordered by the number of nodes in the pattern in decreasing
order. Given a patternP to improve and a holev in P , Asta finds an arbitrary occurrence
of P (with matching functionf) in S and finds the list of patterns stored with the node
f(v). Asta considers the patterns in this list, in order, as candidates forF (v). Any candidate
with more than one hole is rejected (to satisfy condition (i)). In order to satisfy condition
(ii), a candidate pattern must match the subtree rooted atf(v) for all matching functionsf
associated with occurrences ofP . Another way of saying this is that every nodef(v) (over
all matching functionsf from occurrences ofP) must be the root of an occurrence of the
candidate pattern. Thus Asta looks up the candidate patternin the clone table and checks
that eachf(v) is the root of an occurrence in that table entry. (We actuallystore this list
of occurrences as an associative array indexed by the root ofthe occurrence, so the check
is quite efficient.) See Figure 1 for an illustration of pattern improvement. Asta repeats the
pattern improvement operation on every pattern inΠ, adding any newly created patterns to
Π, until no new patterns are created.

Pattern improvement is a conservative operation. It only creates a more specialized pat-
tern if it occurs in the same places as the original pattern. Some patterns can’t be specialized
without reducing the number of occurrences. We may still want to specialize these pat-
terns because our focus is on finding large patterns that occur at least twice. Asta performs a
greedy version of pattern specialization, calledbest-pair specialization, that attempts to pro-
duce large patterns that occur at least twice. It does this byperforming pattern improvement
but requires only that the specialization preserves two of the occurrences of the original
pattern.

For each pair of occurrences,Ti andTj (1 ≤ i < j ≤ r) of a given patternP with r

occurrences, Asta produces a new patternQij that is identical toP except that every holev
in P is replaced by a patternFij(v) such that (a)Fij(v) has at most one hole, and (b)Qij

matchesTi andTj . The largestQij (over 1 ≤ i < j ≤ r) is the best-pair specialization
of P . By “largest”, we mean the pattern with the most non-hole nodes, with ties broken

1 The notation emphasizes the fact that each hole may be filled with a different pattern.

6

add1

local2

a3

add4

local5

a6

add7

local8

a9

local10

b11

Clone Table
pattern: occurs at:

add(?,?) 1,4,7
local(?) 2,5,8,10

a 3,6,9
local(a) 2,5,8

Clone Table
pattern: occurs at:

add(?,?) 1,4,7
local(?) 2,5,8,10

a 3,6,9
local(a) 2,5,8

add(local(a),?) 1,4,7

Match Table
node: matched by:

1 add(?,?)
2 local(a), local(?)
3 a
4 add(?,?)
5 local(a), local(?)
6 a
7 add(?,?)
8 local(a), local(?)
9 a

10 local(?)
11

Match Table
node: matched by:

1 add(local(a),?), add(?,?)
2 local(a), local(?)
3 a
4 add(local(a),?), add(?,?)
5 local(a), local(?)
6 a
7 add(local(a),?), add(?,?)
8 local(a), local(?)
9 a

10 local(?)
11

Fig. 1 An abstract syntax tree and its clone and match tables (left)after inserting alld-caps and removing
singleton patterns. The same tables (right) after pattern improvement ofadd(?,?). Note thatadd(?,?) is
now a dominated pattern.

arbitrarily. Asta creates the best-pair specialization for every patternP in the set of patterns,
Π, and adds those patterns toΠ. It then computes, again, the closure ofΠ using the pattern
improvement operation. As the final step in candidate generation, Asta removes fromΠ all
dominated patterns. A pattern is dominated if it was improved by the pattern improvement
operation.

2.2 Iterative Algorithm

Asta can be expensive to run on large collections of files, both in terms of memory usage
and time. In particular, the clone table and match table havesize proportional to the total
number of occurrences of all patterns. The full-caps alone will have a total size (number of
nodes) equal to the square of the AST size, if the AST has depththat is linear in the number
of nodes. Also best-pair specialization takes time proportional to the square of the number
of occurrences of the pattern being specialized.

One way to avoid this cost is to perform an iterative version of Asta’s pattern improve-
ment and best-pair specialization. The iterative version of pattern improvement specializes
holes using only 1-caps. That is, a pattern is improved by finding a hole in the pattern so that

7

all occurrences of the pattern fill the hole with the same 1-cap. (Unlike in regular pattern
improvement, we do not insist that the 1-cap have at most one hole.) So improvement pro-
gresses incrementally, increasing the depth of the patternby at most one in each iteration.
We repeat this iterative improvement until no new patterns are created. Even though progress
is incremental, each iteration is fast, and we do not have to maintain a match table except
for 1-caps, since we only specialize using 1-caps. We also avoid the initial calculation and
storage ofd-caps and full-caps, since we can start our iterative improvement with1-caps.
The real disadvantage is that because we start with1-caps and because pattern improvement
will improve a pattern (by specializing a hole) only if the improved pattern has the same oc-
currences as the original, we may fail to find a big clone that has only a few occurrences. We
addressed this problem in the original version of Asta with best-pair specialization, however
this is slow if the number of occurrences of the pattern is large since we perform pattern
improvement for every pair of occurrences. Instead, in the iterative version of Asta, we per-
form an iterative version of best-pair specialization called iterative specialization. Given a
pattern and its occurrences, we create subsets of at least two occurrences so that the pattern
can be iteratively improved for each subset. In other words,the occurrences in a subset all
fill at least one hole of the pattern with the same1-cap. For example, in the following AST

sub1

add2

add3

a4 b5

add6

a7 b8

add9

a10 c11

the patternadd(?, ?) occurs at nodes 2, 3, 6, and 9, and cannot be improved using pattern
improvement. However, iterative specialization considers the subset{3, 6, 9} of occurrences
and for that subset the pattern can be improved, toadd(a,?).

