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Abstract

Let S be a set of horizontal line segments, or bars, in the plane.
We say that G is a bar visibility graph, and S its bar visibility repre-
sentation, if there exists a one-to-one correspondence between vertices
of G and bars in S, such that there is an edge between two vertices in
G if and only if there exists an unobstructed vertical line of sight be-
tween their corresponding bars. If bars are allowed to see through each
other, the graphs representable in this way are precisely the interval
graphs. We consider representations in which bars are allowed to see
through at most k other bars. Since all bar visibility graphs are pla-
nar, we seek measurements of closeness to planarity for bar k-visibility
graphs. We obtain an upper bound on the number of edges in a bar
k-visibility graph. As a consequence, we obtain an upper bound of 12
on the chromatic number of bar 1-visibility graphs, and a tight upper
bound of 8 on the size of the largest complete bar 1-visibility graph.
We conjecture that bar 1-visibility graphs have thickness at most 2.
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1 Introduction

Let S be a set of disjoint horizontal line segments, or bars, in the plane. We

say that a graph G is a bar visibility graph, and S a bar visibility representation

of G, if there exists a one-to-one correspondence between vertices of G and

bars in S, such that there is an edge between two vertices in G if and only if

there exists an unobstructed vertical line of sight between their corresponding

bars. Bar visibility graphs were introduced in the 1980s [9, 13] as a modeling

tool for VLSI layout problems. These graphs have been fully characterized

as those planar graphs having a plane embedding with all cut points on the

outer face [12, 16, 19].

Recent attention has been drawn to a variety of generalizations and re-

strictions of bar visibility graphs, including unit bar visibility graphs, arc

visibility graphs, rectangle visibility graphs, and others [2, 3, 5, 4, 6, 7, 10,

11, 14, 15]. In this paper, we define a new generalization of bar visibility

graphs, called bar k-visibility graphs, and discuss their properties. In what

follows, we use the standard graph theory terminology found in [8, 18].

Let G be a bar visibility graph, and let S be a bar visibility layout of

G. If each line of sight is required to be a rectangle of positive width, then

S is an ε-visibility representation of G, and when each line of sight is a

line segment (with width 0), then S is a strong visibility representation of

G [16]. In general, these definitions are not equivalent; K2,3 admits an ε-

visibility representation but not a strong visibility representation, as shown

in Figure 1.

G H

Figure 1: The bar visibility representation shown is an ε-visibility represen-

tation of G and a strong visibility representation of H.
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Given a set of bars S in the plane, suppose that an endpoint of a bar B

and an endpoint of a bar C in S have the same x-coordinate. We elongate

one of these two bars so that their endpoints have distinct x-coordinates. If

S is a strong visibility representation of a graph G, then we may perform this

elongation so that S is still a strong visibility representation of G. If S is an

ε-visibility representation of G, then we may perform this elongation so that

S is an ε-visibility representation of a new graph H with G ⊆ H. Since we are

interested in the maximum number of edges obtainable in a representation,

we may consider the graph H instead of the graph G. Repeating this process

yields a set of bars with pairwise distinct endpoint x-coordinates. For the

remainder of this paper, we assume that all bar visibility representations are

of this form.

If a set of bars S has all endpoint x-coordinates distinct, the graphs G and

H which have S as a strong bar visibility representation and an ε-visibility

representation, respectively, are isomorphic. Hence without loss of generality,

for the remainder of the paper, all bar visibility representations are strong bar

visibility representations. Formally, two vertices x and y in G are adjacent if

and only if, for their corresponding bars X and Y in S, there exists a vertical

line segment L, called a line of sight, whose endpoints are contained in X

and Y , respectively, and which does not intersect any other bar in S.

By contrast, suppose that S is a set of closed intervals on the real line.

The graph G is called an interval graph and S an interval representation

of G if there exists a one-to-one correspondence between vertices of G and

intervals in S, such that x and y are adjacent in G if and only if their

corresponding intervals intersect. Suppose we call a set S of horizontal bars in

the plane an x-ray-visibility representation if we allow sight lines to intersect

arbitrarily many bars in S. Then we can easily transform an x-ray-visibility

representation into an interval representation by vertically translating the

bars in S, and vice-versa. Therefore G is an x-ray-visibility graph if and only

G is an interval graph.

