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Abstract. We study contact representations of non-planar graphs in which ver-
tices are represented by axis-aligned polyhedra in 3D and edges are realized by
non-zero area common boundaries between corresponding polyhedra. We present
a liner-time algorithm constructing a representation of a 3-connected planar graph,
its dual, and the vertex-face incidence graph with 3D boxes. We then investigate
contact representations of 1-planar graphs. We first prove that optimal 1-planar
graphs without separating 4-cycles admit a contact representation with 3D boxes.
However, since not every optimal 1-planar graph can be represented in this way,
we also consider contact representations with the next simplest axis-aligned 3D
object, L-shaped polyhedra. We provide a quadratic-time algorithm for represent-
ing optimal 1-planar graphs with L-shapes.

1 Introduction

Graphs are often used to describe relationships between objects, and graph embedding
techniques allow us to visualize such relationships. There are compelling theoretical and
practical reasons to study contact representations of graphs, where vertices are interior-
disjoint geometric objects and edges correspond to pairs of objects touching in some
specified fashion. In practice, 2D contact representations with rectangles, circles, and
polygons of low complexity are intuitive, as they provide the viewer with the familiar
metaphor of geographical maps. Such representations are preferred in some contexts
over the standard node-link representations for displaying relational information [9].

A large body of work considers representing graphs by contacts of simple curves or
polygons in 2D. Graphs that can be represented in this way are planar and Koebe’s 1936
theorem established that all planar graphs can be represented by touching disks [18].
Every planar graph also has a contact representation with triangles [15]. Curves, line-
segments, and L-shapes have also been used [14, 17]. In particular, it is known that all
planar bipartite graphs can be represented by contacts of axis-aligned segments [10].
For non-planar graphs such contact representations in 2D are impossible. In a natural
generalization for non-planar graphs, vertices can be represented with 3D-polyhedra.
For example, representations of complete graphs and complete bipartite graphs using
spheres and cylinders have been considered [5, 16]. Overall, very little is known about
such contact representations of non-planar graphs.

As a first step towards representing non-planar graphs, we consider primal-dual
contact representations, in which a plane graph (a planar graph with a fixed planar em-
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Fig. 1: (a) A plane graph K4 and its dual; primal-dual contact representations of the graph with
(b) circles and (c) triangles. (d) The primal-dual box-contact representation of K4 with dual
vertices shown dashed. The outer box (shell) contains all other boxes.

bedding), its dual graph, and the face-vertex incidence graph are all represented simul-
taneously. More formally, in such a representation vertices and faces are represented by
some geometric objects so that:

(i) the objects for the vertices are interior-disjoint and induce a contact representation
for the primal graph;

(ii) the objects for the faces are interior-disjoint except for the object for the outer
face, which contains all the objects for the internal faces, and together they induce
a contact representation of the dual graph;

(iii) the objects for a vertex v and a face f intersect if and only if v and f are incident.
Primal-dual representations of plane graphs have been studied in 2D. Every 3-

connected plane graph has a primal-dual representation with circles [2] and triangles [15];
see Fig. 1(a)–(c). Our first result in this paper is an analogous primal-dual representation
using axis-aligned 3D boxes. While it is known that every planar graph has a contact
representation with 3D boxes [7, 12, 23], Theorem 1 strengthens the result; see Fig. 1d.

Theorem 1. Every 3-connected plane graph G = (V,E) admits a proper primal-dual
box-contact representation in 3D and it can be computed in O(|V |) time.

Before proving this theorem we point out two important differences between our
result for box-contact representation and the earlier primal-dual representations for cir-
cles and triangles [2, 15]. First, the existing constructions induce non-proper (point)
contacts, while our contacts are always proper, that is, have non-zero areas. Second,
for a given 3-connected plane graph, it is not always possible to find a primal-dual
representation with circles by a polynomial-time algorithm, although it can be con-
structed numerically by polynomial-time iterative schemes [19]. There is also no known
polynomial-time algorithm that computes a primal-dual representation with triangles
for a given plane graph. In contrast, our box-contact representation for an n-vertex
graph can be computed in linear time and realized on the O(n)×O(n)×O(n) grid.