To create the subsets, we consider each hole of the pattern and partition the set of occur-
rences into subsets based on what1-cap fills that hole in an occurrence. In our example, con-
sidering the first hole, we create the partition{{2}, {3, 6, 9}}. Considering the second hole,
we create the partition{{2}, {3, 6}, {9}}. The subsets that have at least two occurrences and
are not contained within another such subset are the ones we use for pattern improvement.
In our example, we use only{3, 6, 9} for pattern improvement, since the other subsets have
size one or are contained in{3, 6, 9}.

By repeating iterative improvement and iterative specialization, we eventually find all
of the patterns that the original version of Asta finds. The trouble is that we find many other
patterns as well. Without a limit on the number of holes in a pattern, the set of patterns that
are iteratively improved and specialized gets too large. Onthe other hand, it may be that to
grow, iteratively, a 1-cap to a 10-cap with few holes, we needto produce a pattern with many
holes along the way. However, it is difficult to tell if a givenpattern with many holes will
eventually improve/specialize to a good pattern. We chooseto limit iterative specialization
to only those patterns with at mostH holes. We allow iterative improvement to produce pat-
terns with more thanH holes. This compromise seems to produce reasonably good clones,
but it does miss clones that the original version finds. Thus in our experiments we have used
the original version of Asta. We discuss the performance of our implementations of both the
original and iterative versions of Asta in Section 7.

8

2.3 Thinning, ranking, and reporting

Asta finds many candidate clones, sometimes too many, so the candidates are thinned and
ranked before output. Asta supports a wide range of options for thinning and ranking.

Thinning uses simple command-line options that give thresholds for number of nodes
and number of holes. All results in this paper omit clones under ten nodes or over five holes.
The ASTs average approximately 14 nodes per line, so some sub-line clones are reported.
Though sub-line clones are often too small to warrant refactoring, they can yield substantial
savings when abstracted for the purpose of code compaction.

Clones may be ranked along several dimensions:

Size: Size is the number of AST nodes or the number of characters, tokens, or lines of
source code, in the clone, not counting holes.

Frequency: A clone may be ranked according to its size (option One) or its estimated sav-
ings, which is the product of its size and the number of non-overlapping occurrences,
minus one to account for the one occurrence that must remain.The latter ranking (op-
tion All) favors clones whose abstraction would most decrease overall code size, but
it often produces small, frequent clones. Automatic tools for procedural abstraction are
indifferent to clone size, but manual refactoring is not. Weprovide options to suit both
applications.

Similarity: Similarity is the size of the clone divided by the average size of its occurrences.
If the clone has no holes, every occurrence is the same size asthe clone and the similar-
ity is 100%. Clones that take large subtrees as parameters have much lower similarity
percentages. The optionPercent indicates that clones should be ranked by their sim-
ilarity.

Ranking does more than simply order the clones for output. The report generator drops
clones that overlap clones of higher rank. Thus rankings that favor small clones will list
them early and can eliminate larger overlapping clones.

Command-line options select from the options above. For example, the default option
string used below is “Node One”, which counts nodes, favors the largest clone (ignoring
the number of occurrences), and doesn’t consider how similar the clone and its occurrences
are.

Asta is currently a platform to evaluate clone detection on ASTs, and provides only a
crude user interface. It produces a list of clones as an HTML document with three parts: a
table with one row per pattern, a list of patterns with their occurrences, and the source code.
Each part hyperlinks to an elaboration in the next part.

3 Clone Distribution

Our primary goal is to report a list of clones that merit procedural abstraction, refactoring,
or some other action. What merits abstraction is a subjective decision that is difficult to
quantify. It is therefore difficult to quantitatively measure how well a system achieves this
goal. Historically, research in clone detection (procedural abstraction) for code compaction
used the number of source lines (or instructions) saved after abstraction as a measure of
system performance. This goal is easy to quantify. A clone with p elements (lines, tokens,
characters, or nodes) andr occurrences savesp(r − 1) elements2. Subtracting one accounts
for the one copy of the clone that must remain.

2 This does not consider the cost of ther − 1 call instructions that replacer − 1 of the occurrences.

9

A focus on savings tempts one to use a greedy heuristic that chooses clones based on the
number of, for example, source lines they save. The clones that result may not be the ones
that subjectively merit abstraction. For example, the clone that saves the most source lines
in an eight-queens solver written in C# is the rather dubious:

for (int i = 0; i < ?; i++)
?= ?;

To our eyes, reporting clones based on the number of nodes in the clone itself (rather than
the number in all occurrences) produced better clones, at least from the point of view of
manual refactoring. Whenever our ranking factored in number of occurrences, we tended to
see less attractive clones. However, it may be that the purpose of performing clone detection
is, in fact, to compact the source code via procedural abstraction. For that application, small,
frequent clones are desirable.

We explore both our primary goal of finding clones that merit abstraction and the histor-
ical goal of maximizing the number of source lines saved after abstraction. The first goal we
equate with finding large clones (with many nodes). To accomplish this, we rank clones by
size (number of nodes) and report the size of the non-overlapping clones that we find (Fig-
ures 3 and 4). The second, historical goal, we approach by ranking clones by the number of
nodes saved and report the percentage of nodes saved after abstraction (Figure 5). In both
cases, we follow Asta’s ranking of clones to select, in a greedy fashion, those clones that
(locally) most increase the measure (eliminating from future consideration the clones they
overlap).

3.1 Clones for abstraction

Asta has been run on a corpus of 1,141 Java files (from thejava directory of the Java 2
platform, standard edition (version 1.4.2)3) and 58 C# files (mostly from the lcsc compiler
[19]). Figure 2 gives their sizes. For each file (ordered by number of AST nodes along the
x-axis), the figures show the number of nodes, characters, tokens, and lines. Since these are
(roughly) related by constant factors4 in what follows, we will use node counts as a proxy
for size of source code, avoiding measures that are more influenced by formatting.

