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Abstract. In this paper we present a distributed, in-memory, message passing imple-

mentation of a dynamic ordered dictionary structure. The structure is based on a dis-

tributed fine-grain implementation of a skip list that can scale across a cluster of mul-

ticore machines. We present a service-oriented approach to the design of distributed

data structures in MPI where the skip list elements are active processes that have con-

trol over the list operations. Our implementation makes use of the unique features of

Fine-Grain MPI and introduces new algorithms and techniques to achieve scalable

performance on a cluster of multicore machines. We introduce shortcuts, a mecha-

nism that is used for service discovery, as an optimisation technique to trade-off con-

sistency semantics with performance. Our implementation includes a novel skip list

based range query operation. Range-queries are implemented in a way that parallelises

the operation and takes advantage of the recursive properties of the skip list structure.

We report the performance of the skip list on a medium sized cluster with two hundred

cores and show that it achieves scalable performance.

Keywords. Fine-Grain MPI, performance, message-passing, multicore, range-query,

skip list, concurrency, data structure, scalability, distributed, dictionary

Introduction

In [1] we introduced the notion of a service-oriented approach to adding distributed data

structures to MPI. The lack of data structure libraries in MPI adds to the complexity of using

message passing, requiring the programmers to write their own and explicitly manage the

distribution of the data. This often leads to less optimised and less sophisticated implemen-

tations. In contrast to many MPI libraries that are implemented as a computational phase in

an SPMD style program, a service oriented approach provides the data structure as a service

using a separate set of processes. Message-passing is used to interface to the service and, as

described in [1], leads to programs that are more cohesive and code that is less coupled with

the application.

Our initial work highlighted our approach and some of the lessons learned using a sim-

ple linked list structure. The methodology started with an item per process design using syn-

chronous messaging and then extended the design to multiple items per process and asyn-

chronous messaging. The design addressed load-balancing issues and introduced shortcuts

which led to several different consistency semantics. The linked list structure served to high-

light our approach but, as expected, is not scalable and is more useful for synchronisation

rather than as a key-value store.

The purpose of this paper is to extend our previous work to an important type of data

structure, namely an ordered dictionary. Key-value stores (i.e., dictionaries) are commonly

1Corresponding Author: Sarwar Alam, 201-2366 Main Mall, Vancouver, BC, V6T1Z4, Canada. E-mail:

sarwar@cs.ubc.ca.
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used in cloud-based computing environments. Typically these have been designed for reliabil-

ity and disk-based storage, however, more recently the demand to process real-time streaming

data has lead to the use of in-memory key-value storage. A data structure that is often used to

implement ordered dictionaries in sequential programs is a skip list [2] (see Section 1). Skip

lists are a probabilistic data structure with an expected O
(

logN
)

cost for FIND, INSERT and

DELETE. One notable advantage to skip lists over the usual hash-based approach used to

implement key-value stores in distributed systems is that the keys in a skip list are ordered.

Hashing provides a simple technique for distributing the data but is not as efficient for range

queries which are better suited for ordered structures such as a sorted list. Our distributed skip

list structure supports FIND, INSERT and DELETE of multi-dimensional key-value pairs.

We also augment this with a range query operation that can take advantage of the ordering

of the keys to output the result in a single operation. We consider range queries over multi-

dimensional keys where one or more ranges can be specified. For example “4.[2,8].3.[1,3]”

is a range query over four dimensions searching for records exactly matching the first and

third dimensions in the range specified in the second and fourth dimensions.

There are several concurrent data structure implementations of skip lists built on top of

a shared memory programing model using locks or lock-free techniques [3–5]. These imple-

mentations are targeted towards exploiting parallelism on multicore machines with support

for memory consistency. However they do not easily scale outside a single machine and do

not scale to larger clusters where communication is by message-passing and there is not the

support for shared memory. A more comprehensive review of related work on skip lists is

given in Section 4.

In the design of the skip list service we follow the same fine-grain methodology as that

of a linked list. Initially, every key-value in the data structure is its own process and the oper-

ations are implemented using synchronous communication among processes making up the

skip list. Later we will relax these conditions to both coarsen the implementation, by allow-

ing processes to have multiple key-value pairs, and to allow asynchronous communication.

As in our previous work, the design has the following advantages. First, it exposes a mas-

sive amount of concurrency that makes it easy to scale up or scale down. Second, because

key-values belong to processes rather than tied to memory, it is easier to dynamically load-

balance key-values among all of the cores on one or more machines. Third, there are numer-

ous communication tuning parameters that can be introduced to match the implementation to

the machine. Fourth, it makes easy to compose not only between OS-level processes but to

compose in a fine-grain manner between function-level concurrency at the language level.

The service-oriented approach and fine-grain methodology needs an implementation of

MPI that support the massive amounts of concurrency introduced in our design. As in [1],

we implement our skip lists using FG-MPI [6, 7], a fine-grain implementation of MPI that

extends the MPICH2 [8] middleware. FG-MPI makes it possible to have multiple MPI pro-

cesses inside an OS process. It has its own integrated runtime scheduler, optimised communi-

cation between processes, and support for dynamically allocating processes. FG-MPI makes

it possible to construct MPMD type of programs that scale to hundreds and thousands of

processes across a cluster of multicore machines.

The focus of our work is on scalability with regards to the number of machines, irre-

spective of whether the distribution is needed for computation, memory, or the nature of the

problem. Furthermore the focus of the design is on communication, rather than memory or

file I/O. Assuming sufficient concurrency, communication cost is ultimately the limiting fac-

tor in the ability of a system to spread out across large numbers of machines. The ability to

scale-up and scale-down is important to the design of systems to execute in diverse machine

environments. Our distributed ordered dictionary system (i.e., skip list service) shows the de-

sign of a widely-used in-memory data structure (e.g., key-value store [9], database [10]) that

can execute on single multicore machine or scale to large numbers of multicore machines.
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This paper makes the following contributions:

• Provides further evidence of the practicability of a service-oriented approach to the

design of data structures for MPI and the type of fine-grained methodology used in

[1].

• Introduces a novel message-passing implementation of skip lists. Unlike concurrent

skip list structures, the system is deterministic and in essence acts like a (leaky)

pipeline with service requests flowing in and results flowing out. We introduce a range

query operation that dynamically splits requests over the extent of the range, thereby

parallelising the operation. We extend the operation to work with multiple key values

per process.

• Shows that the skip list operations are atomic, and have a non-overtaking property that

makes it possible to use shortcuts as an optimisation technique to trade off consistency

semantics for performance. Unlike in a linked list, the shortcuts depend on the tower

height and interact differently with the skip list structure.