We prove Theorem 1 with a constructive algorithm, which uses the notions of
Schnyder woods and orthogonal surfaces, as defined in [13]. It is known that every 3-
connected planar graph induces an orthogonal surface; we will show how to construct
a new contact representation with interior-disjoint boxes from such an orthogonal sur-
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face. Since the orthogonal surfaces for a 3-connected planar graph and its dual coincide
topologically, we show how to geometrically realize the primal and the dual box-contact
representations so that they fit together to realize all the desired contacts. The construc-
tion idea is inspired by recent box-contact representation algorithms for maximal planar
graphs [7]. Note, however, that we generalize one such algorithm to handle 3-connected
planar graphs (rather than maximal-planar graphs) and show how to combine the primal
and dual representations. Our method relies on a correspondence between Schnyder
woods and generalized canonical orders for 3-connected planar graphs. Although the
correspondence has been claimed in [3], the earlier proof appears to be incomplete. We
provide a complete proof of the claim in the full version of the paper [1].

The representation in Theorem 1 immediately gives box-contact representations for
a special class of non-planar graphs that are formed by the union of a planar graph, its
dual, and the vertex-face incidence graph. The graphs were called prime by Ringel [20],
who studied them in the context of simultaneously coloring a planar graph and its dual,
and are defined as follows. A simple graphG = (V,E) is said to be 1-planar if it can be
drawn on the plane so that each of its edges crosses at most one other edge. A 1-planar
graph has at most 4|V | − 8 edges and it is optimal if it has exactly 4|V | − 8 edges [11],
that is, it is the densest 1-planar graph on the vertex set. An optimal 1-planar graph is
called prime if it has no separating 4-cycles, that is, cycles of length 4 whose removal
disconnects the graph. These optimal 1-planar graphs are exactly the ones that are 5-
connected; alternatively, these graphs can be obtained as the union of a 3-connected
simple plane graph, its dual and its vertex-face-incidence graph [21].

As in earlier primal-dual contact representations, it is not possible to have all vertex-
objects interior disjoint. Specifically, one vertex-object (be it triangle, circle, or box)
contains all the others. We call this special box the shell and such a representation a
shelled box-contact representation. Here all the vertices are represented by 3D boxes,
except for one vertex, which is a shell, and the interiors of all boxes and the exterior of
the shell are disjoint. Note that a similar shell is required in circle-contact and triangle-
contact representations; see Fig. 1. The following is a direct corollary of Theorem 1.

Fig. 2: An L-shaped
polyhedron.

Corollary 1. Every prime 1-planar graph G has a shelled box-
contact representation in 3D and it can be computed in linear time.

One may wonder whether every 1-planar graph admits a box-
contact representation in 3D, but it is easy to see that there are
1-planar graphs, even as simple as K5, that do not admit a box-
contact representation. Furthermore, there exist optimal 1-planar
graphs (which contain separating 4-cycles) that have neither a box-
contact representation nor a shelled box-contact representation; see the full paper [1].

Therefore, we consider representations with the next simplest axis-aligned object in
3D, an L-shaped polyhedron or simply an L, which is an axis-aligned box minus the
intersection of two axis-aligned half-spaces; see Fig. 2. An L can also be considered the
union of two 3D boxes. Note that the union of two axis-aligned boxes does not always
form an L (e.g., it could form a T-shape); an L is the simplest of all such polyhedra.
We provide a quadratic-time algorithm for representing every optimal 1-planar graph
with L’s (note that a 3D box is simply a degenerate L).
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Theorem 2. Every embedded optimal 1-planar graph G = (V,E) has a proper L-
contact representation in 3D and it can be computed in O(|V |2) time.

