
June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

International Journal of Shape Modeling
c© World Scientific Publishing Company

Mean-Value Geometry Encoding

VLADISLAV KRAEVOY

University of British Columbia
201-2366 Main Mall,

Vancouver, BC V 6T1Z4,Canada

vlady@cs.ubc.ca

ALLA SHEFFER

University of British Columbia

201-2366 Main Mall,
Vancouver, BC V 6T1Z4,Canada

sheffa@cs.ubc.ca

http://www.cs.ubc.ca/∼sheffa/

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

Geometry editing operations commonly use mesh encodings which capture the shape
properties of the models. Given modified positions for a set of anchor vertices, the

encoding is used to compute the positions for the rest of the mesh vertices, preserving

the model shape as much as possible. In this paper, we introduce a new shape preserving
and rotation invariant mesh encoding. We use this encoding for a variety of mesh editing

applications: deformation, morphing, blending and motion reconstruction from Mocap
data. The editing algorithms based on our encoding and decoding mechanism generate

natural looking models that preserve the shape properties of the input.

Keywords: mesh editing, rotation invariant shape representation, local shape represen-
tation, shape preservation, multiresolution, shape blending and morphing, Mocap data

reconstruction

1. Introduction

The standard encoding of discrete geometric models is done by describing the 3D
Euclidean coordinates of the vertices and the adjacency/connectivity relationships
between them. Several alternative representations have been proposed as better
suited for specific processing needs, such as:

• Compression techniques (for a review see Alliez and Gotsman1) utilize pre-
diction based encodings, where the position of a vertex with respect to its
neighbors is stored as a difference vector from a position predicted based on

1

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

2

Fig. 1. Bringing elephants into nature: (top) original 3D model and inspiration image, (bottom)

deformation using mean-value encoding.

its neighbors. The main motivation for this alternative representation is to
make the encoding more compact while preserving the original geometry.

• Geometry Editing operations also commonly utilize alternative representa-
tions. Here the motivation is to encode local and global shape properties
of the models and maintain those as much as possible while the models
undergo global changes.

In either case, the representations typically combine local encoding of the model
vertices with an explicit Euclidean encoding of a sub-set of the vertices, referred
to as anchors. For compression, the Euclidean positions of the anchors are strictly
preserved. For editing, the anchors are typically used as the control mechanism.
Namely, the positions of the anchors are modified and the local encoding is used to
establish the new positions in 3D space for the rest of the vertices. Since the focus
in editing is on shape preservation, it is desirable for the local encoding to satisfy
the following requirements:

(1) If the positions of the anchors are unchanged, the positions of the rest of the
vertices should remain unchanged.

(2) If the positions of the anchors are a rigid transformation of the original, the
positions of the rest of the vertices should transform similarly.

(3) In all other cases, the encoding should strive to minimize the difference in
shape between the new and original models. There seems to be no established
numerical measure of shape preservation. Therefore, visual inspection appears
to be the major criterion used.

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

3

Based on the properties above, and in particular (2), a good encoding should be
rotation invariant. However this is not the case with the majority of existing rep-
resentations (Section 1.1).

In this work we present a rotationally invariant local representation, the mean-
value encoding, which describes the position of each vertex with respect to its neigh-
bors using a local coordinate frame. The description is based solely on continuous
shape properties of the model such as angles and distances. Therefore, models with
the same shape have identical encoding, and the encoding for models with close
shape is very similar. Thus our encoding/decoding mechanism satisfies all three of
the requirements above. Using our hierarchical encoding and decoding procedure,
the decoding is performed in near interactive frame rates, taking less than a second
for models of up to 100K faces.

We use the new encoding for a variety of editing applications: deformation, mor-
phing, blending, and fitting of motion captured data. We introduce a new fully au-
tomated technique that can realistically reconstruct complex human motion based
on Mocap data alone (Figures 8, 9). We demonstrate that compared to several other
recent methods our algorithm constructs more natural looking result models and
better preserves the shape properties of the input. An additional advantage of our
approach is that although it does not explicitly prevent model self-intersections,
the shape preservation property of our encoding drastically reduces the risk of local
self-intersection.

The rest of the paper is organized as follows. Section 1.1 reviews editing tech-
niques and associated geometry encoding schemes. Section 2 introduces the mean-
value encoding and decoding formulations. Section 3 provides an efficient hierarchi-
cal decoding algorithm, developed based on these formulations. Section 4 demon-
strates the applications of the new encoding and provides comparison with previous
encodings. Finally, Section 5 summarizes the paper.