• We achieved scalable performance on a medium size cluster of over 200 cores. Our

skip list service can flexibly scale-up with added granularity and fine-grain concur-

rency on multicore and scale-out to take advantage of the parallelism in a cluster. Per-

formance was the main focus of this work and an important part of the design was the

variety of tuning parameters we introduced to adapt the skip list to the machine and the

application. We can adjust the amount of asynchrony to better overlap communication

with computation and overlap application requests with skip list operations. We can

adjust the granularity to better hide communication delays and adjust tower heights,

number of concurrent processes, and shortcuts to better trade-off parallelism with the

expected number of operations.

In Section 1, we give a brief overview of skip lists and our design including a brief

description of FG-MPI, the MPI middleware used in our implementation. In Section 2, we

describe the implementation of the skip list operations and informally show deadlock-free,

atomicity, and the non-overtaking property of the structure. Section 3 presents the experi-

ments used for evaluating the system and related work and conclusions are discussed in Sec-

tions 4 and 5, respectively.

1. Overview

A skip list is an important dictionary data structure for storing and retrieving ordered data.

Skip lists use probabilistic balancing which leads to simpler algorithms for insertion and

deletion operations and an expected query time that is logarithmic to the length of the list [2].

As shown in Figure 1, a skip list can be viewed as multiple layers of linked-lists. The

list at each layer, apart from the bottom one, is a sublist of the list below it. A node in a skip

list is assigned a random height h and each node maintains a tower of h pointers to the next

element in the linked-list at each of the layers. The number of nodes of a height h decreases

exponentially with the value of h. Since there are fewer nodes of higher heights, a query

operation is speeded up by skipping over a large number of nodes with shorter heights and

moving down the layers until the search key is found, leading to an expected query time that

is O
(

logn
)

for a list of length n. The search path of a query for key 38 is shown in Figure 1.

Starting from the head node, the search path goes down the layers of its tower until it first

encounters a successor node with a key less than or equal to 38. The search query is sent to

this successor node where the same procedure repeats until key 38 is found.

We take a message-passing approach to the design of a skip list data structure. The start-

ing point for the design is a “one data item per process” approach where we wrap a process
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Figure 1. An example of a skip list data structure. Every node has a key-value, a payload and a tower of pointers

to the successors in the linked-lists at different levels. The search path of a query for the key 38 is shown with

thick dotted lines.

around every key-value pair. Later we extend the implementation to allow for multiple key-

value pairs per process. An example of a small skip list is shown in Figure 2. As in a sequen-

tial implementation of a skip list [2], each node consists of a tower of pointers to other nodes

along with the key-value pair that is stored at the node. Along level 0, the bottom level, we

have an ordered linked-list and the list at level k is a subset of the list at level k−1. The root

node in the skip list is configured to have the maximum tower height and there is a sentinel

value used to denote the end of each level k list. As shown in Figure 2, each node in the skip

list is an MPI process which is identified by its MPI process rank1. In our implementation

MPI process rank is used in the same way a pointer to a memory address is used in the se-

quential implementation. Requests to perform an operation are messages that are passed from

process to process along the list.

One difference between our process implementation and that of a sequential skip list is

that at every level we store the minimum key of the next process for the level. For example,

level 2 at process 0 stores the key 27, which is the key at process 12. The advantage to storing

the minimum key at the predecessor is that requests do not need to query the next process

to determine whether or not to forward the request. This significantly reduces the amount of

messaging, but more importantly, it is now possible for requests to propagate asynchronously

rather than the query-reply type of handshaking needed when the minimum value is not

available. Although this adds to the number of keys we store, storing the minimum key is less

significant once we allow for multiple keys per process.

This approach requires a system that can support large numbers of relatively small pro-

cesses. Before further describing the design we discuss the main features of FG-MPI.

1.1. Fine-Grain MPI

MPI provides all of the basic message-passing routines needed for our design, however, it

would not be practical with the current MPI middleware because most MPI implementations

bind an MPI process to an OS process. As OS processes, they are too heavy-weight and it is

not feasible with most systems to have the thousands and potentially millions of processes

one might use in practice. This was a motivation for FG-MPI.

1 All processes in an MPI program with N processes are assigned a rank from 0 to N − 1. In MPI, process

rank is used as the source and destination of messages.
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Figure 2. An example of a skip list where each list item is a process.

FG-MPI, which extends the MPICH2 middleware [8], decouples the notion of an MPI

process from that of an OS process and makes it possible to have multiple MPI processes

inside a single OS process. MPI processes inside an OS process execute concurrently in an

interleaved manner as non-preemptive threads (coroutines). Because of the lightweight nature

of coroutines it is possible to support thousands of processes inside a single OS process and

millions of processes across cores and machines in a cluster environment.

An FG-MPI execution, [P,O,M], can be described in terms of P, the number of MPI

processes per OS process2, O, the number of OS processes per machine and M, the number of

machines. A typical MPI execution is of the form [1,O,M] where N, the total number of MPI

processes as given by the “-n” flag of MPI’s mpiexec command, equals O×M. In FG-MPI,

a “-nfg” flag was added to mpiexec enabling one to specify P > 1, where N = P×O×M.

We take a service-oriented approach [1] to the design of the system where the skip list

has a service interface that interacts with other processes through message passing. Each OS

process is configured to have an application process, a manager process and one or more

processes that are either free or a skip list process. Application processes send requests to the

skip list service and receive back replies. The manager processes are part of the free process

service and they service requests for the allocation and de-allocation of free processes.

At start-up, the skip list service consists of the skip list root process, application pro-

cesses, and one manager process per OS process. All of the remaining processes are con-

figured to be free processes. These free processes are all blocked on a receive call and FG-

MPI’s runtime scheduler [7] ensures that they remain on a blocked queue and do not add

any overhead while blocked. Skip list processes make free nodes requests to the co-located

manager process which cooperates with the other managers to find a free process which it

can initialise by sending a message to turn the process into a skip list process. Unlike in a

usual MPI environment, we can co-locate multiple processes together and take advantage of

the FG-MPI scheduler to execute the co-located processes that can make progress. Effec-

tively, by mapping P skip list processes to each OS process we increase the granularity of

the OS process while still making it possible to interactively respond to requests. Normally

this is not possible in MPI without resorting to threads and having the OS do the scheduling.

Although the overhead in having P co-located processes is small [6], there will still be an

advantage to having a coarser-grain implementation with MPI processes managing more than

one key-value pair.

