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Many data presentation problems involve the 1a

rrices represent entities and whose edges represent relationships
vetween the entities. Examples are database schema,  PERT
betworks’organisation charts, and logic circuit diagrams. The TYGES
nestem developed at the University of Queensland assists with the prac-
i{cal physical layout of such diagrams on limited two dimensional sur-
sces such as plotters and CRT screens. A description of TYGES is given

yout of a graph whose

The crucial part of TYGES is the embedder, the program which
assigns locations to vertices in such a way that the resulting layout is
in some sense aesthetically pleasing. The design of an embedder is a
fornidable task, since "aesthetically pleasing" is a subjective concept.

In this note we report on a method for drawing graphs to meet two
criteria: all the edge lengths ought to be about the same, and the lay-
out should display as much symmetry as possible. These criteria form a
part of "aesthetically pleasing" in a wide variety of application areas.
Further, we aim to produce layouts which conform to the author’s some-
what subjective sense of aesthetics.

It is NP-hard to draw a graph so that all edge lengths are the same
(see [J82]), and displaying symmetry is at least as difficult as graph
isomorphism. Hence a heuristic method is justified.

2. The algorithm

The basic idea is as follows. To embed a graph we replace the ver-
tices by steel rings and replace each edge with a spring to form a
Bechanical system, as in figure 0. The vertices are placed in some ini-
tial layout and let go so that the spring forces on the rings move the
:zStem to a minimal energy state. The algorithm outputs the positions

the vertices in this stable state.

rithmfwo Practical adjustments are made to this idea: firstly, loga-
mr%lgt_h springs are used; that is, the force exerted on a ring
s

Cl*log(d/C2),
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where d is the length of the spring, and Cl and C2 are constants.
Experience shows that Hookes Law (linear) springs are too strong when
the vertices are far apart; the logarithmic force solves this problem.
Note that the springs exert no force when d=C2. Secondly, we make
nonad jacent vertices repel each other. An inverse square law force,

C3/sqr(d)

where C3 is constant and d is the distance between the vertices, is
suitable.

The mechanical system is simulated by the following algorithm.

algorithm SPRING(G:graph);
place vertices of G in random locations;
repeat M times
calculate the force on each vertex;
move the vertex C4*(force on vertex)
draw graph on CRT or plotter.

The values Cl1=2.0, C2=1.0, C3=1.0, C4=0.1, are appropriate for most
graphs. Almost all graphs achieve a minimal energy state after the
simulation step is run 100 times, that is, M=100.

Calculating the force on each vertex takes time proportional to the
square of the number of vertices. An implementation of the algorithm on
a VAX11/780 (in unoptimised Pascal) is fast (in fact, I/0 bound) if the
number of vertices in G is less than 30.

3. Examples

Figures 1 to 6 show both the successes and limitations of the
method. Some remarks on the figures are appropriate.

Figure 1. These examples show that symmetries, i.e., graph auto-
morphisms, are often displayed. Note that 1(a) is the same graph as
1(b); the different layout is due to different starting positions.

Figure 2. The method is particularly successful with regular grid
like structures.

Figure 3. A few extra edges added to the figure 2(a) makes figure
3(a). Although it is a little distorted, it is acceptable. Further edges
are added in 3(b), and even more in 3(c). This distorts the layout
ziili, and there is a wide variance in edge length. The extra edges are
e U one area of the grid, and this concentration of springs holds

area together tightly, and the vertices not adjacent to this group

accumulated (inverse square law) repulsion
is displgﬁtdczfg;;Ty?ng feature of figure of 3(c) is that the 6-clique

Figure 4,

trees. The edges :22 - Sorthn consistently produces good layouts for
Sometimes rather longer near the center of the tree
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1em © che random jnitial layout has the centrzl 4-cyclse crossed, zmd 2=
6(b)s hm does nothing that would uatangle it. Forther, £(z) =z=< =
alg‘;gate a common problem for graphs with z smzll —mm .”-..:-,: ;‘:' ==
ll; s whose jeletion disconnects the graph): the bridzss Secome
(e glong- Figure 6(c) shows another unnecesszry crossiog; iz =Is
to0 rossing is forced by the attempt to mske zl1]1 edze lemgtis oe sS=3=,
the gC;ill occur no matter what the initizl Izyout iz. Some croblems wizt:o
rhe 1ayout of dense graphs are illustrated in 6(d). Thers . ge=F w==—
cices which lie c.los.e to edges, and (even with z screem or plotzer of
good resolution) it is difficult to distinguish whether cthe v=rt=x IS
sctually incident with the edge or merely placed near it.
4. Conclusions

The algorithm produces good lzayouts for maay grzphs, in k=sepiss
edge lengths about the same and in displaying symmetries.

There are several classes of graphs for whichk
duces poor layout: dense graphs, or graphs with demse
with a small number of bridges. However, for =
the method can be used as a first approxim=tion
imation can be "fine tuned"” using a graph edito

by TYGES (see [EHIL83]).

The algorithm has an acceptable rumning time for gr=phs
than 50 vertices. In applications, graphs with more vertices zar
ally broken up into small subgraphs, because moTe wvertices w2
on the output device.

x

~ We conclude that the method shows promise as zn smbedds
tical graph layout problems.
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