1.1. Previous Work

Earlier mesh editing techniques (e.g. Zorin et al.2, Kobbelt et al.3) often used hierar-
chical mesh encodings. The idea is to decompose the mesh into two or more levels of
detail, such that each level is encoded with respect to the previous one. The editing
is performed on the coarsest level and then propagated to higher levels. Zorin et al.2

propose such an encoding for meshes with subdivision connectivity. Guskov et al.4

develop an encoding where a vertex is encoded as a distance in the normal direc-
tion, from the average of the neighbor vertices. This provides a rotation-invariant
representation of details. However, most existing meshes can’t be encoded using
such a representation since the vertices are typically not positioned strictly above
the average of the neighbors. Thus, this method requires quality remeshing and a
variety of heuristics to treat vertices that even after remeshing do not satisfy the
positioning requirement. Kobbelt et al.5,3 use a different remeshing technique to
obtain a similar type of encoding. Bischoff and Kobbelt6,7 propose a volumetric

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

4

detail encoding, providing more natural behavior at the expense of a more involved
reconstruction operator. In order to use the encoding for editing purposes, most of
these methods use a smooth base mesh as the coarsest level of the hierarchy. Thus,
the general editing problem is reduced to the challenge of editing the smooth base
mesh. Recent methods, such as Bischoff and Kobbelt7, propose linear techniques
for modifying the base mesh. However, since simple linear formulations are unable
to distinguish between rotational and other linear transformations (Sorkine et al.8)
the editing can lead to undesired artifacts.

A skeleton based encoding is an encoding where the position of each vertex is
defined with respect to the links of the model’s skeleton. This encoding can facilitate
simple editing operations (e.g. Yoshizawa et al.9). Although skeletons exist for any
model in theory, they are generally hard to compute. Moreover, binary editing
operations usually require skeletons with identical connectivity. The construction
of such skeletons in 3D remains, to our knowledge, an open problem.

The Laplacian coordinates10 provide a local encoding which can be computed for
any mesh. The Laplacian coordinates of each vertex are defined as a displacement
vector between the average of the neighbor vertices and the actual 3D position of
the vertex. Using this encoding, mesh editing becomes extremely efficient, since
the decoding procedure only requires solving a simple linear system. Regrettably,
since these coordinates are not invariant under rotation and scaling, the technique
introduces visible artifacts for large deformations (Figure 6 (b)). Sorkine et al.8

extend the use of Laplacian coordinates by linearly approximating local rotation
and solving repeatedly for small rotational updates (Figure 6(c)). Yu et al.11 and
Zhou et al.12 combine Laplacian coordinates with a different rotation approximation
mechanism. Since all the above mentioned techniques use only an estimations of
rotations the results are still suboptimal.

Lipman et al.13 propose to split the editing problem into two separate linear
systems. The first linear system estimates the local rotations at each vertex and the
second liner system reconstructs the vertex positions using those estimates. This is
only an approximation and not an exact solution.

This work builds upon the work of Sheffer and Kraevoy14 who introduced Pyra-
mid coordinates, a rotation invariant local mesh representation based on mean-value
weighting15 of neighbor vertices combined with a normal distance encoding. The
authors fail to provide a closed form formulation for obtaining Euclidean coordi-
nates from the encoding, leading to visible artifacts near anchor vertices (Figure
6 (d)). The method is also quite time consuming with deformation operations on
50K vertices taking 2 to 3 minutes to compute. Like the pyramid coordinates, our
mean-value encoding is based on a set of angles and lengths describing the posi-
tion of a vertex with respect to its neighbors. However, in contrast to Sheffer and
Kraevoy14, by using a different local frame, we develop a closed form decoding
formulation. Thus we do not encounter any of the drawbacks mentioned above.

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

5

2. Mean-value Encoding

2.1. Encoding one vertex

Given a mesh with vertices V and edges E the mean-value encoding for each vertex
vi ∈ V is computed from the Euclidean coordinates of the vertex and its m neighbor
vertices vj , where (i, j) ∈ E.