2We refer to these P MPI processes as co-located processes sharing a single address space. The terms process,

fine-grain process and MPI process are used interchangeably. The term “OS process” is used to refer to an

operating-system process.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference



6 S. Alam et al. / A Service-oriented Scalable Dictionary in MPI

1.2. Asynchronous Communication

MPI supports both synchronous and asynchronous communication. The standard send for

small messages eagerly forwards messages to the destination and assumes the message can

be buffered at the destination. There is no flow-control mechanism in MPI for small messages

and it is possible to exhaust the buffer space [11]. In the skip list system we use a bounded

buffer technique where we can send up to k eager sends before requiring a synchronous

send (MPI Ssend). The value of k is a parameter that can be set or adjusted automatically

during execution [1]. The flow of messages in the skip list is deterministic and the value of k,

assuming sufficient buffering, does not affect correctness. In the experiments in Section 3 we

maximise this value, however, for the description of the system it will be easier to consider

k = 0, the synchronous case.

In FG-MPI the receive queues for all of the co-located processes are shared and when an

MPI routine is invoked by one process, the middleware progresses messages for all co-located

processes potentially rescheduling them for execution. A consequence of the large amount

of concurrency is there can be many more eager messages, which can add to the queueing

delays for messages and extra work for the middleware. However, by having lots of processes

and lots of small messages there is more fluidity in the flow of requests through the system.

Increasing the degree of asynchrony makes it possible to have more active requests in the

system and, for remote communication, overlap communication with computation, thereby

keeping the OS process for each core busier.

1.3. Service Interface to the Skip List

We compose our skip list processes with application processes by allowing there to be one or

more application process inside each OS process. The mapping of skip list and application

processes is done at system start-up when functions are bound to MPI processes during FG-

MPI initialisation.

Our skip list design builds on our previous work that investigated a similar interface to an

ordered linked list service [1]. As in the linked list service, the application processes access

the service by sending requests to a skip list process. Skip list processes reply directly back to

the application process making the initial request. There may be additional communication as

in the case of INSERT for large data values, where the data is retrieved from the application

only after its position in the skip list is determined.

Three types of consistency semantics are supported according to how an application

sends requests and receives back replies. We allow an application process to have a fixed

number of outstanding requests. Because the process at the location of an item is the one

that replies, replies are not guaranteed to come back in the order of the operations; replies by

processes towards the end of the list are likely to return after a later request for a skip list item

near the head of the skip list. Sequence numbers are used to re-order replies. The sequence

number is carried along as part of the request and returned to the process inside the reply

message. We use MPI’s non-blocking receive command (MPI Irecv) to pre-post receive

buffers for the replies for each outstanding request. The pre-posted receive buffers act as a

hold-back queue [12] which is managed by the application and can be used to re-order and

return replies in the order of the operations.

All application processes know the rank of the head process and can send requests to

the head. We show in Section 2.4 that requests are not able to overtake one another and thus

requests are serviced according to the order they arrive at the head process. This totally orders

the operations and is a linearisation point. However, the head process is an obvious bottleneck

and we implemented shortcuts; a technique whereby requests can be sent to other skip list

processes.
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Shortcuts take advantage of the single address space of the co-located skip list processes

to create a bulletin board type service where skip list processes can post keys and ranks for

the application process to consider as alternative skip list locations to send the request. For

example, if an application process is performing a FIND(key x), it can look-up the key on

the bulletin board to find the largest key smaller than x, and use the associated rank to jump

into the skip list at that location. The non-overtaking property still holds once the request has

been received by a skip list process.

Shortcuts remove the head as the bottleneck but at the expense of linearisability. How-

ever, with the help of sequence numbers, the application process can maintain sequential con-

sistency by judicially using shortcuts only when they do not violate its own ordering. When

consistency is not required, then both the application processes and/or skip list list processes

can be configured to make full use of shortcuts. Consistency is with respect to the operations

themselves and not the consistency of the dictionary structure as a whole. Also, irrespec-

tive of the consistency semantics, the list always remains properly ordered and the skip list

operations themselves are correct.

The three semantics are:

Total Order :

All application processes send requests to the head.

Sequential Consistency :

Application processes judicially use shortcuts and a hold-back queue to ensure that the

operations issued by the process are completed in order they were issued.

No Consistency :

Both the application processes and the skip list processes use shortcuts when possible

and there is no guarantee about order.

In summary, these semantics are dependent on the following properties of our skip list imple-

mentation. First, the operations themselves must be atomic where one operation cannot in-

terfere or corrupt another operation. Second, operations cannot jump over one another, even

when shortcuts are used. Proof of these properties is discussed in Section 2.4. Section 3.1

compares the performance of the skip list with respect to these different semantics.

2. Skip list Design

As shown in Figure 3(a) each skip list process (i.e., node) is comprised of (i) a tower of

<key,rank> pairs where each key is the minimum key (min-key) of the skip list process

with that rank, (ii) key (or list of keys in the multi-key case), and (iii) the associated data.

The height of the tower is probabilistically determined when a process joins the skip list and

goes from level 0 to some level k less than a predefined maximum tower height. As shown

in Figure 2 the skip list ranks on level i are a sublist of level i−1 and the rank on a level

points to the next node in the list.

Figure 3(b) shows the message-driven structure of the process where processes block

waiting for a request. Processes do not accept another request until it has completed sending

all messages needed to locally complete the operation. Request messages contain the key

information along with the process rank of the application node making the request. Request

messages may alter nodes (INSERT, DELETE) and can mutate (RANGE-QUERY) as they

traverse the skip list. Sections 2.1 and 2.2 describe the implementation of each of the four

operations.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference



8 S. Alam et al. / A Service-oriented Scalable Dictionary in MPI

43 23

43 23

35 53

35 53

21

P rev io u s M P I p rocesses 

in  the  o rde red  sk ip  l is t

S to res one  o r 

m ore  key va lues

M in im um  key va lue  o f the  item  in  the  

next M P I p rocess a t each  leve ls

R ank o f M P I p rocess w ith  next 

la rge r key va lue  a t each  leve ls

D a ta  associa ted  

w ith  key

(a ) 

N ext M P I p rocesses in  

the  o rde red  sk ip  l is t

83 23

53
61

23

while (skiplist process ) {
receive (request r_i) from ANYPROCESS ;
switch (R) {

FIND        : do FIND(r_i,level);

INSERT      : do INSERT(r_i,process,level);

DELETE      : do DELETE(r_i,level);

RANGE-QUERY : do RANGE_QUERY(r_i,level);

EXIT        : do TERMINATE();

}

} (b ) 

0

1

2

3

Figure 3. (a) Example of a skip list process with connections from previous and next processes, and (b) Mes-

sage-driven main loop of the process.

2.1. FIND and RANGE-QUERY

The FIND operation is shown in Listing 1 where the process either replies to the client (Steps

3–6), forwards the request, or drops down to the next lower list. Since the minimum key

(min key) of the successors is stored at each node, it generates either one reply or one

request.