Our algorithm is similar to a recursive procedure used for constructing box-contact
representations of planar graphs in [12,23]. The basic idea is to find separating 4-cycles
and represent the inner and the outer parts of the graph induced by the cycles sep-
arately. Then these parts are combined to produce the final representation. Since the
separating 4-cycles can be nested inside each other, the running time of our algorithm
is dominated by the time required to find separating 4-cycles and their nested structure.
Unlike the early algorithms for box-contact representations of planar graphs [12, 23],
our algorithms produce proper contacts between the 3D objects (boxes and L’s).

2 Primal-Dual Representations of 3-Connected Plane Graphs

In this section we prove Theorem 1. Specifically, we describe a linear-time algorithm
that computes a box-contact representation for the primal graph and the dual graph
separately and then fits them together to also realize the face-vertex incidence graph.
We first require some concepts about Schnyder woods and ordered path partitions.

Let G be a 3-connected plane graph with a specified pair of vertices {v1, v2} and
a third vertex v3 /∈ {v1, v2}, such that v1, v2, v3 are all on the outer face in that coun-
terclockwise order. Add the edge (v1, v2) to the outer face of G (if it does not already
contain it) such that v3 remains on the outerface and call the augmented graph G′. Let
Π = (V1, V2, . . . , VL) be a partition of the vertices of G such that each Vi induces a
path in G; Π is an ordered path partition [3] of G if the following conditions hold:
(1) V1 contains the vertices on the counterclockwise path from v1 to v2 on the outer

cycle; VL = {v3};
(2) for 1 ≤ k ≤ L, the subgraph Gk of G′ induced by the vertices in V1 ∪ . . . ∪ Vk

is 2-connected and internally 3-connected (that is, removing two internal vertices
of Gk does not disconnect it); hence the outer cycle Ck of Gk is a simple cycle
containing the edge (v1, v2);

(3) for 2 ≤ k ≤ L, each vertex on Ck−1 has at most one neighbor in Vk.
The pair (v1, v2) forms the base-pair for Π and v3 is the head vertex of Π . For

an ordered path partition Π = (V1, V2, . . . , VL) of G, a vertex v of G has label k if
v ∈ Vk. The predecessors of v are the neighbors of v with equal or smaller labels; the
successors of v are the neighbors of v with equal or larger labels; see Fig. 3a.

Again consider the three specified vertices v1, v2, v3 in that counterclockwise order
on the outer face of G. For i ∈ {1, 2, 3}, add a half-edge from vi reaching into the outer
face. A Schnyder wood [6] is an orientation and a coloring of the edges of G (including
the added half-edges) with the colors 1, 2, 3 satisfying the following conditions:
(1) every edge e is oriented in either one (uni-directional) or two opposite directions

(bi-directional). The edges are colored so that if e is bi-directional, the two direc-
tions (half-edges) have distinct colors;

(2) the half-edge at vi is directed outwards and colored i;
(3) each vertex v has out-degree exactly one in each color, and the counterclockwise

order of edges incident to v is: outgoing in color 1, incoming in color 2, outgoing
in color 3, incoming in color 1, outgoing in color 2, incoming in color 3;
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Fig. 3: (a) An ordered path partition and its corresponding Schnyder wood for a 3-connected
graph G. (b) The Schnyder woods for the primal and the dual of G. The thick solid red, dotted
blue and thin solid green edges represent the three trees in the Schnyder wood.