Figures 3 and 4 show the numbers of non-overlapping clones ofvarious sizes found in
the largest files of the Java and C# corpora. There are many small clones but also a significant
number that merit abstraction.

We hand-checked all 48 clones of at least 80 nodes in the C# examples, and found that
44 represent copying that we would want to eliminate. This high success ratio suggests that
many of the smaller clones should also be actionable. The number of significantly smaller
clones prohibits grading by hand, but skimming suggests that a 40-node threshold gives
many actionable clones and that a 20-node threshold is probably too low, just as 80 is too
high.

The size of actionable Java clones is similar. A sampling of 40-node clones revealed
many useful clones, while many 20-node clones are too small to warrant abstraction. As
one example, the following 59 node pattern with 3 holes occurs 10 times across several Java
files:

3 http://java.sun.com/j2se/1.4.2/download.html
4 Let n,c,t, andℓ be the number of nodes, characters, tokens, and lines in a file. For Java,n ≈ 0.55c ≈

4.0t ≈ 13.5ℓ. For C#,n ≈ 0.39c ≈ 1.45t ≈ 14.9ℓ.

10

1141 Java source files
1

10

100

1000

10000

100000 characters
nodes
tokens
lines

58 C# source files
1

10

100

1000

10000

100000 characters
nodes
tokens
lines

Fig. 2 Java and C# source file metrics. Each column of four dots represents the number of characters, nodes,
tokens, and lines in one file. The columns are ordered by number of nodes.

for (int i=0; i<?1; i++)
if (?2[i] != ?3[i])

return false;

One of its occurrences (injava/awt/image/ColorModel.java) has arguments?1=
numComponents, ?2= nBits, and?3= nb. Another (injava/net/Inet6Address.
java) has arguments?1=INADDRSZ, ?2=ipaddress, and?3=inetAddr.ipaddress.
This is one of the smallest examples of a structural clone that might be worthy of parame-
terization. Notice that the third hole matches both a lexical and structural parameter. Notice
also that the clone detector has discovered an instance of the array comparators offered by a
variety of libraries.

One of the potential benefits of allowing clone parameters tobe larger subtrees than
single leaves is the possibility of detecting more than justlexical inconsistencies in copy-
paste clones. For example, one of the structural clones found in the C# source contains the
following line5:

5 The entire clone comprises 231 nodes (21 source lines), contains one hole, and occurs twice.

11

12
49

4

10
91

8

10
17

9

22
16

5

10
66

1

10
25

7

11
82

5

38
30

9

22
03

2

11
80

5

11
66

3

18
88

8

11
54

1

11
29

2

10
98

8

44
61

6

17
95

8

11
28

1

18
19

1

10
00

3

16
73

5

14
09

9

12
56

4

10
40

3

15
84

1

15
49

3

11
02

1

27
05

5

13
38

0

10
86

4

The 30 largest source files (labeled by number of nodes)

0

50

100

150

200
C

lo
ne

 s
iz

e
(n

um
be

r
of

 n
od

es
)

39
17
4
4
4
2
1
1

43
8

1

3
7
5
3
1
3

1
1

29

1

4
2
7
5
2
1
1

1

21
4

1

*

5

1

1

2

2
2

2

1
1

1

1
2

44
24
8
2
3
1

1
1

35
10

1

8
2
3

1

1

50
13

1

7
1
2
1

1

1

89

2

45

1

16
14
4
4
3
3
2
2

85
29
11
2
7
5
1
2

1

1
1

36
12
6
3

1

1

3

27

1

18
3

2

6

3
1
1
2
4
2

55
47

1

17

1

6
3
3
3

2

51
17
7

1

3
1

1

46
35
7
6
5
8
1

59
17
4
4
2

133

1

*

54
19

2

14

1

9
6
2
1
6

1

1
2

75
27
13
2
2
1
3

1

13
5
2

1

80
31
6
6
3
1
2

1

28
14
8
2
3
2
1
1

1

2

50
21
10
2
3

1

3

2

1
1

51
20

1

3
6

1

3

3

2

57
26
6
5
1
1
2
1

*

38
10
4

1

1
2

66
37
6
4
1
1
3

69

1

21

1

5
4
3
1
3
1

39

1

14

1

9
1
2
1

*

143

1

56

1

14

1

7
3
4

1

2
3

1

1
3

56
14
5
7
7
1

47
16
5
3
5
2
1

1

Fig. 3 Number of non-overlapping clones in Java source files. For example, the 54 in the rightmost column indicates that the largest source file (44,616 nodes) has 54 non-
overlapping clones, each with 20-30 nodes. An asterisk indicates a clone whose size is off the scale. (The maximum size clone has 913 nodes.)

12

85
69

10
11

13
52

16
48

3

85
2

28
01

10
60

11
45

13
34

25
25

11
20

17
73

16
72

30
10

72
96

12
39

77
10

31
47

18
27

3

10
81

23
29

11
60

23
29

5

48
67

37
36

4

21
37

46
38

13
49

13
05

6

20
33

The 30 largest source files (labeled by number of nodes)

0

50

100

150

200

C
lo

ne
 s

iz
e

(n
um

be
r

of
 n

od
es

)

44
16
8
5
2

1
1

1

2
1 1

39
6
9
9

1

1
3

5
3

12
4
1

1
2

4

1

1

7
3

8

1
1

6
3
3

1

9
1
1

14
3
1

2 16
5

2

1

17
13
7
1
2

12
1

30

*

11
7
4
2
2
3
1

8
3

*

2
1

1
1

43
27

2

13
6

1

*

2

1

3
4
1
2

1

9
1
1
1

14
3
1
1

1

10
3

102
34
17

1

8
9
4
2
1

1

3

26
9

1

2

139
48

1

34

2

20

3

11
5

1

1
1
1

1

3

*

17
1

1

1

14
4
4
4
2

1

1

7
2
1

1

36

1

18
9
1
2
1
5
1

1

10
3
1
2

1

Fig. 4 Number of non-overlapping clones in C# source files. For example, the 48 in the rightmost column indicates that the largest source file (37,364 nodes) has 48 non-
overlapping clones, each with 20-30 nodes. An asterisk indicates a clone whose size is off the scale. (The maximum size clone has 605 nodes.)

