
Timestamp-based Concurrency Control and the

Thomas Write Rule

Wei Lu

April 12, 2013

Based on Ch. 16 in Database System Principles, Silberschatz, Korth, and Sudarshan.

Timestamps

• Each transaction Ti, upon starting up, is assigned a timestamp TS(Ti).

• This can be implemented using either the system clock, or a logical counter that is incremented after
a new timestamp is issued.

• Timestamps are used to determine the serializability order: if TS(Ti) < TS(Tj), then for a schedule to
be valid, it must be equivalent to some serial schedule in which Ti appears before Tj .

• Each data item Q is associated with two timestamp values.

– WTS(Q): the timestamp of the most recent transaction that successfully executed write(Q).

– RTS(Q): the timestamp of the most recent transaction that successfully executed read(Q).

Timestamp-Ordering Protocol and Its Rules

When a transaction Ti issues a read(Q) instruction:

• If TS(Ti) < WTS(Q), Ti would read a value of Q that was already overwritten by a newer transaction
Tj 6= Ti. Hence, this read is rejected and Ti will be rolled back.

• If TS(Ti) ≥ WTS(Q), the read is approved, and we set RTS(Q) := max{RTS(Q),TS(Ti)}.

Since multiple read(Q)’s are not conflict actions, there is no need to compare TS(Ti) and RTS(Q).

When a transaction Ti issues write(Q):

• If TS(Ti) < RTS(Q), the write is rejected and Ti will be rolled back.

• (†) If TS(Ti) < WTS(Q), then Ti is trying to write an obsolete value of Q, and hence it’s not allowed
and Ti is rolled back

• Otherwise, the write is approved, and we set WTS(Q) := TS(Ti).

Once again, a schedule must be equivalent to some serial schedule in which Ti appears before Tj , and
this is the very reason behind all rejection rules specified above.

1



The Thomas Write Rule

Can we relax the above rules to allow greater level of concurrency and avoid unnecessary rollbacks? It turns
out we can. Rule (†) disables obsolete writes, but the roll-back is not really necessary. Hence, we replace (†)
with the Thomas Write Rule (‡).

• (‡) If TS(Ti) < WTS(Q), ignore this write.

Life becomes much simpler, right?

Why the Thomas Write Rule is correct?! Essentially, the question is why the Thomas Write Rule
still guarantees the serializability order for the protocol. Below is a proof, which is essentially based on the
notion of view-equivalent or view-serializability1.

First, if TS(Ti) < WTS(Q), then by definition of the protocol, there must exist some Tj 6= Ti, such that
Tj is the most recent transaction executing write(Q) successfully and that TS(Tj) = WTS(Q) > TS(Ti).

Then, consider any other transaction Tk that is executed concurrently with Ti and Tj . Suppose Tk issues
a read(Q). There are two possibilities:

1. If TS(Tk) < TS(Tj), then TS(Tk) < WTS(Q), and thus this read will not be allowed, with Tk being
rolled back.

2. If TS(Tk) ≥ TS(Tj), then TS(Tk) ≥ WTS(Q), and thus Tk must read the value of Q written by Tj ,
rather than that by Ti.

Therefore, Ti is trying to write an out-dated value of Q that will never need to be read, under the
timestamp-ordering protocol. Now that we have dealt with Tk’s read(Q) request, what if Tk wants to
write(Q)? In this case, apparently, Tk will be no different from Ti, and thus our argument still stands. This
completes the proof.

1I hope you do understand these two concepts, though.

2