Motivated by this correspondence, we define a bar k-visibility graph to
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be a graph with a bar visibility representation in which a sight line between

bars X and Y intersects at most k additional bars. We are interested in

characterizing the graphs that are bar k-visibility graphs. In particular,

since all bar visibility graphs are planar, we seek measurements of closeness

to planarity for bar k-visibility graphs.

2 An Edge Bound for Bar 1-Visibility Graphs

Suppose G is a graph with n vertices, and S is a bar 1-visibility representation

of G. Since we consider S to be a strong visibility representation of G,

without loss of generality, we may assume that all endpoints of all bars in S

have distinct x-coordinates, and all bars in S have distinct y-coordinates.

It will be convenient to use four different labeling systems for the bars

in S. Label the bars 1l, 2l, . . ., nl in increasing order of the x-coordinate

of their left endpoint. Label them 1r , 2r , . . ., nr in decreasing order of the

x-coordinate of their right endpoint. Label them 1b, 2b, . . ., nb in increasing

order of their y-coordinate. Finally, label them 1t, 2t, . . ., nt in decreasing

order of their y-coordinate. So the bar 1l has leftmost left endpoint, the

bar 1r has rightmost right endpoint, the bar 1b = nt is bottommost in the

representation, and the bar 1t = nb is topmost in the representation.

Remark 1 Suppose S is a bar k-visibility representation of a graph G. For

the remainder of the paper we assume that 1t = 1r = 1l and 1b = 2r = 2l,

since we may always elongate the top and bottom bars in S without reducing

the number of edges in G.

Theorem 2 If G is a bar 1-visibility graph with n ≥ 5 vertices, then G has

at most 6n − 20 edges.

Proof: Suppose G is a graph with n ≥ 5 vertices, and let S be a bar

1-visibility representation of G. We define the following correspondence be-

tween bars in S and edges of G. Let {u, v} be an edge in G, and let U and V
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be the bars in S associated with u and v, respectively. Denote by �({u, v})
the vertical line segment from the point in U to the point in V whose x-

coordinate is the infimum of x-coordinates of lines of sight between U and V .

The edge {u, v} is called a left edge of U (respectively V ) if �({u, v}) contains

the left endpoint of U (respectively V ). If �({u, v}) contains neither U nor

V ’s left endpoint then it must be a 1-visibility edge, and it must contain the

right endpoint of some bar B that blocks the 1-visibility of U from V to the

left of that point. In this case, we call {u, v} a right edge of B. Note that

a right edge of B is not incident to the vertex b of G corresponding to the

bar B. Each bar B can have at most at most 2 right edges, as shown in

Figure 2, and at most 4 left edges (two to adjacent bars above B in S and

two to adjacent bars below B in S).

B

Figure 2: The two right edges associated to bar B.

Counting both left and right edges, each bar in S is associated with at

most 6 edges, giving an upper bound of 6n edges in G. However, the bars 1l,

2l, 3l, and 4l have at most 0, 1, 2, and 3 left edges, respectively. Similarly, the

bars 1r , 2r, 3r, and 4r have at most 0, 0, 0, and 1 right edges, respectively.

Therefore there are at most 4n−10 left edges and at most 2n−7 right edges,

for a total of at most 6n − 17 edges in G.

By our assumption that 1t and 1b are the leftmost edges, the edge {1t, 1b}
will always be a left edge. Since the edge associated with the right endpoint

of the bar 4r can only be this edge, the bar 4r must have 0 right edges. So

there are at most 2n − 8 right edges in G, and at most 6n − 18 edges total.

We call the set of left endpoints of the bars {1l, . . . , 4l} the outer left

endpoints of S, and the remaining left endpoints the inner left endpoints
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of S. Similarly, the right endpoints of the bars {1r , . . . , 4r} are the outer

right endpoints of S, and the remaining right endpoints are the inner right

endpoints of S. Note that G has 6n − 18 edges if and only if all bars in S

with an inner left endpoint have exactly four left edges, and all bars in S

with an inner right endpoint have exactly two right edges.

