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Abstract
We introduce and study a generalization of the well-known region of influence
proximity drawings, called (ε1, ε2)-proximity drawings. Intuitively, given a defi-
nition of proximity and two real numbers ε1 ≥ 0 and ε2 ≥ 0, an (ε1, ε2)-proximity
drawing of a graph is a planar straight-line drawing Γ such that: (i) for every pair
of adjacent vertices u, v, their proximity region “shrunk” by the multiplicative
factor 1

1+ε1
does not contain any vertices of Γ; (ii) for every pair of non-adjacent
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vertices u, v, their proximity region “expanded” by the factor (1 + ε2) contains
some vertices of Γ other than u and v. In particular, the locations of the ver-
tices in such a drawing do not always completely determine which edges must be
present/absent, giving us some freedom of choice. We show that this generaliza-
tion significantly enlarges the family of representable planar graphs for relevant
definitions of proximity drawings, including Gabriel drawings, Delaunay draw-
ings, and β-drawings, even for arbitrarily small values of ε1 and ε2. We also study
the extremal case of (0, ε2)-proximity drawings, which generalize the well-known
weak proximity drawing paradigm.

Keywords: Graph drawing, Gabriel graphs, Beta skeletons, Delaunay
triangulations, Approximation

1. Introduction and overview

Proximity drawings are straight-line drawings of graphs where any two adja-
cent vertices are deemed to be close according to some proximity measure, while
any two non-adjacent vertices are far from one another by the same measure. Dif-
ferent definitions of proximity give rise to different types of proximity drawings.
In the region of influence based proximity drawings two vertices u and v are adja-
cent if and only if some regions of the plane, defined by using the coordinates of
u and v, are empty, i.e. they do not contain any vertices of the drawing other than,
possibly, u and v.

For example, the Gabriel disk of two points u and v in the plane is the closed
disk having u and v as its antipodal points (cf. Fig. 1(a)) and a Gabriel drawing
is a planar straight-line drawing Γ such that any two vertices in Γ are connected
by an edge if and only if their Gabriel disk is empty of other vertices. Note that
any such drawing Γ, viewed as a geometric graph in the plane, coincides with the
so-called Gabriel graph of the points forming the vertex set of Γ.

A generalization of the Gabriel disk is the so-called β-region of influence (cf.
Fig. 1(b) and (c)): For a given value of β such that 1 ≤ β ≤ ∞, the β-region of
influence of two vertices u and v having Euclidean distance d(u, v) is the inter-
section of the two disks of radius βd(u,v)

2
, centered on the line through u and v, one

containing u and touching v, the other containing v and touching u (hence the β-
region for β = 1 is the Gabriel disk). Given a value of β, a straight-line drawing Γ
is a β-drawing if and only if for any edge (u, v) in Γ the β-region of influence of u
and v is empty of other vertices, that is, Γ coincides with the so-called β-skeleton
of the points forming the vertices of Γ.
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Figure 1: Two points u and v. Indicated by shading: (a) their Gabriel disk (which coincides with
their β-region for β = 1), (b) their β-region for β = 2, (c) their β-region for β = 3, and (d) one
of their Delaunay disks.

Delaunay drawings use a definition of proximity that extends the one used
for Gabriel drawings. Namely, the Delaunay disks of two vertices u and v are
the closed disks having uv as a chord (the Gabriel disk is therefore a particular
Delaunay disk, cf. Fig. 1(d)). In a Delaunay drawing Γ an edge (u, v) exists if
and only if at least one of the Delaunay disks of u and v is empty of other vertices,
that is, Γ coincides with the so-called Delaunay graph of its vertex set. Note that
the Delaunay graph of a point set P is not a triangulation of P if, for example,
more than three points in P lie on a common circle that does not contain other
points of P in its interior.

As is not hard to imagine, by changing the definition of region of influence,
the combinatorial properties of those graphs that admit a certain type of proxim-
ity drawing can change significantly. For example, it is known that not all trees
having vertices of degree four admit a Gabriel drawing [5] while they have a β-
drawing for 1 < β ≤ 2 [15]. It should be noted, however, that despite the many
papers published on the topic, full combinatorial characterization of proximity
drawable graphs remains an elusive goal for most types of regions of influence.
The interested reader is referred to [7, 14, 17] for more references and results on
these topics. As a general tendency, using the region of influence based proximity
rules recalled above only very restricted families of graphs can be represented. In
this paper, we propose a generalization of these rules and show that it considerably
extends the families of representable graphs.

1.1. Problem and results
In order to overcome the restrictions on the families of graphs representable as

region of influence based proximity drawings, we study graph visualizations that
are “good approximations” of these proximity drawings. We want drawings where
adjacent vertices are relatively close to each other while non-adjacent vertices are
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relatively far apart. The idea is to use slightly smaller regions of influence to
justify the existence of an edge and slightly larger regions of influence to justify
non-adjacent vertices. Note that, since different regions are used to justify the
existence and non-existence, respectively, of an edge, it may happen that for a
particular pair of vertices in a drawing we actually have the choice to either draw
an edge between these vertices or not. In contrast, once the vertex set of a drawing
is fixed, the usual proximity rules completely determine which edges must be
present/absent in the drawing. This key difference is one of the reasons why
larger families of graphs can be represented in the framework presented here. In
the following we focus on the representability of various types of planar graphs
as this helps us to emphasize the connection with the original proximity rules that
necessarily yield plane drawings. Note, however, that our new framework can also
represent non-planar graphs.

Now, to describe the modified regions of influence more formally, let D be a
disk with center c and radius r, and let ε1 and ε2 be two non-negative real numbers.
The ε1-shrunk disk of D is the disk centered at c and having radius r

1+ε1
; the ε2-

expanded disk of D is the disk centered at c and having radius (1 + ε2)r. An
(ε1, ε2)-proximity drawing is a planar straight-line proximity drawing where the
region of influence of two adjacent vertices is defined by using ε1-shrunk disks,
while the region of influence of two non-adjacent vertices uses ε2-expanded disks.
Sometimes we will simply refer to such a drawing as an approximate proximity
drawing.