To compute the local coordinate frame we enumerate the neighbor vertices
counter-clockwise around vi as vj1 , . . . , vjm

. For each vertex vi we define a cor-
responding local projection plane

Pi = nxx + nyy + nzz + di (1)

using the normal at vi, ni = (nx, ny, nz). The normal ni is computed as

ni =

m∑
k=1

(vjk+1 − l)× (vjk
− l)

‖
m∑

k=1

(vjk+1 − l)× (vjk
− l)‖

(2)

where

l =
1
m

∑
(i,j)∈E

vj . (3)

In other words, we use an area averaged normal to a local Laplacian mesh as
the normal of the projection plane. By using a normal formulation based solely
on the neighbor vertex positions vj , we are able to obtain an explicit formula for
decoding vi (Section 2.2), leading to a closed form global decoding formulation.
This enables us to achieve much better results in terms of stability, speed, and
shape preservation compared to Pyramid coordinates14, where the normal estimate
was based on the current position of vi. Moreover, thanks to the area averaging,
the computed normal is a continuous and bounded derivative function for all non-
degenerate vertex configurations. a

We compute di, the average distance from origin, as:

di = − 1
m

∑
(i,j)∈E

ni · vj . (4)

Given ni and di, the shape encoding of the vertex coordinates is separated into
a tangential component computed in the projection plane and a normal component
based on the vertex offset from the plane.

Given the vertex vi and its neighbor vertices vj we encode vi in the following
manner. First, we project vi and its neighbors vj onto the projection plane:

v′i = vi − (di + (vi · ni))ni (5)

v′j = vj − (di + (vj · ni))ni (6)

aThe degenerate situations in which the normal is ill-defined can arise when either all the neighbor

vertices are nearly collinear or when the mesh has very sharp creases. Both situations can be
prevented during the mesh decoding.

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

6

Fig. 2. Mean-value encoding: The 3D mesh is shown in black, the normal ni is shown as a ver-

tical vector, the projected mesh in the local projection plane is shown in gray, and the values
(δij , γij , lij) used to compute wij are shown on the right figure.

We then compute the mean-value weights15 of v′i with resepect to v′j :

w′ij =
tan(γij/2) + tan(δij/2)

lij

wij =
w′ij∑

(i,k)∈E

w′ik
(7)

The angles γij , δij and the lengths lij are shown in Figure 2.
To represent the normal component of vi with respect to the local frame, we

calculate the signed cosine of the angle between each edge incident to vi and the
normal ni

cij =
(vi − vj) · n
‖vi − vj‖

.

We calculate and store the cotangent of the angle between each edge and the
normal

bij =
cij√

1− c2
ij

.

The encoding of the entire model consists of the set of coefficients wij and bij

defined for each half-edge (note that wij 6= wji and bij 6= bji).
In the next section, we demonstrate how to use the encoding to explicitly obtain

the 3D coordinates of vi from those of the adjacent vertices.

2.2. Decoding one vertex

The 3D positions of the neighbor vertices vj and the encoding coefficients wij and
bij uniquely define the position of the vertex vi in the Euclidean space. We now

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

7

sketch the numerical derivations leading to the explicit formulation for vi (Equation
13). Using the mean-value weights wij , we obtain v′i (Equation 5) from v′j

v′i =
∑

(i,j)∈E

wijv
′
j =

∑
(i,j)∈E

wij(vj − (di + (vj · ni))ni) (10)

where ni and di are calculated using Equations 2 and 4 respectively. Due to the
reconstruction property of the mean-value weights16, this formula exactly recon-
structs v′i for any set of neighbor vertices and mean-value weights, including cases
where v′i is outside the kernel of the projected neighbor vertices. Given v′i and using
any one of the coefficients bij , vi is given by

vi = v′i + (‖v′i − v′j‖bij + (vj − v′j) · ni)ni (11)

Since the mean-value weights sum to one, we can rewrite this as

vi = v′i +
∑

(i,j)∈E

wij(‖v′i − v′j‖bij + (vj − v′j) · ni)ni. (12)

Using basic numerical substitutions, we obtain the following formula for vi as func-
tion of the rest of the vertices using the encoding coefficients wij , and bij ,

vi = Fi(V) =
∑

(i,j)∈E

wij(vj + ‖Ni

∑
(i,k)∈E

wik(vk − vj)‖bijni) (13)

where ni is given by Equation 2 and Ni is the 3× 3 matrix (column notations)

Ni = I3 − nin
T
i , (14)

where I3 is a 3× 3 identity matrix. This formula uniquely defines vi, for any set of
neighbor vertices and any mean-value encoding.

It is trivial to show that if the neighbor vertex positions are a rigid transfor-
mation of the original the obtained position of the vertex vi is the original subject
to the same rigid transformation. Hormann16 proves that mean-value weights are
continuous everywhere in the plane. This implies that a small variation in v′j will
result in small variation in v′i. Since Fi(V) (Equation 13) is C∞ nearly everywhere
with respect to vj , a small variation in vj will result in a small variation in vi. Given
constant wij and bij , F is non-smooth only if ni is ill-defined, that is, the mesh
contains extreme degeneracies, which we assume is not the case. Those observations
demonstrate that if the neighbor vertex positions are a small deformation of the
original, so will be the position of vi. Hence the decoding preserves the shape of the
model under local deformation.