Consider the bars 2t and 2b, which are distinct bars since n ≥ 5. Each

of these two bars has at most three left edges and at most one right edge.

Hence if any two of their endpoints are inner endpoints, G has at most 6n−20

edges. There are two more cases to consider.

Case 1: All four endpoints of 2t and 2b are outer endpoints. Then the

edges {1t, 2b} and {1b, 2t} are left edges. Since the rightmost bars in the

representation are 1t, 1b, 2t, and 2b, the bar 5r has no right edges, and G has

at most 6n − 20 edges.

Case 2: One endpoint of 2t is an inner endpoint, and the remaining three

endpoints of 2t and 2b are outer endpoints. In this case, the bar 2b has at

most three left edges. Also, since the edge {1t, 2b} is a left edge, the bar 5r

has at most one right edge by the argument in Case 1. Hence G has at most

6n − 20 edges. �

Corollary 3 The graph K9 is not a bar 1-visibility graph.

Proof: Any bar 1-visibility graph with 9 vertices has at most 34 edges,

whereas K9 has 36 edges. �

Theorem 4 For each n, 1 ≤ n ≤ 8, the complete graph Kn is a bar 1-

visibility graph. For each n ≥ 8, there exists a bar 1-visibility graph with

6n − 20 edges.

Proof: The graph with representation shown in Figure 3 is a bar 1-visibility

graph with n = 11 vertices and 6n − 20 = 46 edges. For ease of counting,

the left and right endpoints of bars in this representation are labeled with

the number of left and right edges associated to each bar. Note that this

representation has 4n − 11 left edges and 2n − 9 right edges.
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A layout of K8 is achieved by removing all but the top four and bottom

four bars, and then any of these bars can be removed to obtain a smaller

complete graph. The remaining three bars in Figure 3 can be increased or

decreased in number to obtain, for n ≥ 8, a bar 1-visibility graph with 6n−20

edges. �

1

3

4
4

2

1
2

2
2

2
2

2

4
4

4

3
4

0

0
0

0
0

Figure 3: A bar 1-visibility representation with 6n − 20 edges.

By Theorem 4, if G is a bar 1-visibility graph, then χ(G) may be 8.

No bar 1-visibility graph is known with chromatic number 9. The standard

example of a graph with chromatic number 9 but clique number smaller than

9 is the Sulanke graph K6∨C5 [18], which is not a bar 1-visibility graph since

it has 11 vertices and 50 edges.

3 Edge Bounds on Bar k-Visibility Graphs

The following theorem generalizes the technique used in the proof of Theo-

rem 2 for k > 1.

Theorem 5 Let G be a bar k-visibility graph with n vertices, where n ≥ 5,

k ≥ 1, and n ≥ 2k +2. Then G has at most (k +1)(3n−2k −2)−12 edges.

Proof: We proceed by induction on k. When k = 1 and n ≥ 5, G has at

most 6n − 20 = (1 + 1)(3n − 2 − 2) − 12 edges, by Theorem 2.

Now suppose that k ≥ 1, and assume the statement is true for k. We

consider a bar (k + 1)-visibility graph G, and show that G has at most
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((k + 1) + 1)(3n− 2(k + 1)− 2)− 12 = (k + 2)(3n − 2k − 4)− 12 edges. Let

S be a bar (k + 1)-visibility representation of G.

Consider the graph H with bar k-visibility representation S. By induc-

tion, H has at most (k +1)(3n−2k −2)−12 edges. G has all of the edges of

H, plus the additional edges obtained by the extra visibility. We associate

each of the edges of G with a left or right endpoint of a bar in S, as in the

proof of Theorem 2.

Each bar in S has at most two additional left edges and at most one

additional right edge in G. However, the topmost k + 2 bars in S and the

bottommost k + 2 bars in S have at most one additional left edge in G, and

the topmost k + 1 bars in S and the bottommost k + 1 bars in S have no

additional right edges in G. Therefore, since n ≥ 2k + 2, we have |E(G)| ≤
|E(H)|+3n−2(k +2)−2(k +1) ≤ (k +1)(3n−2k −2)−12+3n−4k −6 =

(k + 2)(3n − 2k − 4) − 12. �

We now improve the bound given in Theorem 5 for k > 1 using a different

technique.