(4) there is no interior face whose boundary is a directed cycle in one color.
These conditions imply that for i ∈ {1, 2, 3}, the edges with color i induce a tree

Ti rooted at vi, where all edges of Ti are directed towards the root. Denote by T −1i the
tree with all the edges of Ti reversed, and the Schnyder wood by (T1, T2, T3). Every
3-connected plane graph has a Schnyder wood [4, 13]. From a Schnyder wood of a
3-connected plane graph G, one can construct a dual Schnyder wood (the Schnyder
wood for the dual of G). Consider the dual graph G∗ of G in which the vertex for the
outer face ofG has been split into three vertices forming a triangle. These three vertices
represent the three regions between pairs of half edges from the outer vertices of G.
Then a Schnyder wood for G∗ is formed by orienting and coloring the edges so that
between an edge e in G and its dual e∗ in G∗, all three colors 1, 2, 3 have been used.
In particular, if e is uni-directional in color i, i ∈ {1, 2, 3}, then e∗ is bi-directional in
colors i− 1, i+ 1 and vice versa; see Fig. 3b; also see [6].

It is known that an ordered path partition ofG defines a Schnyder wood onG, where
the three outgoing edges for each vertex are to its (1) leftmost predecessor, (2) right-
most predecessor, and (3) highest-labeled successor [4, 13]. We call an ordered path
partition and the corresponding Schnyder wood computed this way to be compatible
with each other. Badent et al. [3] argue that the converse can also be done, that is, given
a Schnyder wood on G, one can compute an ordered path partition, compatible with
the Schnyder wood (and hence, there is a one-to-one correspondence between the con-
cepts). However, the algorithm in [3] for converting a Schnyder wood to a compatible
ordered path partition is incomplete, that is, the computed ordered path partition is not
always compatible with the Schnyder wood. In the full version of the paper [1] we show
such an example and provide a correction of the algorithm. Hence, we have:

Lemma 1. Let (T1, T2, T3) be a Schnyder wood of a 3-connected plane graph G with
three specified vertices v1, v2, v3 in that counterclockwise order on the outer face.
Then for i ∈ {1, 2, 3}, one can compute in linear time an ordered path partition Πi
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Fig. 4: Box-contact representation (a) for the graph in Fig. 3 with its primal-dual Schnyder wood
(b) and the associated orthogonal surface (c). The thick solid red, dotted blue and thin solid green
edges represent the three trees in the Schnyder wood.

compatible with (T1, T2, T3) such that Πi has (vi−1, vi+1) as the base-pair and vi as
the head. FurthermoreΠi is consistent with the partial order defined by T −1i−1∪T

−1
i+1∪Ti.

We denote a connected region in a plane embedding of a graph by a face, and a
side of a 3D shape by a facet. For a 3D box R, call the facet with highest (lowest)
x-coordinate as the x+-facet (x−-facet) of R. The y+-facet, y−-facet, z+-facet and
z−-facet of R are defined similarly. For convenience, we denote the x+-, x−-, y+-,
y−-, z+- and z−-facets of R as the right, left, front, back, top and bottom facets of R,
respectively. We now sketch a proof for Theorem 1; see [1] for a complete version.

Theorem 1. Every 3-connected plane graph G = (V,E) admits a proper primal-dual
box-contact representation in 3D and it can be computed in O(|V |) time.

Proof sketch. Our algorithm consists of the following steps. Let v1, v2 and v3 be three
vertices on the outer face ofG in the counterclockwise order. First, we create a Schnyder
wood (T1, T2, T3) such that for i ∈ {1, 2, 3}, Ti is rooted at vi. Then using Lemma 1,
we compute three ordered path partitions compatible with (T1, T2, T3). Next the ordered
path partitions are used to calculate the coordinates of 3D boxes that form a contact
representation for the primal graph G; a number of local modifications is performed
to obtain proper contacts. Finally, the same steps are applied, starting with the dual
Schnyder wood of (T1, T2, T3), to construct the representation of the dual graph G∗.
These two representations induce the same orthogonal surfaces [13]; hence, they can be
combined together to form a primal-dual box-contact representation.

