Planar graph
Planar drawing

Planar graph
Planar (straight-line) drawing

Planar drawing

Planar Embedding

1: $2,14,10$
2: $1,3,7$
3: $2,11,4$
4: $3,5,6$
5: $4,8,13,7,6$
6: 4,5
7: 2,5
8: $5,9,12$
9: $8,11,10$
$10: 1,9,11$
$11: 3,10,9$
$12: 8,14,13$
$13: 5,12,14$
$14: 1,13,12$
Outer face: $1,14,13,5,7,2$
(Clockwise order of neighbors.)

Planar graph
DFS orientation \& numbering

\longrightarrow tree edge
\leadsto back edge

DFS orientation \& numbering

LR partition [Brandes 11]

How to order and orient cycles?
Two (related) mechanisms:
Nesting (tree edges)
$(6,8)$ cycle must be nested inside $(6,7)$ cycle (bend same way) Why?

Left / Right Partitioning (back edges) both $(7,2)$ and $(11,3)$ can't "bend" the same way Why?

How to order and orient cycles?

> Two (related) mechanisms:
> Nesting (tree edges)

$(6,8)$ cycle must be nested inside $(6,7)$ cycle (bend same way) Why?

Left / Right Partitioning (back edges) both $(7,2)$ and $(11,3)$ can't "bend" the same way Why?

The return point of a back edge (v, w) is w. The return points of a tree edge (v, w) are u such that $u \xrightarrow{+} v \rightarrow w \xrightarrow{*} x \hookrightarrow u$.
return point of $(6,4)$ is 4 . return point of $(5,7)$ is 2 . return points of $(4,5)$ are 3,2,1.

The return point of a back edge (v, w) is w. The return points of a tree edge (v, w) are u such that $u \xrightarrow{+} v \rightarrow w \xrightarrow{*} x \hookrightarrow u$.

The lowpt of an edge (v, w) is its lowest return point (or w if none exists).
lowpt of $(6,4)$ is 4 .
lowpt of $(5,7)$ is 2 .
lowpt of $(4,5)$ is 1 .

The return point of a back edge (v, w) is w. The return points of a tree edge (v, w) are u such that $u \xrightarrow{+} v \rightarrow w \xrightarrow{*} x \hookrightarrow u$.

The lowpt of an edge (v, w) is its lowest return point (or w if none exists).

Back edge (x, u) is the return edge for itself and every tree edge (v, w) with $u \xrightarrow{+} v \rightarrow w \xrightarrow{*} x \hookrightarrow u$.

An LR partition is a partition of the back edges into Left and Right so that for every fork

- all return edges of e_{1} ending strictly higher than lowpt $\left(e_{2}\right)$ belong to one partition, and
- all return edges of e_{2} ending strictly higher than lowpt $\left(e_{1}\right)$ belong to the other.

An LR partition is a partition of the back edges into Left and Right so that for every fork

- all return edges of e_{1} ending strictly higher than lowpt $\left(e_{2}\right)$ belong to one partition, and
- all return edges of e_{2} ending strictly higher than lowpt $\left(e_{1}\right)$ belong to the other.

Fork at $v=13$ implies
$(14,12)$ and $(13,5)$ must be in different LR partitions

- all return edges of e_{2} ending strictly higher than lowpt $\left(e_{1}\right)$ belong to the other.
same constraint $=$ "all...belong" different constraint $=$ "belong to the other"

Theorem. A graph is planar if and only if it has an LR partition (based on an arbitrary DFS orientation).
Proof. Use LR-partition to create a nesting order \prec on outgoing edges at each vertex.
(Assign tree edge to same LR-partition as its return edge with the highest return point.)

Let $e_{1}^{L} \prec \cdots \prec e_{\ell}^{L}$ be the left outgoing edges and $e_{1}^{R} \prec \cdots \prec e_{r}^{R}$ be the right outgoing edges at v then the (edge) embedding at v is:

$$
\begin{aligned}
& (u, v), \\
& L\left(e_{\ell}^{L}\right), e_{\ell}^{L}, R\left(e_{\ell}^{L}\right), \ldots, L\left(e_{1}^{L}\right), e_{1}^{L}, R\left(e_{1}^{L}\right), \\
& L\left(e_{1}^{R}\right), e_{1}^{R}, R\left(e_{1}^{R}\right), \ldots, L\left(e_{r}^{R}\right), e_{r}^{R}, R\left(e_{r}^{R}\right)
\end{aligned}
$$

where $L(e)$ and $R(e)$ denote the left and right back edges to v whose cycles share e. Within $R(e)$ (and $L(e)$), back edges are ordered using \prec (and \succ) applied to the fork of their cycles.

Algorithm

1) For every pair of back edges b_{1} and b_{2}, determine if they should be in the same or different LR-partitions.

different iff lowpt $\left(e_{2}\right)<\operatorname{lowpt}\left(b_{1}\right)$ and lowpt $\left(e_{1}\right)<\operatorname{lowpt}\left(b_{2}\right)$

Algorithm

1) For every pair of back edges b_{1} and b_{2}, determine if they should be in the same or different LR-partitions.

different iff lowpt $\left(e_{2}\right)<\operatorname{lowpt}\left(b_{1}\right)$ and lowpt $\left(e_{1}\right)<\operatorname{lowpt}\left(b_{2}\right)$

same if lowpt $((x, w))<\min \left\{\operatorname{lowpt}\left(b_{1}\right)\right.$, lowpt $\left.\left(b_{2}\right)\right\}$ for some (x, w) where x is shared by $C\left(b_{1}\right)$ and $C\left(b_{2}\right)$ but w is not.

Algorithm
2) Create a constraint graph on back edges: constraint edge $\left(b_{1}, b_{2}\right)$ is red if b_{1} and b_{2} are different, or blue if the same.
3) Find a balanced bipartition of the constraint graph: red edges connect vertices (i.e., back edges) in different partitions, blue edges connect vertices in the same partition.

