Planar graph

Planar drawing

Planar (straight-line) drawing

Planar graph

Planar Embedding

1: 2,14,10 2: 1,3,7 3: 2,11,4 4: 3,5,6 5: 4,8,13,7,6 6: 4,5 7: 2,5 8: 5,9,12 9: 8,11,10 10: 1,9,11 11: 3,10,9 12: 8,14,13 13: 5,12,14 14: 1,13,12

Outer face: 1,14,13,5,7,2

(Clockwise order of neighbors.)

Planar graph

DFS orientation & numbering

DFS orientation & numbering

LR partition [Brandes 11]

How to order and orient cycles?

Two (related) mechanisms: Nesting (tree edges) (6,8) cycle must be nested inside (6,7) cycle (bend same way) Why?

Left / Right Partitioning (back edges) both (7,2) and (11,3) can't "bend" the same way Why? How to order and orient cycles?

Two (related) mechanisms: Nesting (tree edges) (6,8) cycle must be nested inside (6,7) cycle (bend same way) Why?

Left / Right Partitioning (back edges) both (7,2) and (11,3) can't "bend" the same way Why?

The return point of a back edge (v, w) is w. The return points of a tree edge (v, w) are u such that $u \xrightarrow{+} v \to w \xrightarrow{*} x \hookrightarrow u$.

return point of (6, 4) is 4. return point of (5, 7) is 2. return points of (4, 5) are 3,2,1.

The return point of a back edge (v, w) is w. The return points of a tree edge (v, w) are u such that $u \xrightarrow{+} v \to w \xrightarrow{*} x \hookrightarrow u$.

The lowpt of an edge (v, w) is its lowest return point (or w if none exists).

lowpt of (6, 4) is 4. lowpt of (5, 7) is 2. lowpt of (4, 5) is 1.

The return point of a back edge (v, w) is w. The return points of a tree edge (v, w) are u such that $u \xrightarrow{+} v \rightarrow w \xrightarrow{*} x \hookrightarrow u$.

The lowpt of an edge (v, w) is its lowest return point (or w if none exists).

Back edge (x, u) is the return edge for itself and every tree edge (v, w) with $u \xrightarrow{+} v \rightarrow w \xrightarrow{*} x \hookrightarrow u$.

An LR partition is a partition of the back edges into Left and Right so that for every fork $e_1 \swarrow e_2$

- all return edges of e₁ ending strictly higher than lowpt(e₂) belong to one partition, and
- all return edges of e₂ ending strictly higher than lowpt(e₁) belong to the other.

An LR partition is a partition of the back edges into Left and Right so that for every fork $e_1 \\ v \\ e_2 \\ e_1 \\ e_2 \\ e_2$

- all return edges of e₁ ending strictly higher than lowpt(e₂) belong to one partition, and
- all return edges of e₂ ending strictly higher than lowpt(e₁) belong to the other.

Fork at v = 13 implies (14, 12) and (13, 5) must be in different LR partitions

 all return edges of e₁ ending strictly higher than lowpt(e₂) belong to one partition

 $\mathsf{lowpt}(e_1)$

 $\mathsf{lowpt}(e_2)$

 all return edges of e₂ ending strictly higher than lowpt(e₁) belong to the other.

same constraint = "all...belong"
different constraint = "belong to the other"

r'' e^{2} v^{e} $lowpt(e_2)$ $lowpt(e_1)$ **Theorem.** A graph is planar if and only if it has an LR partition (based on an arbitrary DFS orientation).

Proof. Use LR-partition to create a nesting order \prec on outgoing edges at each vertex.

(Assign tree edge to same LR-partition as its return edge with the highest return point.)

Let $e_1^L \prec \cdots \prec e_\ell^L$ be the left outgoing edges and $e_1^R \prec \cdots \prec e_r^R$ be the right outgoing edges at v then the (edge) embedding at v is:

$$(u, v),$$

 $L(e_{\ell}^{L}), e_{\ell}^{L}, R(e_{\ell}^{L}), \dots, L(e_{1}^{L}), e_{1}^{L}, R(e_{1}^{L}),$
 $L(e_{1}^{R}), e_{1}^{R}, R(e_{1}^{R}), \dots, L(e_{r}^{R}), e_{r}^{R}, R(e_{r}^{R})$

where L(e) and R(e) denote the left and right back edges to v whose cycles share e. Within R(e) (and L(e)), back edges are ordered using \prec (and \succ) applied to the fork of their cycles. Algorithm

1) For every pair of back edges b_1 and b_2 , determine if they should be in the same or different LR-partitions.

different iff $lowpt(e_2) < lowpt(b_1)$ and $lowpt(e_1) < lowpt(b_2)$ Algorithm

1) For every pair of back edges b_1 and b_2 , determine if they should be in the same or different LR-partitions.

different iff $lowpt(e_2) < lowpt(b_1)$ and $lowpt(e_1) < lowpt(b_2)$

same if lowpt((x, w)) < min{lowpt(b_1), lowpt(b_2)} for some (x, w) where x is shared by $C(b_1)$ and $C(b_2)$ but w is not. Algorithm

- 2) Create a constraint graph on back edges: constraint edge (b_1, b_2) is red if b_1 and b_2 are different, or blue if the same.
- 3) Find a balanced bipartition of the constraint graph: red edges connect vertices (i.e., back edges) in different partitions, blue edges connect vertices in the same partition.