13

return malformed("real-literal", ?);

where one copy of the clone has?= tmp.ToString() and the other copy has?= tmp.
This may be a legitimate difference, but it may also indicatea copy that missed being up-
dated. Clone detectors that merely regularize variable names would not detect the match
between these structural parameters and might miss such potential errors.

3.2 Clones for compaction

We now consider the historical goal of maximizing the numberof nodes saved by abstrac-
tion. Reporting total savings is complicated by the fact that it varies significantly with the
threshold on clone size. Figure 5 shows that, for our C# corpus, the total savings drops from
24% to 1% as the threshold for clone size increases from 10 to 160 nodes. If maximizing
total savings is our goal, we should allow the automatic abstraction of small clones, even
though these clones may not be large enough to merit abstraction by hand. If we would
rather avoid abstracting small clones, thresholds between20 and 80 nodes eliminate many
of the small, dubious clones and still yield savings of 4-16%.

10 20 40 80 160

Node Threshold

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

of
 n

od
es

 s
av

ed Java cross-module
Java intra-module
C# intra-module

Fig. 5 Percentage of nodes eliminated by abstraction

We should emphasize that our results (the wide bars in Figure5) represent the execution
of Asta on each individual file in isolation. If instead, we allow Asta to find clones that occur
in multiple files, we obtain greater savings. Figure 5 shows the difference for the Java corpus
(the narrow bars). The savings across multiple files is obtained by finding clones that occur
anywhere within the approximately 400,000 lines of Java source.

By comparison, Baker [2] reports saving about 12% by abstracting clones of at least
30 lines in inputs with 700,000 to over a million lines of code; she reports that most 20-
line clones are actionable and that most 8-line clones are not. Baxter et al. also report saving
roughly 12% on inputs of about 400,000 lines of code; they toouse a threshold and conclude
that most clones are on the order of 10 lines.

14

Our threshold of 20 nodes is far smaller than Baker’s 30-linethreshold. That we still
observe mostly actionable clones at this threshold may be understood as a difference in the
definition ofactionable, or as a difference in the corpora, source languages, or abstraction
mechanism. Our smaller threshold is matched by our smaller input sizes: our largest file
contains about 45,000 lines of source. As mentioned, we can apply our techniques across
multiple files (as shown in Figure 5), but there is also redundancy and duplication within
individual files.

Remarkably, the savings we obtain by abstracting actionable clones within isolated files
is roughly the same as that obtained by both Baker and Baxter et al. This is somewhat
disappointing since our system finds clones based not only onlexical abstraction (as in
Baker and Baxter et al.) but also on structural abstraction.Either there are very few clones
that are purely structural in nature, or individual files contain fewer clones (that we view
as actionable) than the large corpora examined by Baker and Baxter et al. The following
section makes the case for the latter interpretation.

4 Lexical versus structural abstraction

Prior clone detection algorithms are based on lexical abstraction, which abstracts lexical
tokens. Structural abstraction can abstract arbitrary subtrees and thus should be expected
to find more clones. One objective of this research has been todetermine if this generality
translates into practical benefit and, if so, to characterize the gain.

Clones are easily classified as lexical or structural. An occurrence of a clone islexical
if each of the clone’s holes is occupied by an actual argumentthat is an identifier or literal.
If a clone has two or more lexical occurrences, then it might have been found by lexical
abstraction and is thus called alexical clone; otherwise, it is called astructural clone.

In the ASTs produced by JavaML and lcsc, identifiers and literals appear as leaves but,
depending on context, can be wrapped in or hung below one or more unary nodes. We
classify arguments or holes conservatively: if an argumentis a leaf or a chain of unary nodes
leading to a leaf, then we count it as a lexical abstraction. Only more complex arguments
are counted as structural abstractions. For example, suppose the clonea[?] = x; occurs
twice:

a[i] = x;
a[i+1] = x;

The argument to the first occurrence is lexical because it includes only a leaf and, perhaps,
a unary node that identifies the type of leaf. The argument to the second occurrence is,
however, structural because it includes a binary AST node.

Asta’s HTML output optionally shows the arguments to each occurrence of each clone,
and it classifies each argument as lexical or structural. Because Asta can generate clones that
a human might reject, we checked a selection of C# source filesby hand. Figure 4 includes
48 clones of 80 or more nodes. 32 were structural and 16 were lexical. 28 of the structural
clones and all of the lexical clones were deemed useful. Thusa significant fraction of these
large clones are structural, and most of them merit abstraction.

There are, of course, too many clones to check all of them by hand, so we present
summary data on the ratio of structural to lexical clones. This ratio naturally varies with the
thresholds for holes and clone size.

First, fixing the hole threshold at 3 and raising the node threshold from 10 to 160 gives
the top half of Figure 6. As the threshold on clone size rises,Asta naturally finds fewer
clones, but note that structural clones account for an increasing fraction of the clones found.

