

What makes a good labeling?

158 labels
Google

148 labels
Bing

60 labels
Yahoo

What makes a good labeling?

Point labels

Given n distinct points in the plane each with an associated rectangle, is it possible to place every rectangle (axis-aligned) with a corner on its point so that no rectangles overlap?

NP-complete

Solvable using 2SAT

Approximately optimal number of labels
[Agarwal, van Kreveld, Suri 98]
Find a large* independent set in a set \mathcal{R} of n rect's.

1. Let x be the median x-coordinate of \mathcal{R}.
2. Partition \mathcal{R} into $\mathcal{R}_{<x}, \mathcal{R}_{x}$, and $\mathcal{R}_{>x}$.
3. Compute I_{x}, the max indep. set of \mathcal{R}_{x}.
4. Recursively compute $I_{<x}$ and $I_{>x}$, the approx. max indep. sets of $\mathcal{R}_{<x}$ and $\mathcal{R}_{>x}$.
5. If $\left|I_{x}\right| \geq\left|I_{<x}\right|+\left|I_{>x}\right|$ return I_{x} else return $I_{<x} \cup I_{>x}$.

* at least OPT $/ \log n$

Approximation factor
3. Compute I_{x}, the max indep. set of \mathcal{R}_{x}.
4. Recursively compute $I_{<x}$ and $I_{>x}$, the approx. max indep. sets of $\mathcal{R}_{<x}$ and $\mathcal{R}_{>x}$.
5. If $\left|I_{x}\right| \geq\left|I_{<x}\right|+\left|I_{>x}\right|$ return I_{x} else return $I_{<x} \cup I_{>x}$.

$$
\begin{aligned}
\left|I_{x}\right| & \geq\left|I^{*} \cap \mathcal{R}_{x}\right| \quad\left|I_{<x}\right| \geq \frac{\left|I_{<x}^{*}\right|}{\log (n / 2)} \geq \frac{\left|I^{*} \cap \mathcal{R}_{<x}\right|}{\log n-1} \\
|I| & =\max \left\{\left|I_{x}\right|,\left|I_{<x}\right|+\left|I_{>x}\right|\right\} \\
& \geq \max \left\{\left|I^{*} \cap \mathcal{R}_{x}\right|, \frac{\left|I^{*} \cap \mathcal{R}_{<x}\right|+\left|I^{*} \cap \mathcal{R}_{>x}\right|}{\log n-1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
|I| & =\max \left\{\left|I_{x}\right|,\left|I_{<x}\right|+\left|I_{>x}\right|\right\} \\
& \geq \max \left\{\left|I^{*} \cap \mathcal{R}_{x}\right|, \frac{\left|I^{*} \cap \mathcal{R}_{<x}\right|+\left|I^{*} \cap \mathcal{R}_{>x}\right|}{\log n-1}\right\} \\
& \geq \max \left\{\left|I^{*} \cap \mathcal{R}_{x}\right|, \frac{\left|I^{*}\right|-\left|I^{*} \cap \mathcal{R}_{x}\right|}{\log n-1}\right\}
\end{aligned}
$$

If $\left|I^{*} \cap \mathcal{R}_{x}\right| \geq\left|I^{*}\right| / \log n$ then done.
Otherwise $\frac{\left|I^{*}\right|-\left|I^{*} \cap \mathcal{R}_{x}\right|}{\log n-1} \geq \frac{\left|I^{*}\right|-\left|I^{*}\right| / \log n}{\log n-1}=\frac{\left|I^{*}\right|}{\log n}$

Approx. optimal number of labels - unit height
[Agarwal, van Kreveld, Suri 98]
2-approximation

1. Let $\ell_{0}, \ell_{1}, \ldots, \ell_{m-1}$ be horizontal lines spaced >1 apart that intersect all \mathcal{R}.
2. Let \mathcal{R}_{i} be rects that intersect ℓ_{i}.

Approx. optimal number of labels - unit height
[Agarwal, van Kreveld, Suri 98]
2-approximation

1. Let $\ell_{0}, \ell_{1}, \ldots, \ell_{m-1}$ be horizontal lines spaced >1 apart that intersect all \mathcal{R}.
2. Let \mathcal{R}_{i} be rects that intersect ℓ_{i}.
3. Let I_{i} be max indep. set in \mathcal{R}_{i}.
4. Return the larger of $I_{0} \cup I_{2} \cup \cdots \cup I_{m-1}$ and $I_{1} \cup I_{3} \cup \cdots \cup I_{m}$ (assuming m odd).

