

158 labels148 labels60 labels

What makes a good labeling?

158 labels	148 labels	60 labels
Google	Bing	Yahoo

What makes a good labeling?

Given *n* distinct points in the plane each with an associated rectangle, is it possible to place every rectangle (axis-aligned) with a corner on its point so that no rectangles overlap?

NP-complete

Solvable using 2SAT

[Formann & Wagner 91]

Approximately optimal number of labels [Agarwal, van Kreveld, Suri 98] Find a large* independent set in a set \mathcal{R} of n rect's.

- 1. Let x be the median x-coordinate of \mathcal{R} .
- 2. Partition \mathcal{R} into $\mathcal{R}_{< x}$, \mathcal{R}_x , and $\mathcal{R}_{> x}$.
- 3. Compute I_x , the max indep. set of \mathcal{R}_x .

4. Recursively compute $I_{<x}$ and $I_{>x}$, the approx. max indep. sets of $\mathcal{R}_{<x}$ and $\mathcal{R}_{>x}$. 5. If $|I_x| \ge |I_{<x}| + |I_{>x}|$ return I_x else return $I_{<x} \cup I_{>x}$.

* at least $\mathsf{OPT}/\log n$

Approximation factor

3. Compute I_x , the max indep. set of \mathcal{R}_x .

4. Recursively compute $I_{<x}$ and $I_{>x}$, the approx. max indep. sets of $\mathcal{R}_{<x}$ and $\mathcal{R}_{>x}$.

5. If $|I_x| \ge |I_{\le x}| + |I_{>x}|$ return I_x else return $I_{\le x} \cup I_{>x}$.

$$|I_x| \ge |I^* \cap \mathcal{R}_x| \qquad |I_{< x}| \ge \frac{|I^*_{< x}|}{\log(n/2)} \ge \frac{|I^* \cap \mathcal{R}_{< x}|}{\log n - 1}$$

$$|I| = \max\{|I_x|, |I_{x}|\}$$

$$\geq \max\{|I^* \cap \mathcal{R}_x|, \frac{|I^* \cap \mathcal{R}_{x}|}{\log n - 1}\}$$

$$|I| = \max\{|I_x|, |I_{x}|\}$$

$$\geq \max\{|I^* \cap \mathcal{R}_x|, \frac{|I^* \cap \mathcal{R}_{x}|}{\log n - 1}\}$$

$$\geq \max\{|I^* \cap \mathcal{R}_x|, \frac{|I^*| - |I^* \cap \mathcal{R}_x|}{\log n - 1}\}$$

If $|I^* \cap \mathcal{R}_x| \ge |I^*| / \log n$ then done.

Otherwise
$$\frac{|I^*| - |I^* \cap \mathcal{R}_x|}{\log n - 1} \ge \frac{|I^*| - |I^*| / \log n}{\log n - 1} = \frac{|I^*|}{\log n}$$

Approx. optimal number of labels - unit height [Agarwal, van Kreveld, Suri 98]

2-approximation

- 1. Let $\ell_0, \ell_1, \ldots, \ell_{m-1}$ be horizontal lines spaced > 1 apart that intersect all \mathcal{R} .
- 2. Let \mathcal{R}_i be rects that intersect ℓ_i .

Approx. optimal number of labels - unit height [Agarwal, van Kreveld, Suri 98]

2-approximation

- 1. Let $\ell_0, \ell_1, \ldots, \ell_{m-1}$ be horizontal lines spaced > 1 apart that intersect all \mathcal{R} .
- 2. Let \mathcal{R}_i be rects that intersect ℓ_i .
- 3. Let I_i be max indep. set in \mathcal{R}_i .
- 4. Return the larger of $I_0 \cup I_2 \cup \cdots \cup I_{m-1}$ and $I_1 \cup I_3 \cup \cdots \cup I_m$ (assuming m odd).

Approx. optimal number of labels - unit height [Agarwal, van Kreveld, Suri 98]

(1+1/k)-approximation

Idea: Use dynamic programming to optimally solve subproblems $\mathcal{R}_i \cup \mathcal{R}_{i+1} \cup \cdots \cup \mathcal{R}_{i+k-1}$.