15

10 20 40 80 160

Node Threshold

0

10

20

30

40

50

60

70

P
er

ce
nt

ag
e

of
 s

tr
uc

tu
ra

l c
lo

ne
s

90
17

31
21

80
3

19
7

3312
76

54
3

17
6

37 9

Java
C#

0 1 2 3 4 5

Hole Threshold

0

10

20

30

40

50

60

70

P
er

ce
nt

ag
e

of
 s

tr
uc

tu
ra

l c
lo

ne
s

24
72

47
00

74
20

90
17

10
17

0

10
78

8

81
1

11
22

12
16

12
76

12
87

12
87

Java
C#

Fig. 6 Percentage of structural clones for various node and hole thresholds. The number above each column
denotes the total number of clones for the given threshold.

If, instead, we vary the hole threshold, we obtain the bottomhalf of Figure 6, in which
the node threshold is fixed at 10 and the hole threshold variesfrom zero to five. The ratio
of structural to lexical clones rises because each additional hole increases the chance that a
clone will have a structural argument and thus become structural itself.

Clones with zero holes are always lexical because they have no arguments at all, much
less the complex arguments that define structural clones. Predictably, the number of struc-
tural clones grows with the number of holes. At the same time,the number of lexical clones
may decline slightly because some of the growing number of structural clones out-compete
some of the lexical clones in the rankings.

16

Clones with fewer holes are generally easier to exploit, just as library routines with fewer
parameters are easier to understand and use. Even if we restrict our refactoring effort to one-
parameter macros, we still see that 20% of the opportunitiesinvolve structural abstraction,
which is significant. Optimizations are deemed successful with much smaller gains, and
improving source code is surely as important as improving object code. Figure 6 explores
a large range of the configuration options that are most likely to be useful, and it shows
significant numbers of structural clones for all of the non-trivial settings.

5 Comparison

The purpose of this paper is to introduce and experimentallyevaluate a technique for finding
structural clones in programs; and to see if such clones are worth reporting. These clones
are based on the abstract syntax tree structure of the program, rather than the source code,
and are chosen to be suitable for procedural abstraction to aprocedure taking arbitrarily
complex parameters. This is in contrast to most of the existing clone detection systems,
which are based on source code text and consider clones to be similar sequences of source
lines.

Nevertheless, it is interesting to compare Asta against other clone detection systems to
see if the focus on structural clone detection causes Asta tomiss other clones. Therefore, we
ran Asta on the set of Java test programs considered by Bellon, et al. in the Bauhaus project’s
comparison of clone detection tools [8,7]. The test programs were:netbeans-javadoc6

(19K SLOC),eclipse-ant7 (35K SLOC),eclipse-jdtcore8 (148K SLOC), and
j2sdk1.4.0-javax-swing9 (204K SLOC); a total of about 400K source lines of code.
The clone detection tools, by name of corresponding author,were:

Baker Dup [2]: a line-based detector that replaces identifier and literal names systemati-
cally so that lines that are the same, except that one may usei andj where the other
usesindex1 andindex2, will match. It uses a suffix tree to find sequences of these
matches.

Baxter CloneDR10 [6]: an AST-based detector that uses hashing to cluster similar full sub-
trees and then selects clones from the clusters.

Kamiya CCFinder [21]: a line-based detector similar to Baker’s except that several token-
based transformations are applied to normalize the source before finding matches.
Kamiya+ is a version ofCCFinder tuned for the comparison.

Merlo CLAN [24,28]: a metric-based detector that clusters code fragments using feature
vectors.
Merlo+ is a version ofCLAN tuned for the comparison.

Rieger Duploc [14]: a line-based detector that does no token-based substitution and uses
hashing to match lines. It then finds sequences of matched lines by examining the dot-
plot [11] matrix of line-to-line matches.

The authors of each tool submitted a listing of clone pairs,candidates, that the tool found
within each program. A clone pair is an ordered pair of sourcecode itervals,((f1, s1, e1),
(f2, s2, e2)) (ordered lexicographically) wheref1 andf2 are (perhaps different) filenames;

6 http://javadoc.netbeans.org
7 http://www.eclipse.org
8 http://www.eclipse.org
9 http://java.sun.com

10 A trademark of Semantic Designs Inc.

17

netbeans ant jdtcore j2sdk
asta 180 (118) 389 (202) 9090 (1492) 4318 (1362)
Baker 344 245 22589 7220
Baxter 33 42 3593 3766
Kamiya 5552 950 26049 21421
Kamiya+ 1543 865 19382 18134
Merlo 80 88 10111 2809
Merlo+ 85 88 10471 2912
Rieger 223 162 710 N/A

Fig. 7 Numbers of clone pairs representing at least six contiguoussource lines reported by each tool (row)
for each test program (column). The numbers in parenthesis for Asta are the numbers of different clones. (A
clone may have many occurrences resulting in many clone pairs.) The numbers in all rows other than for Asta
are from Bellon’s thesis [7].

andsi ≤ ei are line numbers infi. The idea is that the liness1, s1 + 1, . . . , e1 in f1 are
similar to the liness2, s2 + 1, . . . , e2 in f2.

The performance of each tool was measured in several ways. Two measures of particular
interest arerecall, the fraction of “real” clone pairs reported andprecision, the fraction
of reported clone pairs that are “real”. Calculating recalland precision requires knowing
the set of “real” clone pairs, which is impossible. Bellon etal. used a sampling approach
to approximate recall and precision. Bellon sampled 2% of the submitted clone pairs and
decided, subjectively based on the similarity of the two source code intervals, if each sample
was acceptable as a real clone pair or not. The set of acceptable samples (perhaps slightly
modified) formed a reference set of clone pairs. To approximate recall, Bellon et al. used the
fraction of reference clone pairs that the tool found. To approximate precision, they looked
at the fraction of sampled clone pairs from the tool that wereacceptable.11 A good tool
would find most of the reference clone pairs, and would not findtoo many unacceptable
clone pairs.

Since Asta did not participate in the evaluation, we cannot say what fraction of its clones
Bellon would find acceptable. Thus, we cannot obtain the sameapproximate measure of
precision that Bellon found for the other tools. However, Bellon found that:

“In general, tools that report a large number of candidates have a higher recall and a
higher number of rejected [unacceptable] candidates.”