The RANGE-QUERY routine (Listing 2) differs from FIND in that, when necessary, it

splits the request (Steps 11–13). Every skip list process with data within the range specified in

the query will reply to the application. In the multi-key per node case, the number of returned

key-value pairs depends on the distribution of the data and may vary from one to the number

of keys in the range. Each split partitions the range and each new request records the start

and end of its part. The application re-assembles the parts and the query is complete when

the application detects that the original range is complete. By design, skip lists adapt to the

distribution of the data and similarly our range queries will split more in dense areas of the

key space.
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Listing 1: FIND Operation

1 FIND(request, level)

2 {

3 if ( level==0 && request_key < key[0] )

4 reply failure;

5 else if ( level==0 && request_key == local_key )

6 reply with data

7 else if ( request_key > key[level] )

8 forward request;

9 else

10 FIND(request,level-1);

11 }

Listing 2: RANGE-QUERY Operation

1 RANGE-QUERY(request, level)

2 {

3 // local_key: local process key-value

4 if ( level==0 && (key[0] > end_of_range) )

5 reply end_of_range;

6 else if ( level==0 && request_key in range )

7 reply with data

8 else if ( start_of_range > key[level] )

9 forward request;

10 else if ( (local_key && key[level]) in range )

11 split range into two parts;

12 forward last part of request;

13 RANGE-QUERY(first part of request,level-1);

14 }

2.2. INSERT and DELETE

The process to be inserted or deleted from the skip list needs to either link or unlink itself

from the skip list as it traverses the list. The basic link and unlink operations are shown in

Figure 4. For INSERT, given a tower of size k, as we traverse the list we need to fill in the

levels of the tower when inserting it between two towers. For example, in Figure 4, process

C is to be inserted at a location between A and B which requires A to send [y,B] to C. For

DELETE, the reverse occurs and we need to unlink the node to be deleted, C, from the list

which will require A to send a message to C for its information about B. Unlike FIND and

RANGE-QUERY, these operations make changes to the list while traversing the list.

The INSERT operation is shown in Listing 3. The operation differs in that there is a “new

process” associated with the INSERT request. The height of the new process is immediately

determined but we do not acquire the process until the first time it needs to link itself to the

skip list. A process acquires a new free process by requesting one from its local manager,

which finds the free process, returns its rank to the first process that then sends a message to

initialise it with the new key and height.

We implemented a simple manager policy where the managers are arranged in a ring and

requests that cannot be satisfied locally are forwarded to the next manager. If, after one cycle

around the ring, no free process is found then the requesting process replies that the list is

full (list full) back to the application.
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Listing 4: DELETE Operation

1 DELETE(request, level)

2 {

3 if ( level==0 && request_key < key[0] )

4 reply failure;

5 else if ( request_key == key[level] )

6 unlink[key,level];

7 if( level==0 )

8 reply success;

9 else

10 DELETE(request,level-1)

11 else if( request_key > key[level] )

12 forward request;

13 else

14 DELETE(request,level-1)

15 }

2.3. Freedom from Deadlock

Ensuring correctness is a major challenge since a skip list may easily consist of hundreds

and thousands of processes. The freedom from deadlock inside the skip list follows from the

following two properties:

(a) requests are handled atomically, and

(b) requests are always in the forward direction.

All processes start by receiving a request and each of the listings end by either making a

new request to a forward node and/or replying back to the application. It is possible for two

processes to communicate back and forth between themselves while performing a request

(e.g. (un)link), but initial requests occur only in the forward direction.

2.4. Order of Operations

The deterministic nature of our implementation makes it possible to reason about the order

of the operations. In this section we will show that operations cannot overtake one another

inside the list. This condition, together with shortcuts, make it possible to implement the total

order, sequential consistency, and no consistency semantics described in Section 1.3.

We will describe an operation R as a sequence of request messages which hop along the

list with each request updating the local information and generating a potentially new request

to another process. Let R equal to r1,r2, . . .rk be the list of request messages received by the

processes.

As given by the listings in the previous section, requests are atomic and all messages be-

tween processes can be realised using synchronous communication. One subtlety that arises

with MPI communication is that messages need to remain ordered when we extend it to asyn-

chronous messaging. In the link and unlink operations, where the process sending messages

on level l (the level l source process) can change, we use a synchronous send (MPI Ssend)

to send the last message from that source. This ensures that all buffered messages are flushed

before a process can receive a message from a new level l source process. As a result, when

the source process on a level changes, the messages from these two separate sources are not

re-ordered by the MPI middleware. Therefore requests remain ordered and it remains only

to show the operations themselves remain ordered. We show this by arguing inductively over

the height of towers starting with the ordered list on level zero.
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Consider a list of processes where process i can only send messages to process i+1, the

next process in the list. Suppose each process stores a key-value pair such that if i< j then the

key at Pi is less than the key at Pj. Thus the list of processes is essentially the distributed coun-

terpart to an ordered linked list data structure. In the ordered list there are FIND, INSERT,

DELETE and RANGE-QUERY operations and furthermore assume operation requests are

sent to the process at the head of the list and all communication is synchronous.

Given two operations Ra and Rb, and two requests ra
i ∈ Ra and rb

j ∈ Rb, let [ra
i ✄ rb

j ]@P

denote that both ra
i and rb

j are executed by process P, and receive ra
i executes after receive rb

j

in process P. Furthermore let R be a multiset of operations and P be a process list such that

for all for all requests r in an operation R of R, r is executed by a process from P .

Definition 2.1 For all r in some R of R on process list P , define ≻ as:

ri ≻ r j ⇐⇒

{

ri,r j ∈ R for some R and i > j

[ri ✄ r j]@P for some P ∈ P

This is causality relation, capturing the notion of time, where either the receive ri happens

after r j in a given operation or ri happens after r j at a given process P. Causality relations

are irreflexive partial orders [13]. By design, operation requests are synchronous, atomic and

only occur in the forward direction. Fix a multiset of operations R and a suitable set of

processes P . Unless otherwise stated, all occurrences of ≻ use this R and P .

The purpose of the following lemma is to show that in a simple list one operation cannot

overtake a second operation that is ahead of it in the list. Given that there can be many oper-

ations distributedly finding, adding and deleting nodes at the same time we provide a formal

proof of the statement using the space/time model and terminology from Charron-Bost, Mat-

tern and Tel [14]. A “crown” is a crossing that is a forbidden structure in a time/space diagram

for a realistic synchronous computation (i.e., a computation realisable by synchronous mes-

saging). We show that overtaking induces a crown, contradicting the fact that the messaging

is synchronous.

