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Schnyder Woods

Given a plane triangulation G = (V,E)

with vertices r, g, b on the outer face

a Schnyder wood is a coloring and
orientation of the interior edges of
G such that:

For every interior vertex,

For exterior vertices, r g b



Schnyder Trees

The edges in one color class form a tree

r



Schnyder Trees

Different colored paths share at most one vertex.

r

gb

directed
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Every vertex has three regions.

r

gb

v

Rg(v) Rb(v)

Rr(v)



Schnyder Trees

Every vertex has three regions.

r

gb

v

Rg(v) Rb(v)

Rr(v) u

If u ∈ Rc(v) then Rc(u) ⊂ Rc(v).
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To draw a plane triangulation...

Make a Schnyder Wood

φc(v) = # faces in Rc(v)

Draw v at (φr(v), φg(v))
(1,5)

(2,2)
(5,3)

(2,8)

(8,1)

x

y
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Proper contact representation
Farzad Fallahi’s Ugrad Thesis 2017



Contact Representations

Symmetric Simple Face-to-face

Proper contact representation
Farzad Fallahi’s Ugrad Thesis 2017
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Facts of Life

To represent all planar graphs with
Face-to-Face contact, you need 6-sided
polygons.

How Symmetric can they be?

Regular Hexagon Too Symmetric

Equi-Parallel Hexagon

Just Symmetric enough.
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Given a 3-connected, triangulated planar graph.

Add dummy vertex in
each acyclic face and
connect into Schnyder
wood.

Color and direct edges to
form a Schnyder wood.

side lengths of hexagon v
are numbers of leaves in
T0, T1, T2 below v.

Ta da!



CONTACT REPRESENTATIONS OF
NON-PLANAR GRAPHS IN 3D

Torsten Ueckerdt

Jackson Toeniskoetter

Md. Jawaherul Alam

Stephen Kobourov

Sergey Pupyrev

with
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Contact Representation

Vertices = Interior disjoint objects

Edges = Contact



Contact Representation



Contact Representation
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Planar Graphs Planar Graphs Planar Graphs
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What graphs can be represented?

Planar Graphs Planar Graphs Planar Graphs
Thomassen 86Kobe 36 De Fraysseix et al. 94

... and more.

How much more?



Simultaneous Primal-Dual Contact Representation



Simultaneous Primal-Dual Contact Representation

Vertex objects intersect
incident face objects.
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Simultaneous Primal-Dual Contact Representation

3-connected planar graph & dual

Andreev 70 Gonçalves 12
This paper

Thm 1 Every 3-connected planar graph admits a
proper primal-dual 3D box-contact representation.

face-to-face contact



Simultaneous Primal-Dual Contact Representation

3-connected planar graph & dual

Andreev 70 Gonçalves 12
This paper

Thm 1 Every 3-connected planar graph admits a
proper primal-dual 3D box-contact representation.

And it can be computed in linear time.
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Schnyder Wood

Edge orientation and coloring of 3-connected planar
graph using 3 colors so that

1. Every edge is uni- or bi-directed and
each direction colored.

2.

3. No cycle in one color.
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Each color class forms a tree.

T3
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Primal-Dual Box Contact Representation



Open Problems

What graphs have 3D box-contact representations?

Do all planar graphs have proper 3D cube-contact
representations?