Note that a similar idea is used in [7] to compute a box-contact representation for
a maximal planar graph. We strengthen the result by (1) generalizing the method to 3-
connected planar graphs and (2) computing an ordered path partition compatible with a
Schnyder wood. The latter guarantees the fit between the primal and the dual.
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We sketch the steps for computing the primal representation from a Schnyder wood
(T1, T2, T3); the computation for the dual representation is analogous. By Lemma 1, for
i ∈ {1, 2, 3}, one can compute a compatible ordered path partition with the base-pair
(vi−1, vi+1) and head vi, consistent with the partial order defined by T −1i−1 ∪ T

−1
i+1 ∪

Ti. Denote by <X , <Y and <Z the three ordered path partitions compatible with
(T1, T2, T3), that are consistent with T −13 ∪ T −12 ∪ T1, T −11 ∪ T −13 ∪ T2, and T −12 ∪
T −11 ∪T3, respectively. For a vertex u, let xM (u), yM (u), and zM (u) be the labels of u
in the ordered path partitions <X , <Y , and <Z , respectively. Define xm(u) = xM (b),
ym(u) = yM (g) and zm(u) = zM (r), where b, g and r are the parents of u in T1, T2 and
T3, respectively, when the parents are defined. For each special vertex vi, i ∈ {1, 2, 3},
the parent is not defined in Ti. Assign xm(v1) = 0, ym(v2) = 0 and zm(v3) = 0. For
each vertex u, define a boxR(u) as [xM (u), xm(u)]×[yM (u), ym(u)]×[zM (u), zm(u)].

The boxes defined above yield a box-contact representation for G. Similarly, a rep-
resentation for the dual graph G∗ is computed. These representations can be combined
together; see [1] for details. Finally, the three boxes for the three outer vertices ofG∗ are
replaced by a single shell-box, which forms the boundary of the entire representation.

The algorithm runs in O(|V |) time since computing the primal and the dual Schny-
der woods [13], computing ordered path partitions from Schnyder woods (Lemma 1),
and the computation of the coordinates all can be accomplished in linear time. ut

3 L-Contact Representation of Optimal 1-Planar Graphs

In this section we prove Corollary 1 and Theorem 2. Throughout, let G be an optimal
1-planar graph with a fixed 1-planar embedding. An edge is crossing if it crosses an-
other edge, and non-crossing otherwise. A cycle in a connected graph is separating if
removing it disconnects the graph. We list some properties of optimal 1-planar graphs.

Lemma 2 (Brinkmann et al. [8], Suzuki [22]).
– The subgraph of an embedded optimal 1-planar graph G induced by the non-

crossing edges is a plane quadrangulation Q with bipartition classes W and B.
– The induced subgraphsGW = G[W ] andGB = G[B] on white and black vertices,

respectively, are planar and dual to each other.
– GB and GW are 3-connected if and only if Q has no separating 4-cycles.
– There exists a simple optimal 1-planar graph with quadrangulation Q if and only

if Q is 3-connected.

An optimal 1-planar graph is prime if its quadrangulation has no separating 4-cycle.

Corollary 1. Every prime 1-planar graph G has a shelled box-contact representation
in 3D and it can be computed in linear time.

Proof. Let Q be the quadrangulation of G and let B, W be the bipartition classes of
Q. By Lemma 2, GB = G[B] and GW = G[W ] are 3-connected planar and dual to
each other. By Theorem 1, a primal-dual box-contact representation Γ of GB can be
computed in linear time. We claim that Γ , with the outer face of GB as bounding box,
is a contact representation of G. Indeed, the edges of G are partitioned into GB , GW ,
Q. Each edge in GB is realized by contact of two “primal” boxes, each edge in GW by
contact of “dual” boxes, and each edge inQ by contact of a primal and a dual box. ut
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(a) (b) (c)

Fig. 5: (a) An embedded optimal 1-planar graph, its quadrangulation Q (bold) and the partition
into white and black vertices. (b) The graphGout produced by removing the interior of separating
4-cycle C. (c) The graph Gin(C) comprised of the separating 4-cycle and its interior.