Lemma 2.2 Let Ra and Rb, be two operations on process list P. If [ra
i ✄ rb

j ]@P where ra
i ∈ Ra

and rb
j ∈ Rb, then for all k, such that ra

i+k, rb
j+k exist, ra

i+k ≻ rb
j+k.

Proof Assume to the contrary, take the first occurrence such that ra
i+k ≻ rb

j+k but rb
j+k+1 ≻

ra
i+k+1. Given that we have a linear process list where process i can only send to process

i+ 1, the next request can only be to the next process in the list. By assumption ra
i and rb

j

both occur in process P, it follows from the previous statement that ra
i+k and rb

j+k occur in

the same process. As well, ra
i+k+1 and rb

j+k+1 both must occur in the next process in the

list. The relations ra
i+k ≻ rb

j+k and rb
j+k+1 ≻ ra

i+k+1 form a crown, which implies that the

messaging cannot be realisable as a synchronous communication, which contradicts that the

communication is synchronous.

Lemma 2.2 captures the property that operations in the list are performed by processes in

order and cannot jump ahead of one another. This property is also useful for reasoning about

shortcuts (Section 2.5) where operations may start at processes other than the head. It follows

from Lemma 2.2 that irrespective of where the operation starts, when an operation is behind

another operation, the second operation remains behind the first one. In a skip list we have

the following theorem.

Theorem 2.3 Given a collection of operations on process list P. If [ra
i ✄ rb

j ]@P, then either

(a) [ra
i+1 ✄ rb

j+1]@P or (b) for all m,n > 1, ra
i+m and rb

j+n do not visit the same process.
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Proof Skip lists have the following two nice recursive properties. A skip list of height h can

be viewed as a skip list of height h−1 with the addition of an ordered list, which is a sub list

of the list at height h−1 in the lower skip list. The collection of skip list processes between

two processes Pi and Pj also form a sub skip list.

The proof is by induction on the maximum height of towers in the skip list. A skip

list with maximum height of one is an ordered list and the result follows from Lemma 2.2.

Assume true for a skip list of maximum height h−1 and now consider a skip list of height h.

Consider two operations ra
i and rb

j at some process P and furthermore assume that as part of

the execution they both examine level h to determine whether one or both of ra
i and rb

j send a

request to the next process (i.e. hop forward) at level h or decrement the level and traverse the

lower skip list. If both ra
i and rb

j traverse the lower skip list, then by induction the hypothesis

holds. Now consider the case when both hop forward to the next process at level h. Since the

list at level h is an ordered list, it follows that [ra
i+1 ✄ rb

j+1]@P by Lemma 2.2. Finally, in the

case when one descends into the lower skip list and the second request hops ahead on level

h, this can occur only because the target key for one operation is greater than the key stored

at level h at P while the target key for the second operation is less than key stored at the level.

As a result, for all m,n > 1, ra
i+m and rb

j+n never visit the same process because the remaining

requests in the operation can only reside in the processes between the current process and

processes before the one pointed to by level h, whereas the requests for the operation hopping

forward will be to processes equal to or beyond the process specified in level h.

In summary we have (a) operations are atomic and cannot overtake one another, (b) once

unlinked, requests behind a delete process can proceed and hop ahead, (c) for insert, there is

a delay since we do not allow it to accept requests until its tower is complete (inserts are the

most expensive operation in terms of its potential to delay other requests), and (d) the skip

list remains deadlock free since requests are only sent in the forward direction.

2.5. Shortcuts

As a result of Theorem 2.3, which shows that operations do not overtake one another, it

follows that if the application sends all requests to the head, then the operations are totally

ordered according to the order they are received by the head node. Again, as was the case in

the single linked list, the head can become a bottleneck. As in [1], we indroduce a shortcut

mechanism whereby application processes can take a shortcut and join the skip list closer to

the key’s target location.

In implementing shortcuts we depart from pure message passing and take advantage

of the properties of co-located processes in FG-MPI. In FG-MPI, all co-located skip list

processes share the same address space and because processes are scheduled non-premptively

it is easy to atomically coordinate access to a shared bulletin board structure for skip list

processes to query for shortcuts.

Inside each OS process we maintain a local bulletin board structure. Skip list nodes post

their keys, rank and tower height to the bulletin board. All co-located application processes

can read from the bulletin board as a potential hint for faster access to the skip list. The

shortcut is only a hint since the node pointed to by the shortcut may have been freed or may

have been freed and reallocated. In the case of a free process, the free process sends a failure

reply when contacted by the application. In the case the node had been reallocated, then we

either detect a larger key and fail or detect a smaller key and follow the shortcut. On failure,

we notify the application process, which can send the request to the head to ensure it will

succeed.

Unlike the simple linked list, there are other ways in which shortcuts can fail. For an

INSERT or DELETE the tower height of the shortcut needs to be higher than the tower to
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be inserted or deleted. Otherwise it is not possible to update the towers between nodes that

have connections on levels above the shortcut. We can detect these situations report failure

whenever a shortcut leads to a tower of greater height than that of the tower to be inserted or

deleted.

Rather than report failure as soon as we encounter a larger tower, we could allow the

process to climb to a higher level and continue. This violates the condition of Theorem 2.3

and introduces a race condition between the operation taking the shortcut and other opera-

tions. However, the first operation to reach the tower, wins and once ordered remain ordered

for the rest of the operation.

By using shortcuts, sequence numbers, and a hold-back queue the application has the

mechanisms needed to implement a variety of consistency semantics depending on the appli-

cation purpose. Sequential consistency can be maintained using shortcuts without climbing

and finally when climbing is permitted there are additional opportunities for using shortcuts

but there is no longer any consistency guarantees. When consistency is not required we can

extend the use of shortcuts to allow the skip list nodes themselves to use shortcuts.

2.6. Multiple Key per Process

In this section we describe the extensions to FIND, RANGE-QUERY, INSERT and DELETE

operations to handle the case when a list process may store multiple key-value pairs. We call

the maximum number of items that a skip list process can hold the granularity, G, of the skip

list service. Both G and P, the number of co-located MPI processes, are helpful in reducing

the idle time in the service. Increasing G reduces the amount of messaging and therefore

the amount of work done in performing requests. However, to maximise the opportunity for

parallelism, in a [P,O,M] execution we need to distribute the skip list to the O×M processing

cores.

The extension to the FIND operation is straightforward. The local set of keys are

searched before forwarding the FIND request to a neighbour process. The RANGE-QUERY

being an extended form of the FIND operation, which is split as it traverses the list, uses the

same technique and searches the local set of keys prior to forwarding the request. A conse-

quence of increasing the granularity is that an application process may receive variable sized

replies from list processes in response to a RANGE-QUERY. To allow the application pro-

cess to properly assemble the replies, two messages are sent to it by the list processes; the

first containing the size of the result and the second the result itself.