To illustrate the above definitions, note that all planar graphs (actually, all
graphs) with at least one edge or at least three vertices have an (ε1, ε2)-proximity
drawing for sufficiently large values of ε1, ε2. For example, every planar straight-
line drawing Γ of such a graph is an (∞,∞)-Gabriel drawing since an∞-shrunk
Gabriel disk reduces to a point (and thus the ∞-shrunk disk of every edge in Γ
is empty) and an ∞-expanded Gabriel disk is the whole plane (and thus the ∞-
expanded disk of any pair of non-adjacent vertices of Γ contains a third vertex, if
the graph contains at least three vertices). At the other extreme, a (0, 0)-Gabriel
drawing is a Gabriel drawing, since a 0-shrunk Gabriel disk is a Gabriel disk and
so is a 0-expanded Gabriel disk. Hence, not all planar graphs admit a (0, 0)-
Gabriel drawing [5].

Based on this observation, our main target is to establish values of ε1 and of
ε2 that make it possible to compute (ε1, ε2)-proximity drawings for meaningful
families of planar graphs and embedded planar graphs. To this end, recall that,
for a planar graph G, a (planar) embedding of G specifies which face of G is the
outer face and, for every vertex v of G, the circular order of the edges adjacent to
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v. An embedded planar graph is a planar graph together with an embedding. If a
planar straight-line drawing Γ of G has the same embedding, it is said to maintain
(or preserve) the embedding of G; in this case we shall say that Γ is an embedding
preserving drawing of G.

This paper is structured as follows. After summarizing some related work,
the next three sections are devoted to approximate Gabriel drawings (Section 2),
approximate β-drawings (Section 3) and approximate Delaunay drawings (Sec-
tion 4). We show that each of these types of drawings allows, for any embedded
planar graph G, an embedding preserving (ε1, ε2)-proximity drawing of G, as
long as the parameters ε1 and ε2 are both strictly positive. Moreover, we estab-
lish that these results are, in a sense, tight by exhibiting embedded planar graphs
that do not have an embedding preserving (ε1, ε2)-proximity drawing with either
ε1 = 0 or ε2 = 0. Then, in Section 5, we study (0, ε2)-proximity drawings which,
as explained below, make it possible to express different proximity conventions
in a unified framework. In particular, we study (0, ε2)-Gabriel drawings of out-
erplanar graphs, extending previous results of Di Battista et al. [8] and Lenhart
and Liotta [15]. We conclude in Section 6 where we also mention some open
problems.

We emphasize that the main contribution of this paper is in introducing the
concept of (ε1, ε2)-proximity drawing and in proving the existence of (ε1, ε2)-
proximity drawings for relevant families of graphs. Hence, we shall not analyze
in detail the time complexities of our algorithms; it is not hard to see, however,
that our drawing techniques all require polynomial time when adopting the real
RAM model of computation.

1.2. Related work
Several generalizations, variants, and relaxations of proximity drawings have

been defined in the literature such as, for example, k-localized Delaunay triangu-
lations, approximate minimum spanning trees, and witness proximity drawings.
While the interested reader can, for example, use [2, 4, 9, 16] to find more refer-
ences on these topics, in this introduction we will particularly recall the notion of
weak proximity drawings [8], that are more closely related with (ε1, ε2)-proximity
drawings.

In a weak proximity drawing, the region of influence of any pair of adjacent
vertices must be empty, while no condition is given for the non-adjacent pairs.
Hence, weak proximity drawings guarantee visual closeness of groups of edge-
related vertices but do not ensure that unrelated vertices are far apart. In con-
trast, (ε1, ε2)-proximity drawings guarantee some relative closeness of the adja-
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cent pairs of vertices and some relative separation of the non-adjacent pairs for
small values of ε1 and ε2.

Note that a weak proximity drawing is a (0,∞)-proximity drawing and that a
proximity drawing in the traditional sense is a (0, 0)-proximity drawing. There-
fore, (0, ε2)-proximity drawings make it possible to study proximity drawability
in a unified framework: as the value of ε2 increases, (0, ε2)-proximity drawings
approach weak proximity drawings. Several questions can be asked within this
unifying framework. For example, not all trees have a Gabriel drawing, while all
trees have a weak Gabriel drawing. What is the minimum threshold value such
that if ε2 is larger than this threshold all trees are drawable? Theorem 4 answers
this question.

Di Battista et al. [8] show that every tree admits a weak proximity drawing
using β-regions of influence for β less than 2, while it is NP-hard to determine
whether a tree with vertex degree four has a weak β-drawing for β = ∞. In
contrast, Theorem 2 proves that for any finite positive values of ε1, ε2 all planar
graphs admit an (ε1, ε2)-β-drawing for all values of β such that 1 ≤ β ≤ ∞.

2. Approximate Gabriel drawings

Let Γ be a planar straight-line drawing of a graph and let ε1, ε2 be two non-
negative numbers. Let u, v be any two vertices of Γ and let D(u, v) be the Gabriel
disk of u, v (that is, the smallest disk containing u and v, cf. Fig. 1(a)). We say that
Γ is an (ε1, ε2)-Gabriel drawing if: (i) for every edge (u, v) of Γ the ε1-shrunk disk
of D(u, v) is empty (i.e. it does not contain any vertex of Γ other than, possibly, u
and v); and (ii) for every pair of non-adjacent vertices u, v of Γ, the ε2-expanded
disk of D(u, v) is not empty (i.e. it contains some vertex w of Γ other than u and
v). Note that a Gabriel graph is a special case of an (ε1, ε2)-Gabriel drawings,
namely the one in which ε1 = ε2 = 0.