Next, assume that G is any (not necessarily prime) optimal 1-planar graph. To find
anL-representation forG, we find all separating 4-cycles inG, replace their interiors by
a pair of crossing edges and construct an L-representation Γout of the obtained prime
1-planar graph Gout from a shelled box-contact representation given by Corollary 1.
We ensure that Γout has some “available space” where we place the L-representations
for the removed subgraph in each separating 4-cycle, which we construct recursively.
We remark that similar procedures were used, e.g., for maximal planar graphs and their
separating triangles [12,23]. A separating 4-cycle is maximal if its interior is inclusion-
wise maximal. A 1-planar graph with at least 5 vertices is almost-optimal if its non-
crossing edges induce a quadrangulation Q and inside each face of Q, other than the
outer face, there is a pair of crossing edges.

Algorithm L-Contact(optimal 1-planar graph G)
1. Find all separating 4-cycles in the quadrangulation Q of G
2. if some inner vertex w of Q is adjacent to two outer vertices of Q
3. then C = the two 4-cycles containing w and 3 outer vertices of Q. (Case 1)

else C = set of all maximal separating 4-cycles in Q. (Case 2)
4. Take the optimal 1-planar (multi)graphGout obtained fromG by replacing for each

4-cycle C ∈ C all vertices strictly inside C by a pair of crossing edges; see Fig. 5b.
5. Compute an L-representation of Gout with “some space” at each 4-cycle C ∈ C. In

Case 2, this is based on the box-contact representation of Gout in Corollary 1.
6. For each C ∈ C, take the almost-optimal 1-planar subgraph Gin(C) induced by C

and all vertices inside C; see Fig. 5c. Recursively compute an L-representation of
Gin(C) and insert into the corresponding “space” in the L-representation of Gout.

Let us formalize the idea of “available space” mentioned in steps 5 and 6. Let Γ
be any L-representation of some graph G and C be a 4-cycle in G. A frame for C is a
3-dimensional axis-aligned box F together with an injective mapping of V (C) onto the
facets of F such that the two facets without a preimage are adjacent. Every frame has
one of two possible types. If two opposite vertices of C are mapped onto two opposite
facets of F , then F has type (⊥−||); otherwise, F has type (⊥−⊥); see Fig. 6b. Finally,
for an almost-optimal 1-planar graph G with corresponding quadrangulation Q and
outer face C, and a given frame F for C, we say that an L-representation Γ of G fits
into F if replacing the boxes or L’s for the vertices in C by the corresponding facets of
F yields a proper contact representation of G−E(G[C]) that is strictly contained in F .
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Fig. 6: (a) Illustration for Lemma 3. (b) A frame of type (⊥−||) (left) and of type (⊥−⊥) (right).

Before we prove Theorem 2, we need one last lemma addressing the structure of
maximal separating 4-cycles in almost-optimal 1-planar graphs.

Lemma 3. Let G be an almost-optimal 1-planar graph with corresponding quadran-
gulation Q. Then all maximal separating 4-cycles of Q are interior-disjoint, unless two
inner vertices w and w′ of Q are adjacent to two outer vertices of Q.

Proof. When two maximal separating 4-cycles C and C ′ are not interior-disjoint, then
some vertex from C lies strictly inside C ′ and some vertex from C ′ lies strictly inside
C. It follows that V (C)∩V (C ′) is a pair x, y of two vertices from the same bipartition
class of Q, say x, y ∈ B, and that some v ∈ V (C) lies strictly outside C ′ and some
v′ ∈ V (C ′) lies strictly outside C. We have v, v′ ∈ W and that C∗ = (x, v, y, v′) is a
4-cycle whose interior strictly contains C and C ′. By the maximality of C and C ′, C∗

is not separating. Since the vertices w ∈ V (C) \ V (C∗) and w′ ∈ V (C ′) \ V (C∗) lie
strictly inside C∗, C∗ is the outer cycle of Q and w,w′ are the desired vertices. ut

Theorem 2. Every embedded optimal 1-planar graph G = (V,E) has a proper L-
contact representation in 3D and it can be computed in O(|V |2) time.