The extension to the INSERT operation, however, is more interesting and required the

addition of a new SPLIT operation. For INSERT, since each node now stores a contiguous

range of the keys, there is a choice between adding the key to an existing node (see Figure 5)

or creating a new node (i.e. process) to store the key. Obviously, we cannot continuously

insert keys into existing nodes and there has to be a mechanism to balance the load and to

split an overloaded node. To this end we define a threshold value G, the granularity, whereby

we split a node once the number of items in the node exceeds G.

There are two cases to consider for splitting an overloaded node (see Figures 6(b)

and 6(c)). In both cases we determine a tower height for the new node to be inserted. If the

tower height is less than or equal to the tower height of the node to be split, then we obtain a

new node who will insert itself in the list directly after the existing node. The existing node

has all the information and data needed to properly initialise and split the load between the

two nodes. And, as in the other operations, communication is in the forward direction.

If the tower height is greater than the height of the new to be inserted, then the new

node needs to be inserted directly ahead of the existing node in the list, however, this violates

our condition for operations to traverse the list in the forward direction. Note as well, this

case is essential because it is the mechanism whereby nodes with towers of higher heights
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2, 4, 8, 10 12, 13, 15, 22 105, 166,       ,180 184 200, 206, 278

[A]: INSERT 170

[B]: INSERT 170

[C]: INSERT 170

170

Figure 5. Steps in the INSERT operation for multiple key per process implementation. The operation travels

like a FIND request, and inserts the entry locally.

are created. In this case, we go ahead and INSERT the item locally but in our reply to the

application we require the application to perform a SPLIT operation (see Figure 6(a)), noting

as well that the INSERT succeeded. The list node also marks itself as having a “pending

split” and can begin processing the next operation. A marked node operates as usual, except

that it only inserts items locally.

The SPLIT operation uses the min-key in the marked node to traverse the skip list

inserting itself as described in the INSERT operation for the single key case. Once the oper-

ation has traversed the skip list to the location directly ahead of the marked node, the node

obtains a free node and the free node and marked node exchange information and data in a

similar manner as in the first case. After balancing the load the marked node returns to its

unmarked state. However, it is possible that by time the SPLIT operation reaches the marked

node the node has been deleted. In this case the new node turns into a zombie process that

continues to forward operations but automatically unlinks itself as requests come in from the

levels. Eventually once it has removed all of its tower connections it becomes a free process.

We chose a lazy removal of zombie processes rather using an operation to actively remove

them from the skip list. The SPLIT is an optimisation to dissipate the load and it is possi-

ble to introduce different strategies with regards to the load and when to generate a SPLIT

operation.

In the case of DELETE, the operation can remove the key from the local process as long

as the key to be deleted does not match min-key (see Figure 7(a)). When the delete matches

min-key, then the first time DELETE encounters a pointer to the tower with that min-key

it needs to wait until the entire operation completes at the target node (see Figure 7(b)). Once

the DELETE reaches the target node, there are two cases. If the node is now empty, then the

node is unlinked from the list, the min-key of the next node on each of the levels is sent

back to nodes waiting for the DELETE to finish, and node is freed. If the node is not empty,

then we simply send back the new min-key value to the waiting nodes. In comparison to the

single item per node case, a delete to non min-key is faster since unlinking is not necessary,

however, min-key deletes introduce an additional delay in the pipeline as it has to wait for

the operation to complete. This delay is necessary because otherwise it is possible that inserts

ahead of the delete may change the key that will become the next min-key. In which case

the min-key value no longer remains consistent from the time delete first encounters the

node until eventually reaching the node.

Unlike in the simple linked list, extending the implementation from the single item per

process to multiple items per process required several changes. Some changes, like delaying
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2, 4, 8, 10 12, 13, 15, 22 105, 166, 170,180 184 200, 206, 278

[A]: Generate SPLIT
on 170

Manager
Process

[B]: Fetch a free process

[C]: Send operation to root or 
appropriate shortcut process

(a) Generate a SPLIT operation.

2, 4, 8, 10 12, 13, 15, 22 105, 166 200, 206, 278170, 180 184

[D]: 
Neighbourhood
information
shared

( New Process )

(b) SPLIT when shorter tower.

2, 4, 8, 10 12, 13, 15, 22 105, 166 200, 206, 278

[F]: 
The rest of the 
neighbourhood
information
shared

[D]: BIND to 170 

[E]: Pass SPLIT on 170

170, 180 184
( New Process )

(c) SPLIT when taller tower.

Figure 6. Steps in the SPLIT operation for the multiple key per process implementation. The steps taken is

comparable to the INSERT operation of the single key per process implementation.
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2, 4, 8, 10 12, 13, 15, 22 105, 166, 183, 184 200, 206, 278

[A]: DELETE 183

[B]: DELETE 183

[C]: DELETE 183

(a) Delete inside the list of a process.

2, 4, 8, 10 12, 13, 15, 22 105, 166, 183, 184 200, 206, 278

[A]: DELETE 105

[B]: DELETE 105 
Request to trim given levels

[C]: Pass 
DELETE 105

[D]: Reply with next min-key 166 

(b) Delete the min-key of a process.

Figure 7. Steps in the DELETE operation for the multiple key per process implementation. All the reply mes-

sages are held back until the whole DELETE operation is received complete.

the DELETE, were necessary to maintain consistency needed for correctness. Other changes,

like the addition of the SPLIT operation, were needed to enable parallelism by ensuring new

processes were added as needed. Understanding the potential interactions of operations with

the processes was complicated, but made simpler by rigorously adhering to two main princi-

ples (a) operations only initiated communication in the forward direction, and (b) minimise

shared state.

3. Experiments

In this section we evaluate the performance of our skip list with respect to different consis-

tency semantics and various workloads. We compose each OS process with one application

process, one manager process and one or more skip list processes. The application processes

generate requests that are serviced by the skip list. For the experiments we vary the list size

from over a million key-value pairs to 20 million key-value pairs. INSERT operations are

used to randomly insert items until the list is full. Once the list is full we generate requests

as specified for the workload and measure the system throughput with respect to operations

per second. The measurements reported in the experiments is the median value over 11 ex-
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periments. We designed the mix of operations in our workloads to be similar to those used in

YCSB (Yahoo Cloud Serving Benchmark) [15]. Most of the workloads we used showed sim-

ilar trend in scaling behaviour. We report performance of read-heavy workloads (i.e. FIND

and RANGE-QUERY) as well as workloads with a mix of FIND, INSERT and DELETE

operations.