Theorem 6 Let G be a bar k-visibility graph with n vertices, where n ≥ 5,

k ≥ 1, and n ≥ 2k + 2. Then G has at most (k +1)(3n− 7
2
k − 5)− 1 edges.

Proof: Let S be a bar-k visibility representation of G. Recall that we may

assume that all x-coordinates of endpoints of bars in S are distinct. We also

assume that S is of the form given in Remark 1.

We sweep a vertical line left-to-right over the representation, and consider

how many new edges can be added each time a new endpoint is encountered.

We first consider the left endpoints of the bars in S in the order 1l, . . . , nl.

When we encounter a new left endpoint, its bar can only increase distances

between existing bars, so the only new visibilities are the ones involving this

new bar. Hence at most 2(k + 1) new edges are added, comprising (k + 1)

neighbors above the new bar and (k + 1) neighbors below it. However, the

first 2(k + 1) left endpoints add fewer edges. In particular, the first left

endpoint adds no new edges, the second left endpoint adds at most one, the
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third left endpoint adds at most two, etc. In other words, the total number

of edges added by encountering the left endpoint of new bars is at most the

following, since n ≥ 2k + 2:

0 + 1 + 2 + . . . + 2k + (2k + 1) + (2k + 2) + . . . (2k + 2)

=
(2k + 1)(2k + 2)

2
+ 2(k + 1)(n − 2k − 2)

= (k + 1)(2n − 2k − 3)

Now we count the number of edges added by reaching the right endpoint

of a bar. The first bar that can have a positive number of right edges is

(k + 3)r , since the edge is between two additional bars that see each other

through k other bars, not including this bar, for a total of k + 3 bars. The

number of edges added at each subsequent right endpoint increases by at

most one, to a maximum of k + 1. Thus the total number of new edges

produced at the right endpoints of bars is at most the following, in which

the first k + 2 terms are zero:

0 + . . . + 0 + 1 + . . . + k + (k + 1)(n − 2k − 2)

=
k(k + 1)

2
+ (k + 1)(n − 2k − 2)

= (k + 1)(n − 3k/2 − 2)

Thus the total number of possible edges in G is at most the following:

(k + 1)(2n − 2k − 3) + (k + 1)(n − 3k/2 − 2)

= (k + 1)(3n − 7k/2 − 5)

Finally, by Remark 1, the leftmost left edge is between bars 1t and 1b.

Since 1t = 1r and 1b = 2r, this edge is the only possible right edge of (k+3)r.

Hence we counted this edge twice in Theorem 6, making the final total at

most (k + 1)(3n − 7
2
k − 5) − 1. �

Theorem 7 For k ≥ 0 and n ≥ 4k + 4, there exist bar k-visibility graphs

with n vertices and (k + 1)(3n − 4k − 6) edges.
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Proof: Figure 4 shows a bar k-visibility representation of a graph with

n vertices and (k + 1)(3n − 4k − 6) edges. As in Figure 3, the left and

right endpoints of bars in this representation are labeled with the number

of left and right edges associated to each bar. Although n = 4k + 4 in this

representation, the number of bars in the group labeled A can be increased

arbitrarily to create a representation with n bars for any n ≥ 4k + 4. �

k

k+1

2k+1

1
...

...

0

0

0

0

01

k+2

...
...

k+1

2k+1

k+2

2k+2
2k+2

2k+2

k

k+1
k+1

k+1

k+1
k+1

k+1

} A

Figure 4: A bar k-visibility graph with n vertices and (k + 1)(3n − 4k − 6)

edges.

Note that Theorem 7 gives the largest number of edges in a bar k-visibility

graph for k = 0, 1. We believe that this is the case for larger k as well. We

state this as a conjecture.

Conjecture 8 If G is a bar k-visibility graph with n ≥ 2k + 2 vertices, then

G has at most (k + 1)(3n − 4k − 6) edges.