Proof. Let Q be the quadrangulation of G with outer cycle Cout. Following algorithm
L-Contact, we distinguish two cases. If (Case 1) some inner vertex w of Q has two
neighbors on Cout we let C be the set of the two 4-cycles in Q that consist of w and
3 vertices of Cout. Otherwise (Case 2), let C be the set of all maximal separating 4-
cycles in Q. By Lemma 3 the cycles in C are interior-disjoint. As in step 4 we define
Gout to be the optimal 1-planar (multi)graph obtained from G by replacing for each
C ∈ C all vertices strictly inside C by a pair of crossing edges. Note that in Case 1
the quadrangulation corresponding to Gout is K2,3 with inner vertex w. We proceed by
proving the following lemma, which corresponds to step 5 in the algorithm.

Lemma 4. Let H be an almost-optimal 1-planar (multi)graph whose corresponding
quadrangulation QH is either K2,3 or has no separating 4-cycles. Let C be a set of
facial 4-cycles of QH , different from its outer cycle Co, and H ′ be the graph obtained
from H by removing the crossing edges in each C ∈ C. Then for any given frame F for
Co, one can compute an L-representation Γ of H ′ fitting into F so that there is a frame
FC ⊆ F for every C ∈ C that is interior-disjoint from all boxes and L’s in Γ .

Proof. Case 1, QH = K2,3. Let w be the inner vertex of H . Without loss of generality
let F = [0, 5]× [0, 5]× [0, 4] and let V (Co) be mapped onto the top, back left, bottom
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Fig. 7: Illustration for Lemma 4: (a) Case 1 construction, (b) Creating a frame FC in Case 2 for
an inner facial cycle C = (a1, b1, a2, b2) of QH by releasing the contact between a1 and a2.

and back right facets of F . Define the L for w to be the union of [0, 3] × [2, 3] × [0, 4]
and [2, 3]× [0, 3]× [0, 4]. Define four boxes F1 = [0, 2]× [0, 1]× [0, 1], F2 = [0, 2]×
[0, 1]×[3, 4], F3 = [3, 4]×[0, 1]×[0, 4] and F4 = [0, 1]×[3, 4]×[0, 4], each completely
contained in F and disjoint from the L for w; see Fig. 7a. Each Fi, i ∈ {1, 2, 3, 4} is a
frame for a 4-tuple containing w and three vertices of Co. Thus independent of the type
of F and the neighbors of w in QH , we find a frame for the inner faces of QH .
Case 2, QH 6= K2,3. Let B and W be the bipartition classes of QH and Co =
(v1, w1, v2, w2) with vi ∈ B and wi ∈ W , i = 1, 2. Without loss of generality
v1, v2, w1 are mapped onto the back left, back right and top facets of F , respectively,
and w2 is mapped onto the bottom facet if (Case 2.1) F has type (⊥−||) and onto
the front left facet if (Case 2.2) F has type (⊥−⊥). Let H∗ be the graph obtained
from H by inserting a pair of crossing edges in Co, leaving v1, w2 and v2 on the un-
bounded region. By assumption, H∗ is a prime 1-planar graph and thus by Lemma 2
H∗B = H∗[B] and H∗W = H∗[W ] are planar 3-connected and dual to each other. We
choose v3 to be the clockwise next vertex after v2 on the outer face of H∗B and compute
(using Corollary 1) a shelled box-contact representation Γ ∗ ofH∗, in whichw2 is repre-
sented as the bounding box F ∗ = [0, n]3, n ∈ N, and v1, v2, w1 as [0, n]×[0, 1]×[0, n],
[0, 1]× [0, n]× [1, n]× [1, n]× [n−1, n], i.e., these boxes constitute the back left, back
right and top facets of F ∗, respectively.