Fig. 2 is an example of an (ε1, ε2)-Gabriel drawing for ε1 = 0 and ε2 = 0.7.
The drawing is not a Gabriel drawing; for example, the dotted disk in the figure is
a Gabriel disk, while the solid one is its 0.7-expanded version. Note that a Gabriel
drawing does not exist for the tree of Fig. 2 [5].

In order to establish values of ε1, ε2 that allow an (ε1, ε2)-Gabriel drawing of
every planar graph, we start by considering the extremal cases that either ε1 = 0
and ε2 > 0, or ε1 > 0 and ε2 = 0. The next two lemmas study the relationship
between embedding preserving (ε1, ε2)-Gabriel drawings of this type and Gabriel
graphs. We say that an embedded planar graph G is Gabriel drawable if there
exists a Gabriel graph Γ such that Γ is an embedding preserving drawing of G.
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Figure 2: A (0,0.7)-Gabriel drawing of a tree that does not have a (0, 0)-Gabriel drawing.

Lemma 1. Let G be an embedded maximal planar triangulation and let ε2 be
any given real number such that ε2 ≥ 0. G has an embedding preserving (0, ε2)-
Gabriel drawing if and only if G is Gabriel drawable.

Proof. First note that if G has an embedding preserving Gabriel drawing Γ, then
Γ is also a (0, ε2)-Gabriel drawing for any ε2 > 0. So assume, conversely, that
G has an embedding preserving (0, ε2)-Gabriel drawing Γ for some ε2 > 0. Let
V denote the vertex set of Γ. Note that the Gabriel graph GG(V ) induced by the
points in V contains Γ as a subgraph. Since the Gabriel graph of a point set is a
planar geometric graph [14] and G is a maximal planar triangulation, it follows
that GG(V ) coincides with Γ.

Recall that a separating three-cycle in an embedded planar triangulation is a
cycle of length 3 such that at least one vertex lies inside the region enclosed by
the cycle and at least one vertex lies outside this region. In addition, note that
every embedded planar triangulation with a separating three-cycle does not have
an embedding preserving Gabriel drawing. This follows from the fact that any
vertex inside the triangle representing the three-cycle in an embedding preserving
drawing is contained in the Gabriel disk for at least one pair of vertices of this
triangle. As a consequence, Lemma 1 implies the following.

Corollary 1. There exist embedded planar graphs that do not have an embedding
preserving (0, ε2)-Gabriel drawing, for any ε2 ≥ 0.

The proof of the next lemma focuses on pairs of non-adjacent vertices and
follows a similar argument to the one of Lemma 1.

Lemma 2. Let T be an embedded tree and let ε1 be any given real number such
that ε1 ≥ 0. T has an embedding preserving (ε1, 0)-Gabriel drawing if and only
if T is Gabriel drawable.
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Proof. First note that if T has an embedding preserving Gabriel drawing Γ, then
Γ is also a (ε1, 0)-Gabriel drawing for any ε1 > 0. Next assume, conversely, that
T has an embedding preserving (ε1, 0)-Gabriel drawing Γ for some ε1 > 0. Let V
be the vertex set of Γ and letGG(V ) be the Gabriel graph induced by the points in
V . Note that GG(V ) is a subgraph of Γ. Since the Gabriel graph of a point set is a
connected graph [14] and Γ is a tree, it follows that GG(V ) coincides with Γ.

Lemma 2 and the characterization of which trees admit a Gabriel drawing [5]
immediately imply the following.

Corollary 2. There exist embedded planar graphs that do not have an embedding
preserving (ε1, 0)-Gabriel drawing, for any ε1 ≥ 0.

Motivated by Corollaries 1 and 2, we move our attention to (ε1, ε2)-Gabriel
drawings where both ε1 > 0 and ε2 > 0. We prove that one can compute a
drawing that approximates a Gabriel drawing for every planar graph, provided
that the Gabriel region is scaled down for the edges and is scaled up for the non-
adjacent pairs of vertices by any arbitrarily small chosen amount.

Lemma 3. Let ε1, ε2 be two real numbers such that ε1 > 0 and ε2 > 0. Ev-
ery embedded planar graph with at least one edge has an embedding preserving
(ε1, ε2)-Gabriel drawing.

Proof. Let G be a planar graph with a given planar embedding. If necessary, we
add edges to G that respect the planar embedding to turn it into an embedded
planar triangulation G′. Note that it is always possible to add edges so that in G′

at least one of the edges of the outer triangle is also contained in G. Also note that
our construction of an approximate Gabriel drawing of G below will be such that
the ε2-expanded Gabriel disk associated to any of those added edges is not empty.

Now, let v1, . . . , vn be a canonical ordering (as defined by de Fraysseix, Pach,
and Pollack [6]) of the vertices of the embedded triangulated graph G′ so that
(v1, v2) is an edge of G. Let Gi be the subgraph of G induced by the vertices in
Vi = {v1, v2, . . . , vi}. We show how to construct a drawing Γi of Gi by induction
so that, for all i ≥ 2, (a) Γi is an embedding preserving (ε1, ε2)-Gabriel drawing
of Gi; and (b) all vertices in Vi that lie on the outer face of Γi are horizontally
visible from the right, that is, the horizontal ray emanating from such a vertex to
the right does not intersect any edge of Γi. Clearly we can satisfy these properties
for i = 2, since (v1, v2) is an edge of G, by drawing v1 and v2 at points (0, 1) and
(1, n), respectively.
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Figure 3: Proof of Lemma 3.