Corollary 9 If G is a bar k-visibility graph, then χ(G) ≤ 6k + 6.

Proof: We proceed, for fixed k, by induction on n. The result is obvious

when n ≤ 6k +6. For n > 6k +6 assume that all bar k-visibility graphs with

n−1 vertices have χ ≤ 6k +6, and suppose that G is a bar k-visibility graph
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with n vertices. By Theorem 6,
∑

v∈V (G) deg(v) < (6k + 6)n, so the average

degree of a vertex in G is strictly less than 6k + 6. Then there must exist a

vertex v in G of degree at most 6k+5. We consider the graph G−v. Although

this graph may not be a bar k-visibility graph, it is a subgraph of the graph

G′ with bar k-visibility representation obtained from a representation of G by

deleting the bar corresponding to v. Therefore the edge bound in Theorem 6

still applies to H. By the induction hypothesis, we may color the vertices

of H with 6k + 6 colors, replace v, and color v with a color not used on its

neighbors. �

The following theorem is a corollary of Theorem 6.

Theorem 10 K5k+5 is not a bar k-visibility graph.

Proof: If G is a graph with n = 5k + 5 vertices, then by Theorem 6, G has

at most (k + 1)(3(5k +5)− 7
2
k − 5)− 1 = 1

2
(23k2 + 37k + 3) edges. However,

K5k+5 has
(
5k+5

2

)
= 1

2
(25k2 + 45k + 5) edges, which exceeds the bound by

k2 + k + 1 edges. �

Note that if Conjecture 8 is true, we immediately obtain the following con-

jecture as a corollary.

Conjecture 11 K4k+4 is the largest complete bar k-visibility graph.

Proof: Figure 4 shows a bar k-visibility representation of K4k+4. Conversely,

suppose that G is a graph with n = 4k + 5 vertices. Then by Conjecture 8,

G has at most (k + 1)(3(4k + 5) − 4k − 6) = 8k2 + 17k + 9 edges. However,

K4k+5 has
(
4k+5

2

)
= 8k2 + 18k + 10 edges. �

Conjecture 8 is not required to prove Conjecture 11 when k = 0 or 1; we

have already proved these cases in the previous section. Note also that the

graph K4k+4 exactly achieves the bound given by Conjecture 8. So if this

conjecture is correct, the family of complete graphs K4k+4 is an example of

a family of bar k-visibility graphs with the maximum number of edges.

Table 1 shows the two proven upper bounds on the number of edges in a

bar k-visibility graph, together with the conjectured exact bound.
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k (k + 1)(3n− 2k − 2)− 12 (k + 1)(3n − 7
2k − 5) (k + 1)(3n− 4k − 6)

0 N/A 3n − 6 3n − 6
1 6n − 20 6n − 17 6n − 20
2 9n − 30 9n − 33 9n − 42
3 12n − 44 12n − 54 12n − 72
4 15n − 62 15n − 80 15n − 110

Table 1: Two proven upper bounds and the conjectured exact bound

4 Thickness of Bar k-Visibility Graphs

By Theorem 4, K8 is a bar 1-visibility graph, and thus there are non-planar

bar 1-visibility graphs. Motivated by the fact that all bar 0-visibility graphs

are planar, we are interested in measuring the closeness to planarity of bar

1-visibility graphs. The thickness Θ(G) of a graph G is the minimum number

of planar graphs whose union is G. K8 has thickness 2 [1, 17], so there exist

bar 1-visibility graphs with thickness 2.

Theorem 12 There are thickness-2 graphs with n vertices that are not bar

1-visibility graphs for all n ≥ 15.

Proof: Consider the graph G15, whose partition into two plane layers is

shown in Figure 5. This graph has 15 vertices and 6 × 15 − 12 = 78 edges.

Note that no thickness-2 graph with n vertices has more than 6n− 12 edges,

since if G has thickness 2 then G is the union of two planar graphs, each of

which has at most 3n − 6 edges. Beginning with the graph Gn, n = 15, we

repeatedly add vertex n + 1 to produce a new thickness-2 graph Gn+1 with

6(n + 1) − 12 edges.

