Canonical Ordering \Rightarrow Planar Straight-line Drawing

Canonical Ordering \Rightarrow Planar Straight-line Drawing

Schnyder Wood

Schnyder Woods

Given a plane triangulation G = (V, E)with vertices r, g, b on the outer face

a Schnyder wood is a coloring and orientation of the interior edges of G such that:

For every interior vertex,

For exterior vertices, (r)

Schnyder Trees

The edges in one color class form a tree

Schnyder Trees Different colored paths share at most one vertex.

G

Schnyder Trees

Every vertex has three regions.

Schnyder Trees

Every vertex has three regions.

Make a Schnyder Wood

Make a Schnyder Wood ($\phi_c(v) = \#$ faces in $R_c(v)$

(2,8)

(5,3)

Proper contact representation

Farzad Fallahi's Ugrad Thesis 2017

Proper contact representation

Farzad Fallahi's Ugrad Thesis 2017

Contact Representations

Proper contact representation

Farzad Fallahi's Ugrad Thesis 2017

Facts of Life

To represent all planar graphs with Face-to-Face contact, you need 6-sided polygons.

How Symmetric can they be?

Facts of Life

To represent all planar graphs with Face-to-Face contact, you need 6-sided polygons.

Facts of Life

To represent all planar graphs with Face-to-Face contact, you need 6-sided polygons.

Just Symmetric enough.

Given a 3-connected, triangulated planar graph.

Given a 3-connected, triangulated planar graph.

Color and direct edges to form a Schnyder wood.

Given a 3-connected, triangulated planar graph.

Color and direct edges to form a Schnyder wood.

Add dummy vertex in each acyclic face and connect into Schnyder wood.

Given a 3-connected, triangulated planar graph.

Color and direct edges to form a Schnyder wood.

Add dummy vertex in each acyclic face and connect into Schnyder wood.

side lengths of hexagon vare numbers of leaves in T_0 , T_1 , T_2 below v.

Given a 3-connected, triangulated planar graph.

Color and direct edges to form a Schnyder wood.

Add dummy vertex in each acyclic face and connect into Schnyder wood.

side lengths of hexagon vare numbers of leaves in T_0 , T_1 , T_2 below v.

Ta da!

CONTACT REPRESENTATIONS OF NON-PLANAR GRAPHS IN 3D

with Md. Jawaherul Alam Stephen Kobourov Sergey Pupyrev Jackson Toeniskoetter Torsten Ueckerdt

Contact Representation

Contact Representation

Vertices = Interior disjoint objects Edges = Contact

Contact Representation

... and more.

... and more.

How much more?

Simultaneous Primal-Dual Contact Representation

Simultaneous Primal-Dual Contact Representation

Vertex objects intersect incident face objects.

Simultaneous Primal-Dual Contact Representation

3-connected planar graph & dual

Thm 1 Every 3-connected planar graph admits a proper primal-dual 3D box-contact representation.

Thm 1 Every 3-connected planar graph admits a proper primal-dual 3D box-contact representation.

Thm 1 Every 3-connected planar graph admits a proper primal-dual 3D box-contact representation. And it can be computed in linear time.

Edge orientation and coloring of 3-connected planar graph using 3 colors so that

Schnyder Wood

Edge orientation and coloring of 3-connected planar graph using 3 colors so that

1. Every edge is uni- or bi-directed and each direction colored.

3. No cycle in one color.

Schnyder Wood and Ordered Path Partition Partition graph into paths according to T_1 T_2 T_3

 T_1

3

 T_2

Schnyder Wood and Ordered Path Partition Partition graph into paths according to T_1 T_2 T_3 Partially order groups of vertices to respect $T_1^{-1} T_2^{-1} T_3$ T_2 T_1

Schnyder Wood and Ordered Path Partition Partition graph into paths according to T_1 T_2 T_3 Partially order groups of vertices to respect $T_1^{-1} T_2^{-1} T_3$ $T_2^ T_{1}^{-1}$

Schnyder Wood and Ordered Path Partition Partition graph into paths according to T_1 T_2 T_3 Partially order groups of vertices to respect $T_1^{-1} T_2^{-1} T_3$ The z-interval of the box for vertex v is the level of v to the level of v's T_3 parent. T_2^{-1} T_{1}^{-1}

Schnyder Wood and Ordered Path Partition Partition graph into paths according to T_1 T_2 T_3 Partially order groups of vertices to respect $T_1^{-1} T_2^{-1} T_3$ The z-interval of the box for vertex v is the level of v to the level of v's T_3 parent. T_2^{-1} T_{1}^{-1}

Schnyder Wood and Ordered Path Partition Partition graph into paths according to T_1 T_2 T_3 Partially order groups of vertices to respect $T_1^{-1} T_2 T_3^{-1}$ T_2 T_{1}^{-1}

Box Contact Representation

Compatible Dual Schnyder Wood

Between an edge and its dual, all 3 colors appear.

Compatible Dual Schnyder Wood

Between an edge and its dual, all 3 colors appear.

Primal-Dual Box Contact Representation

Primal-Dual Box Contact Representation

What graphs have 3D box-contact representations?

Do all planar graphs have proper 3D cube-contact representations?