Figure 7 shows the number of clone pairs that each tool, including Asta, finds for each test
program. If Bellon’s general observation is true, then Astahas reasonable precision. Note
that the table includes only those clone pairs that represent at least six contiguous lines of
source code. Asta finds many more clones that are smaller thanthat or, because they are
arbitrary subtrees of the AST, do not represent contiguous source lines. Also, Asta reports
only non-overlapping clones, so Asta may fail to report somelarge clone pairs because they
overlap with others.

We approximate recall in the same manner as Bellon et al. We use the same set of
reference clone pairs and report the number of these found byAsta and the other tools in
Figure 8. The figure contains two numbers for each tool and test program. The first number
is the number of references that wereok-found by the tool, and the second is the number that
weregood-found. A reference clone pairC∗ = ((f1, s∗1, e∗1), (f2, s∗2, e∗2)) is ok-found by a

11 They actually reported the fraction of sampled clone pairs that wereunacceptable.

18

netbeans ant jdtcore j2sdk
refs 55 30 1345 777
asta 20 : 7 13 : 7 503 : 243 454 : 258
Baker 31 : 14 19 : 15 996 : 455 570 : 455
Baxter 9 : 3 6 : 6 307 : 230 345 : 283
Kamiya 43 : 23 29 : 20 890 : 446 704 : 396
Kamiya+ 43 : 25 29 : 20 890 : 445 704 : 396
Merlo 13 : 7 11 : 9 748 : 526 289 : 256
Merlo+ 13 : 7 11 : 9 766 : 544 294 : 259
Rieger 25 : 11 13 : 9 58 : 27 N/A

Fig. 8 Numbers of reference clone pairs that are ok-found : good-found for each tool (row) and each test
program (column). The first row is the number of reference clone pairs in each test program. The numbers in
all rows other than for Asta are from Bellon’s thesis [7].

tool if the tool reports a clone pairC = ((f1, s1, e1), (f2, s2, e2)) such that:

ok(C∗

, C) ≡ min
i=1,2

|[s∗i , e∗i] ∩ [si, ei]|

min{|[s∗i , e∗i]|, |[si, ei]|}
≥ p

and it is good-found if:

good(C∗

, C) ≡ min
i=1,2

|[s∗i , e∗i] ∩ [si, ei]|

|[s∗i , e∗i] ∪ [si, ei]|
≥ p

where we use[a, b] to denote the set{a, a + 1, . . . , b}. In Bellon et al.’s comparison,p was
chosen to be0.7. Basically, these are measures of overlap between two clonepairs, and since
ok(C∗, C) ≤ good(C∗, C), good-found implies ok-found.

Essentially, Asta’s performance is comparable to that of Baxter’s tool, which is not sur-
prising since both methods are AST-based. Since Bellon chose the reference clone pairs from
the clone pairs reported by the tools other than Asta, we expect that the structural clones that
Asta finds would not be represented in the reference set. So the differences between Asta
and Baxter would not be apparent in this comparison.

Asta produces structural clones that none of the other toolsfind. Figure 10 9 shows the
number of Asta clones that the other tools ok-find. In this comparison, an Asta clone is
ok-found by another tool if any pair of the clone’s occurrences are ok-found by the tool. Ap-
proximately 40% of the clones Asta finds are not ok-found by the other tools. The unfound
clones are all structural, and while some of them are small and contain mostly high-level
program structure nodes, some are worthy of attention. For example, the two occurrences:

for (int i=0; i<dirs.length; i++) {
if (!dirs[i].endsWith(File.separator)) {

dirs[i] += File.separator; }
File dir = project.resolveFile(dirs[i]);
FileSet fs = new FileSet();
fs.setDir(dir);
fs.setIncludes("*");
classpath.addFileset(fs); } } }

for (int i=0; i<dirs.length; i++) {
if (!dirs[i].endsWith(File.separator)) {

dirs[i] += File.separator; }
File dir = attributes.getProject().resolveFile(dirs[i]);

19

baker
baxter

kamiya
kamiya+

merlo
merlo+

rieger

netbeans

baker
baxter

kamiya
kamiya+

merlo
merlo+

rieger

ant

baker
baxter

kamiya
kamiya+

merlo
merlo+

rieger

jdtcore

baker
baxter

kamiya
kamiya+

merlo
merlo+

rieger

j2sdk

Fig. 9 Asta clones found by other tools.

20

netbeans ant jdtcore j2sdk
asta 118 202 1492 1362
Baker 60 (51%) 67 (33%) 879 (59%) 545 (40%)
Baxter 21 (18%) 28 (14%) 530 (36%) 297 (22%)
Kamiya 62 (53%) 73 (36%) 819 (55%) 497 (36%)
Kamiya+ 59 (50%) 70 (35%) 802 (54%) 485 (36%)
Merlo 35 (30%) 34 (17%) 570 (38%) 295 (22%)
Merlo+ 35 (30%) 34 (17%) 571 (38%) 297 (22%)
Rieger 52 (44%) 59 (29%) 54 (4%) N/A (N/A)
any 69 (58%) 91 (45%) 1030 (69%) 707 (52%)

Fig. 10 Number (percent) of Asta clones that are ok-found by each tool (row) and each test program (col-
umn). The first row is the number of clones Asta finds in each test program. The last row is the number of
Asta clones ok-found by any other tool.