Next, assuming we have Γi for some i ≥ 2, we show how to construct Γi+1.
LetNi be the vertices in Vi that are adjacent to vi+1. These vertices are consecutive
on the outer face of Γi since v1, v2, . . . , vn is a canonical ordering. Let the y-
coordinate of vi+1 be y(vi+1) ∈ (minv∈Ni

y(v),maxv∈Ni
y(v)) (any coordinate in

the range will suffice) where y(v1) = 1 and y(v2) = n. We place vertex vi+1

far enough to the right so that for every vj, vk ∈ Vi, (i) an edge from vi+1 to vj
is permitted by the ε1-shrunk Gabriel disk D(vi+1, vj) (i.e. the shrunken disk is
empty); (ii) if (vi+1, vj) is not an edge in G then the ε2-expanded Gabriel disk
D(vi+1, vj) prevents the edge (i.e. the expanded disk contains a vertex); and (iii)
vi+1 does not lie in the ε1-shrunk Gabriel disk D(vj, vk).

Let D be the smallest disk centered on y-coordinate y(vi+1) that encloses Γi.
Let c be the center of D and r be the radius of D. Let `r be the (still to be
determined) distance of vi+1 from the rightmost point of D. We choose ` so that
for every p ∈ D, if C is the disk with diameter pvi+1 (in fact, C can be any disk
with chord pvi+1), (I) the ε1-shrunk C does not intersect D (implying Property
(i)), and (II) the ε2-expanded C contains D (implying Property (ii)). Let b be the
center of C. Since b is on the perpendicular bisector of pvi+1, d(b, p) ≥ (`/2)r.
Refer to Fig. 3.

Property (I) is equivalent to d(b,p)
d(b,c)−r < 1 + ε1. By the triangle inequality,

d(b, p) ≤ d(b, c)+d(c, p) ≤ d(b, c)+r. Thus, d(b,p)
d(b,c)−r ≤

d(b,p)
d(b,p)−2r = 1+ 2r

d(b,p)−2r ≤
1 + 2r

(`/2)r−2r = 1 + 4
`−4 . Property (II) is equivalent to d(b,c)+r

d(b,p)
< 1 + ε2. By the tri-

angle inequality, d(b, c) ≤ d(b, p)+d(p, c) ≤ d(b, p)+r. Thus, d(b,c)+r
d(b,p)

≤ d(b,p)+2r
d(b,p)
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= 1 + 2r
d(b,p)

≤ 1 + 4/`. If we choose ` large enough so that 4/(` − 4) < ε1 and
4/` < ε2 then we satisfy both Properties (i) and (ii). By choosing ` >

√
2− 1, we

satisfy Property (iii) since the union of 0-shrunk (and hence all ε1-shrunk) disks
of line segments in a disk D∗ is contained in the

√
2-expanded version of D∗. In

addition, we choose ` large enough so that no edge from vi+1 to vj , j ≤ i, crosses
any (already drawn) edge in Γi. Thus, we ensure that Γi+1 respects the given
embedding and is a (ε1, ε2)-Gabriel drawing of Gi+1.

The results in this section can be summarized as follows.

Theorem 1. Let G be an embedded planar graph with at least one edge. For
any given values of ε1, ε2 such that ε1 > 0 and ε2 > 0, G admits an embedding
preserving (ε1, ε2)-Gabriel drawing. Also, there exist embedded planar graphs
that do not have an embedding preserving (0, ε2)-Gabriel drawing and embedded
planar graphs that do not have an embedding preserving (ε1, 0)-Gabriel drawing.

This result for Gabriel drawings raises the question of which other proximity
regions allow all planar graphs to be drawn as (ε1, ε2)-proximity drawings for any
arbitrarily small positive values of ε1 and ε2. The next two sections examine two
such proximity regions.

3. Approximate β-drawings

Let ε1, ε2 be two non-negative numbers and let β be a real number such that
β ≥ 1. Let Γ be a planar straight-line drawing of a graph and let u, v be any two
vertices of Γ. The β-region of influence of u and v (cf. Fig. 1(b) and (c)), denoted
as β(u, v), is the intersection of two disks Du and Dv such that: (i) both Du and
Dv are centered on the line through u, v; (ii) both Du and Dv have radius βd(u,v)

2
,

where d(u, v) is the Euclidean distance between u and v; Du contains v and Dv

contains u; and (iii) the circumference of Du contains u and the circumference of
Dv contains v. The ε1-shrunk β-region of influence of u and v is defined as the
intersection of the ε1-shrunk disk of Du with the ε1-shrunk disk of Dv. Similarly,
the ε2-expanded β-region of influence of u and v is the intersection of the ε2-
expanded disks of Du and Dv.

We say that Γ is an (ε1, ε2)-β-drawing if: (i) for every edge (u, v) of Γ the
ε1-shrunk β-region of influence of u and v is empty; and (ii) for every pair of non-
adjacent vertices u, v of Γ, the ε2-expanded β-region of influence of u and v is not
empty. Note that a (0, 0)-β-drawing Γ is just a β-drawing, i.e. Γ coincides with
the β-skeleton its vertex set. Later we will use the fact that, for any β1 ≥ β2 ≥ 1
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and any nonempty, finite point set P , the β1-skeleton of P is a subgraph of the
β2-skeleton of P .

Note that, by definition, an (ε1, ε2)-β-drawing with β = 1 is an (ε1, ε2)-
Gabriel drawing. Therefore, it is probably not surprising that, using an argument
completely analogous to the one employed in the proof of Lemma 1, one can
show that, for any ε2 > 0 and any β > 1, an embedded maximal planar triangu-
lation G has an embedding preserving (0, ε2)-β-drawing if and only if G has an
embedding preserving β-drawing. Similarly, for any ε1 > 0 and any β > 1, an
embedded tree T has an embedding preserving (ε1, 0)-β-drawing if and only if G
has an embedding preserving β-drawing. The fact that, for all β > 1, there exist
embedded maximal planar triangulations (in particular those containing a sepa-
rating three-cycle) and also embedded trees [5] that do not have an embedding
preserving β-drawing then implies that not all embedded planar graphs admit an
(ε1, ε2)-β-drawing that respects the given embedding, when either ε1 or ε2 is set
to 0. On the other hand, we can extend Lemma 3 to all values of β > 1. The proof
technique is similar to the one in Lemma 3.