Dynamic programming subroutine [Chan 04]

Theorem: If \mathcal{R} is stabbed by k horizontal lines, we can find a max indep. set in $O(n \log n + n\Delta^{k-1})$ time, where Δ is the max number of rects a point can be in.

Dynamic Programming (works for general rects)

Sort rectangles by left coordinate.

Let
$$next[j] =$$
smallest i with $a_i > b_j$.
 $next[9] = 15$

Let A[i, S] be the maximum number of disjoint rectangles from $R_i \ldots R_n$ that do not intersect the rectangles in S. $S = \text{any set of } \leq k - 1$ disjoint rects that intersect $x = a_i$. $A[n+1,\emptyset] = 0$ a_i R_9 R_{10} R_1 - $S \in \{\emptyset, \{9\}, \{10\}, \{11\}, \{9, 10\}, \{9, 11\}, \{10, 11\}\}$

For i = n to 1 For all sets S of $\leq k - 1$ disjoint rects intersecting $x = a_i$ If R_i intersects some rect in S then $A[i, S] = A[i + 1, S|_{i+1}].$

 R_i cannot be used for this subproblem.

else if
$$|S| < k - 1$$
 then
 $A[i, S] = \max\{A[i + 1, S|_{i+1}], 1 + A[i + 1, (S \cup \{R_i\})|_{i+1}]\}.$

 R_i cannot be used for this subproblem.

else (
$$|S| = k - 1$$
) Let $t = \min_{R_j \in S \cup \{R_i\}} next[j]$
 $A[i, S] = \max\{A[i + 1, S|_{i+1}],$
 $1 + A[t, (S \cup \{R_i\})|_t]\}.$

Running time:

Number of subproblems is $O(n\Delta^{k-1})$.

Size of array A is $\Theta(n^k)$ but can be reduced to $O(n\Delta^{k-1})$.

Running time $O(n\Delta^{k-1})$

For i = 0, ..., k, let $C^{(i)}$ be the subset of rects that do not intersect line $y \equiv i \mod (k+1)$.

(1+1/k)-approximation in unit-height case

Find the optimal solution $\mathcal{S}^{(i)}$ for each $\mathcal{C}^{(i)}$. Return the largest solution \mathcal{S} from $\mathcal{S}^{(0)}, \ldots, \mathcal{S}^{(k)}$.

Each unit-height rectangle belongs to exactly k of the k+1 subsets $\mathcal{C}^{(i)}$.

 $\begin{aligned} k|\mathcal{S}^*| &= \sum_{i=0}^k |\mathcal{S}^* \cap \mathcal{C}^{(i)}| \le \sum_{i=0}^k |\mathcal{S}^{(i)}| \le (k+1)|\mathcal{S}| \\ \text{so } |\mathcal{S}^*| \le (1+1/k)|\mathcal{S}|. \end{aligned}$

What if we want to label *all* points?

How big can we make the labels without overlap?

What if we want to label *all* points?

How big can we make the labels without overlap?

What if we want to label *all* points?

How big can we make the labels without overlap?

Approximate optimal label size [Formann & Wagner 91]

2-approximation for square labels:

 σp_i is p_i scaled by σ .

Call $p_i \sigma$ -dead if $2\sigma p_i$ contains a point $q \neq p$, else σ -pending if σp_i intersects σq_j and q_j is not σ -dead, else σ -alive.

Lemma: A point may have at most two σ -pending squares.

Suppose p_1 is σ -pending and $\sigma p_1 \cap \sigma q_j \neq \emptyset$

Thus p_2 or p_4 is σ -dead.

If p has three σ -pending squares, at least two of $\{p_1, p_2, p_3, p_4\}$ are σ -dead. $\Rightarrow \Leftarrow$

Approximate largest label size

 $\sigma = 0$

Repeat

Eliminate σ -dead squares

Assign a σ -alive square to every point with one.

Use 2SAT for the remaining set of points.

If some point has no square or 2SAT fails then return previous σ .

Increase σ to next interesting value.