For the experiments, the test setup consisted of a cluster of 25 machines connected by

a 10 GigE Ethernet interconnection network. Each of the machines in the cluster is a quad-

core, dual socket (8 cores per machine) Intel Xeon R© X5550, 64-bit machine, running at 2.67

GHz. All machines have 12 GB of memory and run Linux kernel 2.6.18-308.16.1.el5. All

executions in the experiments were of the form [P = 100,O = 8,M] with M ranging from

2 to 25. Through experimentation we found that P = 100 MPI processes per OS process

provided a good balance between the benefits of the added concurrency and the overheads of

messaging and scheduling. We set O = 8, the number of cores per machine, so as to minimise

the effect of the operating system on the execution. We start at M = 2 to ensure all of our

tests include TCP network traffic. The list size is given by G×P×O×M where G is the

granularity. A fixed value of G = 1000, P = 100 and O = 8 was used in all the experiments

and M was varied from 2 to 25.

There are two variables W and k that can be used to tailor the system to the characteristics

of the machine. Variable W , application window size, is the maximum number of outstanding

requests that can be submitted by an application process. Increasing W increases the load on

the skip list service. Application processes post receive-buffers for every outstanding request,

and re-posts requests as soon as it receives a complete reply. The skip list service can be

viewed as a large pipe with all the individual application processes contributing to the overall

throughput. As latency increases, either because the list has increased or more processes have

been added, we increase W to allow there to be more outstanding operations. However, we do

not allow it to capture more than its share of the throughput, since it can lead to hot-spots and

a decrease in the overall system throughput. Each application process continuously measures

the reply latency for operations and adjusts W accordingly. k, the degree of asynchrony,

is a throttling parameter that each list node can use to specify how many requests are to

be forwarded down the list, before having to wait for a previously forwarded message to

complete. The smaller the value of k, the higher the throttling effect on the flow of requests

through the list service. There is a limit to increasing k, which depends on the flow capacity of

the pipeline. Increasing k beyond this value has no effect since the service is already working

at full throttle. We set k to forward requests down the list at full capacity.

3.1. Consistency Semantics

Figure 8 shows the scaling behaviour for the three different consistency semantics supported

in our skip list implementation: total-ordering, sequential-consistency, and no-consistency.

Along the x-axis, the list size increases from 1.6× 106 key-values to 20× 106 key-values.

The number of OS processes is kept equal to the number of cores. Since we have one applica-

tion process per OS process, the load on the skip list service increases as we move along the

x-axis. The sequential-consistency and the no-consistency semantics show good scaling be-

haviour as the number of cores increases. As expected, the performance of the no-consistency

semantics is the highest, followed by sequential-consistency and then by the total-ordering

semantics. The total ordering curve saturates after a list size of 8 million key-value pairs due

to the bottleneck at the head node. For each added OS process (i.e. core) we add an appli-

cation process and we allow each of the application processes to have at most W = P = 100

outstanding requests. This allows there to be at most one outstanding request for every skip

list process and, since the out-flow (reply rate) directly determines the in-flow (request rate)

there is little benefit in having more than one application process per OS process.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference



S. Alam et al. / A Service-oriented Scalable Dictionary in MPI 19

As Figure 8 shows, once requests can use shortcuts, replies can return faster and there

is less contention at the head and as a result throughput increases several fold. The perfor-

mance difference between the no-consistency and the sequential-consistency throughput is

small because the tower-based structure of the skip list has built-in shortcuts which aid in the

sequential consistency case and the advantage due to no-consistency is less pronounced. The

performance difference between no-consistency and sequential-consistency would increase

if we reduce the maximum tower height in our skip list. The difference between sequential

consistency and no-consistency is more evident in a linked-list, which we discussed in prior

work [1].

3.2. Range Queries

Figure 9 shows the scaling behaviour of range queries for three different sized range queries.

The largest size query returns 1% of the list, which is a large portion of the skip list and is

an extreme type of query. Recall that the range-query is automatically split as it traverses the

list and each process with any portion of the result replies to the application. Therefore as the

number of cores increases we go from having fewer and larger replies (i.e. returned messages)

to having more and smaller replies. Figure 9 reports throughput with respect to (a) the number

of operations, (b) the number of returned messages, and normalises the performance across

query types by giving (c) the number of returned key-values per second.

As expected, as the size of the range of a query increases, the operations per second

that we can send to the skip list decreases. This is because application processes have to

wait longer for all replies to return before it can send a new range query. However, as we

can see in Figure 9(c), for larger queries we can return more key-values from the service,

which is because a single range query operation sweeps through the service generating key-

value results as opposed to having multiple separate FIND queries for each result. Figure 9(b)

shows the number of returned messages all the application processes receive per second. All

three range query sizes do scale with respect to the number of returned messages they can

receive.
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Figure 8. The number of operations per second versus the number of cores for the three different consistency

semantics, total-ordering, sequential-consistency, and no-consistency. Workload uses 100% FIND operations.

Configuration: List size = G×P×O×M where G = 1000, P = 100 and the total number of cores=O×M range

from 16 to 200.
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(b) Number of returned messages per second
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(c) Number of returned key-values per second

Figure 9. Scaling behaviour of RANGE-QUERY with three fixed size range queries: Small = 100, Medium

= 1000 and Large = 10000 maximum key-value results. Workload uses 100% RANGE-QUERY operations.

Semantics used is no-consistency.
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(b) Returned key-values per second

Figure 10. Performance comparison between FIND and RANGE-QUERY with a medium sized range query

returning 1000 key-value results. Workload uses 20% INSERT, 20% DELETE and 60% of either only FIND or

only RANGE-QUERY. Semantics used is no-consistency.

Figure 10 and 11 compare using a RANGE-QUERY versus a corresponding set of FIND

operations for medium and small range queries respectively on a mixed workload. For small

range queries, in terms of operations per second, the throughputs are similar. However, we

obtain many more key-values per second with the range queries. We obtain a similar result

for large range queries but with a reduced throughput but even more key-values per second.

The results are returned via sending messages containing the key-values and corresponding

payloads that fall inside the range queries. It demonstrates the ability of our skip list imple-

mentation to take advantage of the orderliness of the data to perform better on range queries.