FileSet fs = new FileSet();
fs.setDir(dir);
fs.setIncludes("*");
classpath.addFileset(fs); } }

elude detection by the other tools since their middle lines differ in a structural way. Also,
only Baxter and Asta find the structural clone that has these occurrences:

public static void setAsText (String text) {
if(!text.equals(""))

return;
for (int i = 0; i < 10 ; i++)

if ("magic" == text) {
setValue(new Long(100L));
return; }

setValue(new Long(0L)); }

public void setAsText (String text) {
if(!text.equals(""))

return;
for (int i = 0; i < tags.length ; i++)

if (tags[i] == text) {
setValue(new Long(values[i]));
return; }

setValue(new Long(0L)); } }

Note that the test in the for-loop body of the first occurrenceappears to be independent of
the for-loop index, and seems to call for some action. These examples clearly show that
structural clone detection is useful in improving the quality of the software.

Interestingly, Figure 10 shows that Asta’s clones areless similar to clones found by
Baxter’s AST-based tool than to those found by other tools. This highlights the fact that
these two AST-based tools are substantially different in the way that they search for clones.
Section 6 compares the two approaches in more detail.

Subsequently, Baker has revisited Bellon’s comparison andin particular the performance
of Dup [4]. Baker discusses several factors of the experimental set-up that influenced that
performance detrimentally, and suggests that the true performance (recall and precision) of
Dup is much better.

21

6 Related work

The most closely related work to ours is by Baxter et al. [6] who perform clone detection in
ASTs; the Bauhaus clone detectorccdiml is said [8] to be a variation on this technique.
Baxter et al. use a hash function to place each full subtree ofthe AST into a bucket. Then
every two full subtrees within a bucket are compared. The hash function is chosen to be
insensitive to identifier names (leaves) so that these can beparameters in a procedural ab-
straction. The resulting lexical clones are extended upwards until the parents fall below a
similarity threshold. This process generates some structural clones but Asta generates more.
For example, a large subtreey or z can renderA(x, y) andA(x, z) dissimilar, but Asta finds
the cloneA(x, ?) regardless. In order to allow larger subtrees to be parameters, Baxter et al.
could use an even more insensitive hash function. However, the cost of this is an increased
bucket size and a larger set requiring pairwise comparison.Asta avoids this by growing
larger matches from smaller ones, essentially hashing the first few levels of each full subtree
(thed-caps) and then extending them as needed. This method findsany duplicated subtree
not just duplicated full subtrees.

Yang [31] uses a language’s grammatical structure (and ASTsin particular) to calculate
the difference between two programs via dynamic programming. He addresses a different
problem than clone detection, but his method could be used for that purpose and could be
used to find the general subtree clones that we find. However, it would requireΩ(n4) time
on ann node AST, which is impractical for all but the smallest programs.

Koschke et al. [25] also detect clones in ASTs. They serialize the AST and use a suffix
tree to find full subtree copies. This technique does not permit structural parameters.

Jiang et al. [20] cluster feature vectors that summarize subtrees of a parse tree or AST.
The vectors count the number of nodes in each of several categories. By using locality-
sensitive hashing, they can promptly identify trees with similar vectors, without comparing
all pairs of trees. The trade-off is that the vectors conflatetrees with the same summary
characteristics but different structures.

The tools CCFinder [21] and CP-Miner [26] also do not find clones with structural pa-
rameters. CCFinder is a token-based, suffix-tree algorithmthat allows parameterized clones
by performing a set of token transformation rules on the input. CP-Miner converts each basic
block of a program into a number and looks for repeated sequences of these numbers, possi-
bly with gaps. It also allows parameterized clones by regularizing identifiers and constants.
Neither method produces structural parameters.

Tools that automatically perform procedural abstraction,rather than simply flagging po-
tential clones, also permit some degree of parameterization in the abstracted procedure.
These tools typically operate on assembly code and most allow register renaming [12,13,
30]. Cheung et al. [9] take advantage of instruction predication (found, for example, in the
ARM instruction set [29]) to nullify instructions that differ between similar code fragments.
The parameters to the abstracted representative procedureare the predication flags, which
select the instructions to execute for each invocation. Oneflag setting could select an en-
tirely different sequence of instructions than another, however for the representative to be
small, many instructions should be common to many fragments. A shortest common super-
sequence algorithm finds the best representative for a set ofsimilar fragments. The method
is not intended for a large number of fragments with many parameters.

Another generalization uses slicing to identify non-contiguous duplicates and then moves
irrelevant code out of the way [23]. This extension catches more clones than lexical abstrac-
tion, but parameterization remains based on lexical elements. This extension is orthogonal

22

to this paper’s generalization. The two methods could be used together and ought to catch
more clones together than separately.

Finding clones in an AST might appear to be a special case of the problem of mining
frequent subtrees [10,32], but closer examination shows that the two problems operate at
two ends of a spectrum. Algorithms that mine frequent trees scan huge forests for subtrees
that appear under many roots. The size and exact number of occurrences are secondary to
the “support” or number of roots that hold the pattern. An AST-based clone detector makes
the opposite trade-off. The best answer may be a clone that occurs only twice, if it is big
enough. Size and exact number of occurrences are important.Support is secondary; indeed,
some interesting clones may occur in only one tree of the forest.

7 Discussion

Asta has been written in Icon [17], Java, and C++. The Icon version takes a few seconds on
most C# corpus files and about 7 minutes on the largest. Icon isinterpreted and dynamically
typed, and the program has not been optimized for speed, so these running times are high.
The Java version, implementing the iterative version of Asta, takes a few seconds on all Java
corpus files, even the largest. Finding all clones across allfiles in the 440,000 line corpus
took less than one hour. The C++ implementation, which implements both the iterative and
original versions of the algorithm, takes at most 10 minutes(iterative) and less than 40
minutes (original) on all Java test programs.

Our structural abstraction method can benefit from variablerenaming (a technique de-
scribed by Baker [3]) since variables that can be named consistently in all clone occurrences
no longer need to be represented as holes in the clone. This reduces the number of param-
eters that need to be passed to the abstracted procedure in the calls that replace the clone
occurrences, and thus these clones save more when abstracted as procedures. Experimental
results show an extra savings of about 20% for our Java corpuswhen combining structural
abstraction with variable renaming [27].