Next we show how to create a frame for each facial 4-cycle C ∈ C. Let a1, b1, a2, b2
be the vertices of C in cyclic order. Assume without loss of generality that a1, a2 ∈W
and b1, b2 ∈ B. Thus (a1, a2) and (b1, b2) are crossing edges of H∗W and H∗B , respec-
tively. In the Schnyder wood of H∗W underlying Corollary 1 exactly one of (a1, a2),
(b1, b2) is uni-directed, say (a1, a2) is uni-directed in tree T1. Then there is a point in
R3 in common with all four boxes in Γ ∗ corresponding to vertices of C. Moreover, by
construction boxes b1, a2, b2 touch box a1 with their y+, z+, y− facets, respectively;
see Fig. 7b. Now we can increase the lower z-coordinate of the box a1 by some ε > 0
so that a1 and a2 lose contact and between these two boxes a cubic frame FC with side
length ε is created; see again Fig. 7b. Note that the z− facet of a1 makes contact only
with a2 and hence if ε is small enough all other contacts in Γ ∗ are maintained. We apply
this operation to each C ∈ C and obtain a shelled box-representation Γ ′ of H ′.

Finally, we show how to modify Γ ′ to obtain an L-representation of H ′ fitting the
given frame F . If (Case 2.1) F has type (⊥−||), we define a new box for w2 to be
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Fig. 8: Modifying Γ ′ when F has type (⊥−||) (Case 2.1) to find a representation fitting F .

[0, n+1]× [0, n]× [−1, 0]. For each white neighbor of w2 we union the corresponding
box with another box that is contained in [n, n + 1] × [0, n] × [0, n] with bottom facet
at z = 0 so that the result is an L-shape. For each black neighbor of w2 we set the
lower z-coordinate of the corresponding box to 0; see Fig. 8. (This requires the proper
contacts for outer edges ofGB , except for (v1, v2), to be parallel to the xz-plane, which
we can easily guarantee.) We then apply an affine transformation mapping [1, n+ 1]×
[1, n] × [0, n − 1] onto F . If (Case 2.2) F has type (⊥−⊥), define a new box for w2

to be [0, n] × [n, n + 1] × [0, n] and apply an affine transformation mapping [1, n] ×
[1, n]× [0, n− 1] to F . In both cases we have an L-representation of H ′ fitting F . ut

By the lemma above we can compute an L-representation Γout of Gout fitting any
given frame Fout for Cout in O(|V (Gout)|) time. Moreover, Γout has a set of disjoint
frames {FC | C ∈ C}. Following step 6 of algorithm L-Contact, for each C ∈ C,
let Gin(C) be the almost-optimal 1-planar graph given by all vertices and edges of
G on and strictly inside C. Recursively applying the lemma we can compute an L-
representation ΓC of Gin(C) fitting the frame FC for C in Γout. Clearly, Γ = Γout ∪⋃

C∈C ΓC is an L-representation of G fitting Fout. We pick a frame Fout of arbitrary
type for Cout to complete the construction. Although computing an L-representation
of Gout takes O(|V (Gout)|) time, recursive computation and affine transformations on
the L’s for the vertices in Gin(C) for each C ∈ C require O(|V |2) time. ut

4 Conclusion and Open Questions

We described efficient algorithms for 3D contact representation of several types on non-
planar graphs. Many interesting problems remain open. A planar graph has a contact
representation with rectangles in 2D if and only if it has no separating triangles. Is
there a similar characterization for 3D box-contact representations? It is known that any
planar graph admits a proper contact representation with boxes in 3D and a non-proper
contact representation with cubes (boxes with equal sides). Does every planar graph
admit a proper contact representation with cubes? Representing graphs with contacts
of constant-complexity 3D shapes, such as L’s, is open for many graph classes with a
linear number of edges, such as 1-planar, quasi-planar and other nearly planar graphs.
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