Lemma 4. Let ε1, ε2 be two real numbers such that ε1 > 0 and ε2 > 0 and let
β be a real number such that β ≥ 1. Every embedded planar graph with at least
one edge has a (ε1, ε2)-β-drawing that maintains the given embedding.

Proof. The construction given in the proof of Lemma 3 works here with two modi-
fications: To establish Property (i) for β-drawings, we consider the largest possible
value (β =∞). It suffices to choose ` large enough so that the ε1-shrunk β-region
of influence of any point p contained in D and vi+1 is empty. Thus, since D has
diameter 2r, we require 1

2
(`r− `r

1+ε1
) > 2r, which occurs if `ε1/(1+ε1) > 4. Note

that Property (ii) for β-drawings follows without any modifications by choosing
4/` < ε2 in view of the fact that the Gabriel disk for a pair of points is always con-
tained in the β-region for this pair of points for any β > 1. To establish Property
(iii), vi+1 must be outside the union of the ε1-shrunk β-regions for edges in Γi. It
suffices to place vi+1 outside the union of 0-shrunk (β = ∞)-regions for edges
in Γi. Since none of the edges in Γi are vertical, this union does not intersect the
region (x,∞)× (1, n) for some large enough x. It suffices to choose ` so that vi+1

has x-coordinate larger than x.

We can summarize the discussion of this section as follows.

Theorem 2. Let G be an embedded planar graph with at least one edge. For any
given values of ε1, ε2 such that ε1 > 0 and ε2 > 0 and for any value of β such that
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Figure 4: An (ε1, ε2)-Delaunay drawing for ε1 = 0.25 and ε2 = 0.2 of an embedded planar graph
that does not have an embedding preserving Delaunay drawing.

β ≥ 1, G admits an embedding preserving (ε1, ε2)-β-drawing. Also, there exist
embedded planar graphs that do not have a (0, ε2)-β-drawing and planar graphs
that do not have a (ε1, 0)-β-drawing that maintain the given embedding.

4. Approximate Delaunay drawings

Let Γ be a planar straight-line drawing of a graph and let ε1, ε2 be two non-
negative numbers. Let u, v be any two vertices of Γ and letD(u, v) be the set of all
disks in the plane that have uv as a chord. LetDε1(u, v) be the set of the ε1-shrunk
disks of D(u, v) and let Dε2(u, v) be the set of the ε2-expanded disks of D(u, v).
Drawing Γ is an (ε1, ε2)-Delaunay drawing if: (i) for any two adjacent vertices
u, v of Γ, there exists at least one empty disk inDε1(u, v); and (ii) for any two non-
adjacent vertices u, v of Γ, all disks of Dε2(u, v) contain some vertex of Γ other
than u and v. Note that a Delaunay drawing is a special case of (ε1, ε2)-Delaunay
drawings, namely the one in which ε1 = ε2 = 0.

Fig. 4 is an example of an (ε1, ε2)-Delaunay drawing for ε1 = 0.25 and ε2 =
0.2. In the figure, a Delaunay disk for the two vertices u and v is depicted (dotted).
As can be seen, the ε2-expanded version of this disk contains vertices a and c. In
fact, the ε2-expanded version of any Delaunay disk for u and v contains at least
one of the vertices a or c and, therefore, u and v are not adjacent in the drawing.
In contrast, there is no Delaunay disk for the two vertices a and b. In particular,
the disk drawn dashed is not a Delaunay disk for this pair of points. The ε1-shrunk
version of this disk, however, is empty and, thus, justifies the existence of the edge
with endpoints a and b in the drawing.
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In the context of Delaunay drawings, a vertex set V is degenerate if either four
or more co-circular vertices define a circle that does not contain another vertex in
its interior, or there are three or more collinear vertices on the boundary of the
convex hull (see, e.g. [12]). Note that if the vertex set of a Delaunay drawing Γ is
not degenerate then Γ is necessarily a triangulation of the point set V forming its
vertices, usually referred to as the Delaunay triangulation of V . Also note that,
conversely, if a Delaunay drawing is a maximal planar triangulation then its vertex
set cannot be degenerate.

Since Delaunay triangulations are among the most studied graphs in com-
putational geometry, we start by investigating the relationship between (ε1, ε2)-
Delaunay drawings and Delaunay drawings. In the proof of the next result we
will use the following result of Dillencourt [11]: Let Γ be a Delaunay drawing
with possibly degenerate vertex set V . Add, if necessary, edges to Γ to obtain
a triangulation of V . Let Γ′ denote the resulting drawing. Then, for any subset
U ⊆ V , removing all vertices in U along with all edges incident to a vertex in U
yields a drawing with at most |U |− 2 connected components that do not contain a
vertex of the convex hull of V . Note that this immediately implies that the graph
with the planar embedding of Fig. 4 does not admit an embedding preserving De-
launay drawing [11] since removing vertices a, b, c and d yields three connected
components.

Lemma 5. There exist embedded maximal planar graphs that do not admit an
embedding preserving (ε1, 0)-Delaunay drawing, for any value ε1 ≥ 0.

Proof. Let G be the embedded maximal planar graph depicted in Fig. 4. As noted
above, G does not have a Delaunay drawing and, hence, it does not have an em-
bedding preserving (0, 0)-Delaunay drawing.

Now, suppose G has an (ε1, 0)-Delaunay drawing Γ for some ε1 > 0. Let V
be the vertex set of Γ and let DG(V ) be the Delaunay graph of V . The graph
DG(V ) is a subgraph of Γ since every non-edge of Γ is a non-edge of DG(V ).
Clearly we can add exactly those edges of Γ that are not contained in DG(V ) to
obtain a triangulation of V , namely Γ. But this contradicts Dillencourt’s result
above since, as noted above already, removing vertices a, b, c and d from Γ yields
three connected components.