Let L1 and L2 be the two plane layers of G15 that are shown in Figure 5.

In general, we form Gn from Gn−1 by choosing two vertex-disjoint triangles

from Gn−1, one in L1 and the other in L2, and then taking the join of each

triangle with the new vertex n. G16 is obtained from G15 by adding to it the
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15

Figure 5: Two planar graphs whose union is not a bar 1-visibility graph.

G16 G17 G18 G19

L1 {1, 5, 8} {9, 11, 15} {1, 5, 16} {9, 11, 17}
L2 {2, 6, 13} {7, 10, 12} {7, 10, 17} {2, 6, 16}

G20 G21 G22 G23

L1 {1, 5, 18} {9, 11, 19} {1, 5, 20} {9, 11, 21}
L2 {2, 6, 19} {7, 10, 18} {7, 10, 21} {2, 6, 20}

G2n G2n+1 G2n+2 G2n+3

L1 {1, 5, 2n− 2} {9, 11, 2n− 1} {1, 5, 2n} {9, 11, 2n + 1}
L2 {2, 6, 2n− 1} {7, 10, 2n− 2} {7, 10, 2n + 1} {2, 6, 2n}

Table 2: Construction of edge-maximal thickness-2 graphs

edges of {1, 5, 8} ∨ {16} and {2, 6, 13} ∨ {16}, and G17 is obtained from G16

by adding to it the edges of {9, 11, 15} ∨ {17} and {7, 10, 12} ∨ {17}.
The entries of Table 2 show how to continue this process indefinitely,

always choosing two vertex-disjoint triangles from Gn−1, one in L1 and one

in L2, and taking the join of each triangle with {n} to form Gn. A pattern for

choosing the two rectangles is established in the last four entries of Table 2.

For each n ≥ 15, L1 and L2 are plane triangulations, so Gn has 6n−12 edges.

�
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Suppose G is a bar k-visibility graph, and S is a bar k-visibility repre-

sentation of G. We define the underlying bar i-visibility graph Gi of S to be

the graph with bar i-visibility representation S.

It is not known whether every bar 1-visibility graph has thickness ≤ 2.

For example, the complement of the bar 0-visibility edges in a bar 1-visibility

graph need not induce a planar graph. Figure 6 shows two bar 1-visibility

graphs, each with a non-planar subgraph induced by “pure” 1-visibility edges,

i.e., edges that are not in the underlying bar 0-visibility graph. In the first

layout, the non-planar graph is induced by only left 1-visibility edges, and

in second layout only right 1-visibility edges are needed to induce a non-

planar subgraph. For each layout there is a subdivided K5 on the vertices

corresponding to the bars {A, B, C, D, E}, using the vertices corresponding

to the numbered bars for the subdivided edges. Theorem 13 bounds the

thickness of bar 1-visibility graphs by 4, and Theorem 14 gives an upper

bound on the thickness of bar k-visibility graphs.

8
7

6
E

D
5

4
C

3B

4

2
1A

8
7

6
E

D
5

4
C

3 B

4

2
1 A

Figure 6: Bar 1-visibility graphs whose left 1-visibility edges and right

1-visibility edges, respectively, induce a non-planar subgraph

The following two theorems relate the thickness of a bar k-visibility graph

G to the chromatic number of Gk−1. Note that since Gk−1 depends on

the choice of bar k-visibility representation S of G, different representations

might yield different bounds on the thickness of a particular bar k-visibility

graph G.
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The proofs of Theorems 13 and 14 use a drawing of G in the plane,

induced by the representation, with the property that each edge is a polyline

with two bends, and such that the middle linear section of each edge is a

vertical line segment corresponding to a line of sight. This drawing, which

generalizes one given in [8] for bar visibility graphs, and which may have

crossing edges, is obtained as follows. First we fatten each bar corresponding

to a vertex v into a rectangle Rv and draw the vertex v in the center of Rv.