3.3. Effect of Dimension on Range Query

Figure 12 shows performance of our skip list for multi-dimensional range queries. As before

we fix the size of result and evenly distributed the ranges across the dimensions so that for

D dimensions each dimension had the Dth root of the results. Because the skip list is ordered

dimension by dimension the only key-value results that are likely to be returned by one
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(b) Returned key-values per second

Figure 11. Performance comparison between FIND and RANGE-QUERY with a small sized range query of

100 key-value results. Workload uses 20% INSERT, 20% DELETE and 60% of either only FIND or only

RANGE-QUERY. Semantics used is no-consistency.

process in a single message are those whose range is in the last dimension. As a result,

adding dimensions further aggravates the tendency for the number of messages to grow to

the number of returned key-values as the number of cores increases. This is clearly evident in

Figure 12 where there is a performance drop as the number of dimensions increases. This was

expected since skip lists do not generally perform as well for high-dimensional data. There

are other techniques such as skip-web [16] that provide an interesting extension.

3.4. Real-life Example

An example as to why skip list data structures are useful for highly dynamic applications we

implemented a dynamic graph application3 with a dataset of all commercial aircraft flights

in North America for one month. The data consists of arrival and departure times, locations

and additional information about the aircraft. As shown in Figure 13 we created a web-socket

front end to display this information. Users enter a query in the boxes to the left, or choose

3 TAO [17] by Facebook was introduced to solve a similar problem on social graphs.
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Figure 12. Throughput versus dimension for range queries. (Separate y-axes for returned key-values per second

and returned messages per second). Workload uses 100% RANGE-QUERY operations with range query size

of maximum 4096 key-values. Semantics used is no-consistency.

a range by re-sizing the green and red boxes in geographical display. This creates a range

query that returns all aircraft departing from the green box or those arriving in the red box.

Each edge represents the flight of one aircraft. Once queried the data is continuously updated

in time as flights depart and arrive at their destination.

The back-end system uses our skip list implementation with application processes con-

tinuously receiving new data to add to the skip list. We use the longitude and latitude of the

departure and arrival location (i.e., the edge between two vertices in the graph) lexicograph-

ical sorted by first the departure and then arrival location. This makes it possible to perform

queries over two spatial ranges. We extended the behaviour of the skip list process by having

the process invoke a DELETE operation when the elapsed time is after the arrival time. The

system is continuously adding and deleting flights as well as responding to one or more web

client queries from the front end.

An advantage of our implementation is that it is fully distributed efficiently making use

of both multicore and multiple machines to scale across hundreds and potentially thousands

of cores. As well, unlike the typical concurrency libraries, we did not have to add a new oper-

ation to automatically delete nodes, since the nodes were processes, we simply had processes

invoke an existing operation.

4. Related Work

A skip list is a well-known data structure that has been frequently implemented as a concur-

rent data structure [3,4,18–22]. Unlike the work on concurrent data structures our implemen-

tation does not depend on shared memory and does not have the non-determinism inherent

in lock-based designs. There are some similarities in the design, for example, the notion of

atomic actions, consistency, and techniques such as hand-over-hand access and forward-only

traversal. Another significant difference is that the list elements are active processes where

the data structure has control over the operations, not the application processes as in the case

of concurrent data structures.

Our coarsening of the skip list by having each process store a set of keys is similar

to Leaplists [22], a concurrent data structure where each node stores multiple keys. Unlike

Leaplists, which used transactional memory, in our case the multiple keys helped to reduce
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Figure 13. Websocket interface to aircraft example with data from our skip list. 4

the amount of messaging and provided a way to better adjust the amount of concurrency to

the characteristics of the machine.

As previously mentioned hash-based key-value stores are an important data structure in

distributed computing environments. There are systems designed to extend key-value stores

to efficiently process range-queries in the case of disk-based systems [23]. As well, there

is recent work on key-value stores for in-memory structures [24], but these have not been

extended to range queries. Our implementation is focused on in-memory data structures and

support for range queries. SD-Rtree [25], RAQ [26] and SkipTree [27] are distributed tree

data structures that support multi-dimensional range queries. Our implementation has the ad-

vantage of creating query splits automatically based on the probabilistic nature of the skip list

tower creation. Where there is dense data, there are more towers and hence more opportunity

for parallel access.

Pastry [28] and Skip Webs [16] are designed for peer-to-peer systems. Although these

systems are based on message passing they are optimized for coarse-grain access to large

data. Our distributed skip list is built with a focus on scalability and low-latency for in-

memory access to data rather than large blocks of data residing on disk. As well, as expected,

distributed storage systems are designed for availability and reliability, which we do not

consider at present.

5. Conclusions

In this paper we presented a novel implementation of a fully-distributed, in-memory, skip

list data structure and augment the structure to support range-queries. We discussed a service

oriented approach to scalable distributed data structures in MPI where the list nodes are

active processes that have control over the operations, unlike in concurrent data structures.

The key-values in the skip list belong to processes instead of being tied to memory, which

makes it easier to load-balance them across cores on one or more machines. We showed

that the operations can be implemented atomically and that there is an interesting ordering

property whereby operations cannot overtake one another. This property makes it possible to

reason about operations deterministically and made it possible to implement total ordering

4Web socket server and front-end implemented by Edward Soo.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference



S. Alam et al. / A Service-oriented Scalable Dictionary in MPI 25

and sequential consistency semantics. We introduced shortcuts, a novel mechanism used for

service discovery and as an optimisation technique to trade-off consistency semantics with

performance.

Our design enables a number of tuning parameters that allow us to adjust the amount of

asynchrony to better overlap communication with computation and overlap the application

requests with skip list operations. It is also possible to adjust the granularity and experiment

with different load-balancing strategies by changes to the free node service, shortcuts, or

tower heights. There is the added task of tuning these parameters. We have been investigat-

ing automated techniques for setting and testing parameters and the possibilities for adap-

tively optimising the values during execution. Given the diverse performance characteristics

of cluster and cloud infra-structures, the ability for the system to adapt to the infra-structure

is necessary for performance portability.

The experiments demonstrated the ability to scale to an ordered skip list with millions

of data items with up to 20,000 MPI processes executing on 200 cores. We showed that the

sequential-consistency and no-consistency semantics show good scaling behaviour with the

size of the list and the number of cores. We investigated the scaling behaviour of range-

queries on different sized queries and showed that they scale well with respect to the number

of results received by the application. Range-queries outperform use of multiple find oper-

ations in terms of the number of key-value pairs returned per second. We also report query

searches on higher dimensions for completeness. As expected, skip-lists do not perform as

well for high-dimensional data. We also demonstrated the advantage of our skip list design

through a dynamic graph application that uses real-time streaming data.

In summary, the advantage to our message-based design is its overall flexibility. The

system acts deterministically with operations flowing in and results flowing out. There are no

timing issues, the system can take advantage of multicore, and will operate correctly whether

it runs inside one machine or hundreds of machines. Our design provides the flexibility to

adjust the granularity, the concurrency and the amount of parallelism.
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