While Lemma 5 considers (ε1, 0)-Delaunay drawings of maximal planar tri-
angulations, one can wonder what happens with the other extreme, that is, with
(0, ε2)-Delaunay drawings. We use arguments similar to those in the proof of
Lemma 1 to prove the following lemma and corollary.
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Lemma 6. Let G be an embedded maximal planar triangulation and let ε2 be
any given real number such that ε2 ≥ 0. G has an embedding preserving (0, ε2)-
Delaunay drawing if and only if G has a Delaunay drawing.

Proof. First note that if G has an embedding preserving Delaunay drawing Γ,
then Γ is also a (0, ε2)-Delaunay drawing for any ε2 > 0. Now suppose that,
conversely, G has an embedding preserving (0, ε2)-Delaunay drawing Γ for some
ε2 > 0. Let V be the vertex set of Γ and let DG(V ) be the Delaunay graph having
V as its vertex set. Note that Γ is a subgraph of DG(V ). Since DG(V ) is a planar
geometric graph and G is a maximal planar triangulation, it follows that DG(V )
coincides with Γ. Hence, DG(V ) is a Delaunay drawing of G.

Corollary 3. There exist embedded planar graphs that do not have an embedding
preserving (0, ε2)-Delaunay drawing, for any ε2 ≥ 0.

By using similar arguments as those in the proof of Lemma 3, we prove the
following.

Lemma 7. Let ε1, ε2 be two real numbers such that ε1 > 0 and ε2 > 0. Every
planar graph with at least one edge has a (ε1, ε2)-Delaunay drawing.

Proof. Again, the construction is along the lines of the proof of Lemma 3. In
fact, the (ε1, ε2)-Gabriel drawing constructed in that proof is a (ε1, ε2)-Delaunay
drawing: First note that, as the Gabriel disk of two points p and q is contained in
the family of Delaunay disks of p and q, every edge in the drawing is correctly
witnessed. To see that every non-edge is also correctly witnessed, note that in that
proof of Lemma 3, we may choose C to be any disk with chord pvi+1 (i.e. any
Delaunay disk) and its ε2-expanded disk will contain D.

The discussion of the section is summarized in the following theorem, which
establishes that one can compute a drawing that approximates a Delaunay drawing
for every planar graph, provided that the Delaunay disks are scaled down for the
edges and are scaled up for the non-adjacent pairs of vertices by any arbitrarily
small chosen amount.

Theorem 3. Let G be an embedded planar graph with at least one edge. For
any given values of ε1, ε2 such that ε1 > 0 and ε2 > 0, G admits an embedding
preserving (ε1, ε2)-Delaunay drawing. Also, there exist embedded planar graphs
that do not have an embedding preserving (0, ε2)-Delaunay drawing and embed-
ded planar graphs that do not have an embedding preserving (ε1, 0)-Delaunay
drawing.
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In all of these cases, restricting the approximation to the extreme cases that
either ε1 = 0 or ε2 = 0 prevents the drawing of all planar graphs. We now study
the question of what subfamilies of planar graphs admit approximate proximity
drawings in these extreme cases. We focus on (0, ε2)-Gabriel drawings because
they generalize the notion of weak Gabriel drawings.

5. (0, ε2)-Gabriel drawings of some families of graphs

As mentioned in the introduction, (0, ε2)-proximity drawings provide a uni-
fying framework that encompasses both proximity drawings and weak proximity
drawings. To give an impression of the families of planar graphs that can be rep-
resented using this framework, we focus in this section on families of graphs that
have (0, ε2)-Gabriel drawings. In view of the fact that not all maximal planar tri-
angulations admit embedding preserving (0, ε2)-Gabriel drawings (cf. Lemma 1),
we consider families of planar graphs that are sparser than maximal planar tri-
angulations. For the extremal cases of (0,∞)-Gabriel drawings, that is, weak
Gabriel drawings, and (0, 0)-Gabriel drawings the following is known: Di Bat-
tista et al. [8] proved that all biconnected outerplanar graphs and all trees have
a (0,∞)-Gabriel drawing, while Bose et al. [5] proved that not all trees have a
(0, 0)-Gabriel drawing. The next two lemmas and Theorem 4 establish a tight
threshold value for ε2 for the (0, ε2)-Gabriel drawability of embedded trees.

Lemma 8. For any real number ε2 < 2, there exists a tree that does not admit a
(0, ε2)-Gabriel drawing.

Proof. Consider the star tree Sd with central vertex v of degree d. We show that
if d is sufficiently large then Sd has no (0, ε2)-Gabriel drawing for 0 ≤ ε2 < 2.

Assume for a contradiction that Γ is a (0, ε2)-Gabriel drawing of Sd. Select
two distinct leaves u and w of Sd such that in Γ the angle α between uv and vw is
minimal. By choosing d ≥ 9, we have α < π/4.

We assume without loss of generality that d(v, w) ≤ d(u, v) = 1 holds. Let
c denote the midpoint of uw. The situation is depicted in Fig. 5. Note that, since
D(u, v) does not contain any vertices other than u and v, we have d(v, w) ≥ cosα.
This implies sinα ≤ d(u,w) ≤ 2 sin α

2
.

Since α is minimal, the shaded area in Fig. 5, that is, the wedges with apex v
and aperture angle α adjacent to the wedge defined by u, v and w, cannot contain
any vertex in their interior. Hence, to obtain a lower bound on the minimum value
by which D(u,w) must be expanded to contain a vertex other than u and w, it
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Figure 5: Proof of Lemma 8.

suffices to consider the minimum of 2d(c,v)
d(u,w)

, 2d1
d(u,w)

, and 2d2
d(u,w)

, where d1 and d2
denote the distance of c from the rays R1 and R2, respectively (see Fig. 5).