Next, for each edge e = {u, v} of G with Ru above Rv, we choose a vertical

line of sight represented by a vertical line segment � from the upper border

of Rv to the lower border of Ru. We choose these lines of sight so that no two

vertical segments overlap, and so that no vertex has the same x-coordinate

as the line of sight for one of its incident edges. Finally, we let the drawing of

the edge e = {u, v} comprise the chosen vertical segment � plus the two non-

vertical line segments connecting u and v to the endpoints of �; see Fig. 7.

We refer to this (non-unique) plane drawing of G as a 2-bend drawing of G

induced by the bar k-visibility representation.

Figure 7: A two-bend edge induced by a bar 1-visibility representation

Theorem 13 If G is a bar 1-visibility graph then θ(G) ≤ 4.

Proof: Suppose G is a bar 1-visibility graph. Let L be a bar 1-visibility

representation of G, and let D be an induced 2-bend drawing of G in the

plane. The underlying bar-visibility graph G0 is planar and thus has chro-

matic number at most 4. We choose an arbitrary 4-coloring C0 of G0, and
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we use this vertex-coloring to define a 4-coloring of the edges of G such that

each color class of edges induces a planar graph.

Define an edge e of G to be a 1-visibility edge if its chosen line of sight

passes through a bar in S; otherwise it is a 0-visibility edge. Each 1-visibility

edge e of G receives the color of the bar that it passes through. Since the two

endpoints of e are both visible to this bar in G0, neither endpoint has the

same color as e. Each 0-visibility edge is assigned an arbitrary color different

from those of its endpoints.

We claim that any two crossing edges have different colors. If two edges

cross, then the vertical section of one edge e crosses a non-vertical section

of the other edge f . This non-vertical section lies within the rectangle Rv

corresponding to an endpoint v of f , hence v and f have different colors.

Since e passes through Rv, it has the same color as v, and thus e and f have

different colors. Therefore each color class induces a planar graph, and the

thickness of G is at most 4. �

The proof of Theorem 13 can be generalized to bound the thickness of a

bar k-visibility graph G by a quadratic function of k.

Theorem 14 If G is a bar k-visibility graph, then the thickness θ(G) satisfies

θ(G) ≤ 2k(9k − 1).

Proof: If G is a bar k-visibility graph and L a bar k-visibility representation

of G in the plane, let D be an induced 2-bend drawing of G in the plane.

Choose a vertex-coloring of Gk−1 using χ(Gk−1) colors. The vertical section

of any edge e in G passes through at most k bars; the vertices corresponding

to these bars and the two endpoints of e are all adjacent, so they must

all have different colors. If the two endpoints of e have colors c1 and c2

(which may be the same), we assign as a color to e the set {c1, c2}, which

has one or two elements. If e crosses another edge f with color {d1, d2},
then, without loss of generality, the vertical section of e passes through the

bar corresponding to one of the endpoints of e. If this endpoint has color

di, then neither endpoint of e can have color di. Hence {c1, c2} �= {d1, d2},
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and each edge-color class induces a planar graph. It follows that θ(G) ≤
χ(Gk−1) + χ(Gk−1)(χ(Gk−1) − 1)/2. By Corollary 9, χ(Gk−1) ≤ 6k, so that

θ(G) ≤ k + 3k(6k − 1) = 2k(9k − 1). �

Note that we could use this proof when k = 1, but we get a better result

(4 versus 16) by partitioning the edges according to the color on the vertical

segment.

5 Future Work

We end with a list of open problems inspired by the results of this paper.

1. What is the largest number of edges in a bar 2-visibility graph with n

vertices?

2. What is the largest number of edges in a bar k-visibility graph with n

vertices?

3. Are there bar 1-visibility graphs with thickness 3?

4. More generally, what is the largest thickness of a bar k-visibility graph?

Is it k + 1?

5. Are there bar 1-visibility graphs with chromatic number 9?

6. More generally, what is the largest chromatic number of a bar k-

visibility graph?

7. What is the largest crossing number of a bar k-visibility graph?

8. What is the largest genus of a bar k-visibility graph?

9. Rectangle visibility graphs are studied in [6, 7, 11, 15]. Generalize the

results of this paper to rectangle visibility graphs.

10. Arc- and circle-visibility graphs are defined in [10]. Generalize the re-

sults of this paper to arc- and circle-visibility graphs.
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