In summary, we have designed, implemented, and experimented with a new method
for detecting cloned code and thus helping programmers improve software quality. Hereto-
fore, abstraction parameterized lexical elements such as identifiers and literals. Our method
generalizes these methods and abstracts arbitrary full subtrees of an AST. In a variety of
programs totaling over 400,000 lines of Java and C# code, 20-50% of the clones that we
found were structural and thus beyond previous methods. Hand-checked samples found ac-
tionable candidates and few false positives. In comparisonto other clone detection tools, on
an additional 400,000 lines of Java code, we obtained similar results. We have shown that
the new method is affordable and finds a significant number of clones that are not found by
lexical methods.

References

1. Badros, G.J.: JavaML: a markup language for Java source code. Computer Networks (Amsterdam,
Netherlands: 1999)33(1–6), 159–177 (2000)

2. Baker, B.S.: On finding duplication and near-duplicationin large software systems. In: Proceedings of
the IEEE Working Conference on Reverse Engineering, pp. 86–95 (1995)

3. Baker, B.S.: Parameterized duplication in strings: Algorithms and an application to software mainte-
nance. SIAM Journal on Computing26(5), 1343–1362 (1997)

4. Baker, B.S.: Finding clones with Dup: Analysis of an experiment. IEEE Trans. Software Engineering
33(9), 608–621 (2007)

23

5. Baker, B.S., Manber, U.: Deducing similarities in Java sources from bytecodes. In: Proc. USENIX
Annual Technical Conference, pp. 179–190 (1998)

6. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using abstract syntax trees.
In: Proceedings of the International Conference on Software Maintenance, pp. 368–377 (1998)

7. Bellon, S.: Vergleich von techniken zur erkennung duplizierten quellcodes. Master’s thesis, Univ. of
Stuttgart (2002). Thesis number 1998

8. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo,E.: Comparison and evaluation of clone detec-
tion tools. IEEE Trans. Software Engineering33(9), 577–591 (2007)

9. Cheung, W., Evans, W., Moses, J.: Predicated instructions for code compaction. In: Proceedings of the
7th International Workshop on Software and Compilers for Embedded Systems, pp. 17–32 (2003)

10. Chi, Y., Nijssen, S., Muntz, R.R., Kok, J.N.: Frequent subtree mining–an overview. Fundamenta Infor-
maticae66(1–2), 161–198 (2005)

11. Church, K., Helfman, J.: Dotplot: A program for exploring self-similarity in millions of lines of text and
code. Journal of Computational and Graphical Statistics2(2), 153–174 (1993)

12. Cooper, K.D., McIntosh, N.: Enhanced code compression for embedded RISC processors. In: ACM
Conference on Programming Language Design and Implementation, pp. 139–149 (1999)

13. Debray, S.K., Evans, W., Muth, R., de Sutter, B.: Compiler techniques for code compaction. ACM Trans.
Progr. Lang. Syst.22(2), 378–415 (2000)

14. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detecting duplicated code.
In: Proceedings of the IEEE International Conference on Software Maintenance (ICSM), pp. 109–118
(1999)

15. Evans, W., Fraser, C.W., Ma, F.: Clone detection via structural abstraction. In: Proceedings of the IEEE
Working Conference on Reverse Engineering, pp. 150–159 (2007)

16. Fraser, C., Myers, E., Wendt, A.: Analyzing and compressing assembly code. In: Proc. of the ACM
SIGPLAN Symposium on Compiler Construction, vol. 19, pp. 117–121 (1984)

17. Griswold, R.E., Griswold, M.T.: The Icon Programming Language. Peer-to-Peer Communications
(1996)

18. Griswold, W.G., Notkin, D.: Automated assistance for program restructuring. ACM Transactions on
Software Engineering and Methodology2(3), 228–279 (1993)

19. Hanson, D.R., Proebsting, T.A.: A research C# compiler.Software-Practice and Experience34(13),
1211–1224 (2004)

20. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARD: Scalable and accurate tree-based detection of
code clones. In: Proceedings of the 29th International Conference on Software Engineering, pp. 96–105
(2007)

21. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A multi-linguistic token-based code clone detection
system for large scale source code. IEEE Trans. Software Engineering28(7), 654–670 (2002)

22. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated patterns in strings, trees, and
arrays. In: Proc. ACM Symposium on Theory of Computing, pp. 125–136 (1972)

23. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code. In: Proceedings of the
Eighth International Symposium on Static Analysis, pp. 40–56 (2001)

24. Kontogiannis, K.A., DeMori, R., Merlo, E., Galler, M., Bernstein, M.: Pattern matching for clone and
concept detection. Automated Software Engineering3, 77–108 (1996)

25. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix trees. In: Proceedings of
the IEEE Working Conference on Reverse Engineering, pp. 253–262 (2006)

26. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-Miner: Finding copy-paste and related bugs in large-scale
software code. IEEE Trans. Software Engineering32(3), 176–192 (2006)

27. Ma, F.: On the study of tree pattern matching algorithms and applications. Master’s thesis, Department
of Computer Science, University of British Columbia (2006)

28. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of function clones in a
software system using metrics. In: Proceedings of the IEEE International Conference on Software Main-
tenance, pp. 244–253 (1996)

29. Seal, D. (ed.): ARM Architecture Reference Manual, second edn. Addison-Wesley (2001)
30. Sutter, B.D., Bus, B.D., Bosschere, K.D.: Sifting out the mud: Low level C++ code reuse. In: Proceedings

of the 17th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, pp. 275–291 (2002)

31. Yang, W.: Identifying syntactic differences between two programs. Software-Practice and Experience
21(7), 739–755 (1991)

32. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2002)