First note that, in view of d(c, v) ≥ d(w, v) ≥ cosα and d(u,w) ≤ 2 sin α
2

, we
have 2d(c,v)

d(u,w)
≥ cosα

sin(α/2)
which tends to +∞ as d tends to +∞ and, thus, α tends to

0. Since triangles zpc′ and zvw′ are similar and d(u, c′) = d(c′, w′) = d(w′, z)/2,
we have d(c, p) ≥ 3

2
cosα. Since triangles w′vy and c′qy are similar and d(u, y) ≥

d(u,w′), we have d(c, q) ≥ 3
4

cosα. This implies, using again d(u,w) ≤ 2 sin α
2

,
that

2d1
d(u,w)

≥ d(c, q) sin(2α)

sin(α/2)
≥ 3 cosα sin(2α)

4 sin(α/2)
and

2d2
d(u,w)

≥ d(c, p) sinα

sin(α/2)
≥ 3 cosα sinα

2 sin(α/2)

hold. It is routine to check that the right hand sides in both inequalities above
tend to 3 as d tends to +∞. But this implies that, for sufficiently large d, the
ε2-expanded disk D(u,w) for 0 ≤ ε2 < 2 does not contain any vertices other than
u and w, a contradiction.
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Figure 6: Proof of Lemma 9.

Lemma 9. Let T be a tree. Then T admits a (0, ε2)-Gabriel drawing for any real
number ε2 ≥ 2.

Proof. Select an arbitrary vertex v of T and fix an ordering v = v1, v2, . . . , vn of
the vertices of T such that for any 1 ≤ i ≤ j ≤ n we have dT (v, vi) ≤ dT (v, vj)
where dT (u,w) denotes the length of the path between vertices u and w in T . In
addition, define, for all 1 ≤ i ≤ n, Ui := {vj : j > i and vj is adjacent to vi}.
To construct a (0, ε2)-Gabriel drawing Γ of T , first place v at an arbitrary point
in the plane. We now process the vertices v1, v2, . . . , vn in that order. For each
1 ≤ i ≤ n, the set Wi will contain those vertices of T that have already been
assigned a position in the plane and the set Ei will contain those edges of T with
both endpoints in Wi. We start with W1 = {v1}. When processing vi this vertex
is contained in Wi and after processing vi all vertices in Ui, if any, also have been
assigned a position and, thus, we have Wi+1 := Wi ∪ Ui.

To describe the construction of Γ, consider vertex vi and assume all vertices vj ,
1 ≤ j < i, have already been processed. If Ui = ∅ then nothing needs to be done.
So assume in the following that Ui 6= ∅. If i ≥ 2 let v′ denote the unique vertex
adjacent to vi not contained in Ui. If i = 1 define r = 1. Otherwise define r to
be the minimum of 1

2
min{d(vi, w) : w ∈ Wi \ {vi}} and 1

2
min{d(vi, D(w,w′)) :

(w,w′) ∈ Ei \ {(vi, v′)}}, where, for a point p and a disk D, d(p,D) denotes the
distance from p to the closest point in D. We place the vertices in Ui equidistantly
on the boundary of the diskDi centered at vi with radius r as depicted in Fig. 6(a).
In particular, all vertices are placed on the semicircle on the side opposite of v′

using an ordering that maintains the given embedding. It follows immediately
from the definition of r and the placement of the vertices in Ui that: (a) The disk
D(vi, u) does not contain any vertices except vi and u for all u ∈ Ui. (b) The
ε2-expanded disk D(u,w) contains vertex vi for all u ∈ Ui and all w ∈ Wi \ {vi}.
(c) The edges (vi, u), u ∈ Ui, do not cross any edge in Ei. (d) For every edge
(w,w′) ∈ Ei the disk D(w,w′) does not contain any of the vertices in Ui.
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It remains to show that the ε2-expanded disk D(u, u′) contains some vertex
in Wi+1 \ {u, u′} for any two distinct vertices u, u′ ∈ Ui. This is immediately
clear if the wedge defined by u, u′ and vi contains some vertex in Ui \ {u, u′}.
So assume that u and u′ are consecutive vertices on the boundary of Di. Note
that the angle α between viu and viu′ equals π

`
for some integer ` ≥ 2. Now, it

is easy to check that if α is at least π/4 then vi is contained in the ε2-expanded
disk D(u, u′), and, if α ≤ π/5 holds, the vertex u′′ ∈ Ui that comes after u′ is
contained in the ε2-expanded disk D(u, u′) (see Fig. 6(b)).

Lemmas 8 and 9 can be summarized in the following.

Theorem 4. Every tree has a (0, ε2)-Gabriel drawing for any given value of ε2
such that ε2 ≥ 2. Also, for each value of ε2 such that 0 ≤ ε2 < 2, there exists a
tree T such that T does not have a (0, ε2)-Gabriel drawing.

We now consider outerplanar graphs with cycles. Lenhart and Liotta [15]
proved that all biconnected outerplanar graphs with a given outerplanar embed-
ding have a (0, 0)-Gabriel drawing that maintains the embedding, while a con-
nected outerplanar graph where a cut vertex is shared by more than four bicon-
nected components is not (0, 0)-Gabriel drawable. The next theorem shows that
this upper bound on the number of components sharing a cut vertex can be re-
moved in (0, ε2)-Gabriel drawings, provided that the input graph does not have
degree one vertices. In the statement, by embedded outerplanar graph we mean
an outerplanar graph with a planar embedding where all vertices are on the exter-
nal face.

Theorem 5. Let G be an embedded outerplanar graph that does not have ver-
tices of degree one or zero. G has a (0, ε2)-Gabriel drawing that maintains the
embedding for any given value of ε2 such that ε2 > 0.

Proof. LetG be a connected outerplanar graph where each vertex has degree> 1.
Let ε2 > 0. At the end of the proof we will show that the theorem also holds
for disconnected outerplanar graphs. We call the edges of G the blue edges. We
first add new edges to G to create a new graph G′ that is outerplanar, internally
triangulated and biconnected. The new edges are called red edges. A vertex v of
G′ will be drawn at a point in the drawing Γ that we will also denote by v. Let
(1 + ε2)D(u, v) be the ε2-expanded version of the Gabriel disk D(u, v).