Approx. optimal number of labels - unit height
[Agarwal, van Kreveld, Suri 98]
$(1+1 / k)$-approximation
Idea: Use dynamic programming to optimally solve subproblems $\mathcal{R}_{i} \cup \mathcal{R}_{i+1} \cup \cdots \cup \mathcal{R}_{i+k-1}$.

Dynamic programming subroutine [Chan 04]
Theorem: If \mathcal{R} is stabbed by k horizontal lines, we can find a max indep. set in $O\left(n \log n+n \Delta^{k-1}\right)$ time, where Δ is the max number of rects a point can be in.

Dynamic Programming (works for general rects)

Sort rectangles by left coordinate.

Let $n e x t[j]=$ smallest i with $a_{i}>b_{j}$.

$$
n e x t[9]=15
$$

Let $A[i, S]$ be the maximum number of disjoint rectangles from $R_{i} \ldots R_{n}$ that do not intersect the rectangles in S. $S=$ any set of $\leq k-1$ disjoint rects that intersect $x=a_{i}$.
$A[n+1, \emptyset]=0$

For $i=n$ to 1

For all sets S of $\leq k-1$ disjoint rects intersecting $x=a_{i}$ If R_{i} intersects some rect in S then

$$
A[i, S]=A\left[i+1,\left.S\right|_{i+1}\right]
$$

R_{i} cannot be used for this subproblem.
else if $|S|<k-1$ then

$$
\begin{aligned}
A[i, S]= & \max \left\{A\left[i+1,\left.S\right|_{i+1}\right],\right. \\
& \left.1+A\left[i+1,\left.\left(S \cup\left\{R_{i}\right\}\right)\right|_{i+1}\right]\right\} .
\end{aligned}
$$

R_{i} cannot be used for this subproblem.

$$
\begin{aligned}
\text { else }(|S|= & k-1) \text { Let } t=\min _{R_{j} \in S \cup\left\{R_{i}\right\}} \text { next }[j] \\
A[i, S]= & \max \left\{A\left[i+1,\left.S\right|_{i+1}\right],\right. \\
& \left.1+A\left[t,\left.\left(S \cup\left\{R_{i}\right\}\right)\right|_{t}\right]\right\} .
\end{aligned}
$$

either R_{i} is not used or it is and other rects in solution must be to the right of some rect in $S \cup\left\{R_{i}\right\}$.

Running time:
Number of subproblems is $O\left(n \Delta^{k-1}\right)$.
Size of array A is $\Theta\left(n^{k}\right)$ but can be reduced to $O\left(n \Delta^{k-1}\right)$.

Running time $O\left(n \Delta^{k-1}\right)$

For $i=0, \ldots, k$, let $\mathcal{C}^{(i)}$ be the subset of rects that do not intersect line $y \equiv i \bmod (k+1)$.

$(1+1 / k)$-approximation in unit-height case

Find the optimal solution $\mathcal{S}^{(i)}$ for each $\mathcal{C}^{(i)}$. Return the largest solution \mathcal{S} from $\mathcal{S}^{(0)}, \ldots, \mathcal{S}^{(k)}$.

Each unit-height rectangle belongs to exactly k of the $k+1$ subsets $\mathcal{C}^{(i)}$.

$$
k\left|\mathcal{S}^{*}\right|=\sum_{i=0}^{k}\left|\mathcal{S}^{*} \cap \mathcal{C}^{(i)}\right| \leq \sum_{i=0}^{k}\left|\mathcal{S}^{(i)}\right| \leq(k+1)|\mathcal{S}|
$$

so $\left|\mathcal{S}^{*}\right| \leq(1+1 / k)|\mathcal{S}|$.

What if we want to label all points?

How big can we make the labels without overlap?

What if we want to label all points?

How big can we make the labels without overlap?

$$
E
$$

What if we want to label all points?

How big can we make the labels without overlap?

Approximate optimal label size [Formann \& Wagner 91]
2-approximation for square labels: σp_{i} is p_{i} scaled by σ.

Call $p_{i} \sigma$-dead if $2 \sigma p_{i}$ contains a point $q \neq p$, else σ-pending if σp_{i} intersects σq_{j} and q_{j} is not σ-dead, else σ-alive.

Lemma: A point may have at most two σ-pending squares.
Suppose p_{1} is σ-pending and $\sigma p_{1} \cap \sigma q_{j} \neq \emptyset$

Thus p_{2} or p_{4} is σ-dead.
If p has three σ-pending squares, at least two of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ are σ-dead. $\Rightarrow \Leftarrow$

Approximate largest label size
$\sigma=0$
Repeat
Eliminate σ-dead squares
Assign a σ-alive square to every point with one.
Use 2SAT for the remaining set of points.
If some point has no square or 2SAT fails then return previous σ.

Increase σ to next interesting value.