Let (a, b) be an arbitrary edge on the outerface of G′. Let c be the third point
of the triangle containing (a, b). We first draw triangle (a, b, c) followed by all
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other triangles of G′ in the following order. Since G′ is outerplanar, internally tri-
angulated and biconnected, the dual of G′ is a binary tree T . We execute any top-
to-bottom traversal of T , starting at the vertex corresponding to triangle (a, b, c),
for example a breadth first traversal. We draw the triangles of G′ in the order that
they are visited in the traversal of T . Suppose vertex t is a child of vertex s in T .
If t corresponds to triangle (v, w, x) and s corresponds to triangle (u, v, w), we
say that vertex x is a child of the edge (v, w).

We place the two points a and b at distinct locations in the plane. We place
c outside D(a, b), but inside (1 + ε2)D(a, b). The remainder of the points will
be placed in two regions as illustrated in Fig. 7. Region cl lies outside D(a, c),

a b

cD(a, b)
d

D(b, c)

D(a, c) region cl

region cr

region dr

region dl

Figure 7: (0, ε2)-Gabriel drawing of a biconnected outerplanar graph.

outside the triangle (a, b, c), but inside (1 + ε2)D(b, c). Moreover any point p in
region cl forms an angle ∠(p, c, a) that is less than 90 degrees. Region cr lies
outside D(b, c), outside the triangle (a, b, c), but inside (1 + ε2)D(a, c). Moreover
any point p in region cr forms an angle ∠(p, c, b) that is less than 90 degrees. The
vertices of the subgraph of G′ adjacent to (a, c) will be placed in cl, the vertices
of the subgraph of G′ adjacent to (b, c) will be placed in cr. Suppose there is
a triangle (b, c, d) in G′. We place d in region cr, and recursively construct two
regions dl and dr for the points ofG′ that are in the subgraph adjacent to (c, d) and
in the subgraph adjacent to (b, d) respectively. Continuing to processG′ according
to the chosen traversal of T yields a (0, ε2)-Gabriel drawing of G′.
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We now have to remove the red edges from the drawing. First of all, any
edge (u, v) not on the boundary of G′ has a child vertex w that is placed outside
D(u, v) and inside (1 + ε2)D(u, v). So any edge not on the boundary of G′ can
be removed. The same argument can be used to remove the edge (a, b) if it is red.
Now let (u, v) be a red edge on the boundary of G′ not equal to (a, b). Let u and v
be vertices of the triangle (u, v, w). We can assume without loss of generality that
u is the child of (v, w). Since u has degree > 1 in G, the edge (u,w) has a child
x in G′, so there is an edge (u, x) in G′ such that x is placed in region ul or region
ur. Since this region falls inside (1 + ε2)D(u, v), we can delete the edge (u, v).

Finally assume that G is not connected. We first draw the connected compo-
nents as explained above. We place the components in the plane sufficiently far
away from each other. Since we do not have components of size 1 we can con-
clude that for any two vertices u and v in different components, there are vertices
inside (1 + ε2)D(u, v).

6. Conclusions and open problems

In this paper we have introduced an approximate version of several well-
studied proximity drawings. In comparison with the standard definition of region
of influence based proximity drawing, our drawings consider a slightly smaller
region of influence for the adjacent pairs of vertices and a slightly larger region
for the non-adjacent pairs. The amount by which the region of influence can be
scaled up or down depends on two non-negative real numbers ε1 and ε2; the re-
sulting straight-line drawing is called an (ε1, ε2)-proximity drawing. Intuitively,
the smaller these parameters are the closer an (ε1, ε2)-proximity drawing is to the
standard proximity drawing.

We investigated the approximation of three well-known proximity drawings,
namely Gabriel drawings, β-drawings, and Delaunay drawings. For each of these
types of proximity drawings, we showed that every planar graph has a planar
straight-line drawing that can be made arbitrarily close to satisfying the usual
proximity rule. This contrasts with well-known results that only restricted sub-
families of planar graphs have a (standard) Gabriel drawing, or β-drawing, or
Delaunay drawing. We also investigated extremal cases that generalize and ex-
tend the notion of weak proximity. A first natural direction for future research is
therefore the following.

Question 1. Extend the study of approximate proximity to other classical or emerg-
ing families of proximity drawings, such as rectangle of influence drawings [10],
witness rectangle graphs [3], and witness Delaunay drawings [2].
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We remark that the major contribution of this paper is in analyzing to what ex-
tent the class of representable graphs can vary if the standard definition of proxim-
ity is approximate in the manner described above. Based on the presented results,
we believe that the proposed definition of approximate proximity may be effec-
tively adopted in practice to represent planar graphs where proximity constraints
need to be maintained. However, in order to do so, relevant questions about the
area and the bit complexity of the computed drawings must be addressed.

As an example, we recall a recent paper by Angelini et al. [1] proving that
exponential area is required to draw some trees of maximum degree five as Eu-
clidean minimum spanning trees. Since the family of β-drawable trees for β = 2
is the family of trees having maximum degree five and since a 2-drawing of a
tree is also a Euclidean minimum spanning tree, it follows that exponential area
is required to draw some trees as (0, 0)-2-drawings. On the other hand, every
straight-line planar drawing is an (ε1, ε2)-proximity drawing for sufficiently large
values of ε1 and ε2. In fact, every planar graph has a (0,∞)-proximity drawing
with integer coordinates using polynomial area [6]. This discussion leads to the
following research direction.

Question 2. Study polynomial area approximation schemes, where the size of
the computed drawing increases as the variables ε1, ε2 decrease. Similar studies
have been done in the context of drawing a tree as a Euclidean minimum spanning
tree [13] and for rectangle of influence drawings [10].
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