2.3. Encoding and Decoding of Models

To uniquely encode 3D models, we must eliminate the degrees of freedom provided
by rigid transformation and global scaling. Hence, in addition to the mean-value
encoding of each vertex (wij and bij), the full encoding must contain the 3D Eu-
clidean coordinates of four anchor vertices Va. Additional anchors may be defined
based on application requirements.

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

8

(a) (b)

Fig. 3. Deformation of a figure eight model by directly minimizing Equation 15: (a) Original model.

(b) The result of twisting the model by 90 deg.

To decode a 3D model from the encoding above, we formulate and solve the
following non-linear least squares minimization problem

arg min
V ′

G(V ′) =
1
2

∑
vi∈V

(vi − Fi(V))2 (15)

where V ′ = V \ Va. Note that while we search for the coordinates of non-anchor
vertices only, the sum on the right-hand-side of the formula runs over all the vertices
in the mesh. If the anchor vertex positions are unchanged, the set of original vertex
positions is clearly a solution to the minimization problem.

We can solve this problem using standard non-linear least-squares minimization
techniques. We use Levenberg-Marquardt17 minimization combined with line search
and trust-region as implemented in MATLAB. Since for all of our applications the
original model is available, the original coordinates can always be used to provide
the initial guess for the optimization. Figure 3 shows the deformation of a figure
eight model using our minimization code with 8 anchor vertices placed as shown in
the figure. The solution required 9 iterations to converge. It is possible to further
accelerate the solution procedure using advanced numerical techniques and using
a C++ implementation instead of MATLAB. However, as the size of the system
grows, it would be unrealistic to expect real-time editing interaction using this
solution approach. Therefore, we incorporate a multiresolution structure into the
encoding and decoding procedures (Section 3), interleaving it with the numerical
minimization, to speed up the decoding.

3. Hierarchical Encoding and Decoding of Meshes

To efficiently decode the model given the mean-value encoding, we modify the en-
coding and decoding procedures. During the encoding, a multiresolution hierarchy
for the model is constructed and the encoding for the different levels in the hierarchy
is stored. The hierarchical encoding is then used by the decoding procedure. This ap-
proach makes the encoding slightly more time consuming, but dramatically speeds
up the decoding. For all the applications described below (Section 4), the encoding
can be done once as a pre-processing step, while decoding is often performed repeat-
edly and ideally should be done in real-time. The hierarchical approach is therefore

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

9

very suitable for these scenarios. In contrast to previous hierarchical approaches,
such as Kobbelts et al.7,3, the base mesh for the hierarchy contains only the anchor
vertices. Hence, our algorithm does not need any time-consuming remeshing in the
pre-processing stage.

3.1. Hierarchical Encoding

The multi-resolution hierarchy is constructed using a simplification procedure that
removes the non-anchor vertices one by one, until only a base mesh connecting
the anchors remains. The simplification is performed using a sequence of half-edge
collapse operations. A mesh hierarchy is constructed, keeping track of all the indi-
vidual edge collapse operations. When selecting the edge to be collapsed, we use
a mixture of volume preservation (see Lindstrom and Turk18) and minimal angle
maximization metrics in order to preserve the mesh shape and to avoid degener-
ate configurations throughout all the levels of the hierarchy. Before each collapsed
vertex is removed, the mean-value encoding of the vertex in the current mesh is
computed and stored for reconstruction purposes.

3.2. Hierarchical Decoding

At the beginning of the decoding process, a base mesh is constructed by placing the
anchor vertices at the specified locations (e.g., Figure 4 (b)). For most applications
those locations differ from the original ones, as explained below (Section 4). The
subsequent decoding procedure involves two major operations: vertex split and
optimization.

3.2.1. Vertex split

Reversing the simplification order, collapsed vertices are added to the mesh one at
a time. We use Equation 13 to obtain the position for each new vertex. Note that at
the time of insertion, the positions of adjacent vertices in the current mesh are well
defined. Since we use the volume and minimal-angle maximization metrics during
simplification, the surrounding mesh is reasonably well shaped and does not contain
degeneracies. As a result the functions Fi in Equation 13 are well defined. If the
anchor positions are unchanged or a rigid transformation of the original position,
this placement gives the exact desired position of the vertex in 3D.

3.2.2. Optimization

If the anchor positions are modified, each split introduces some error. While after
each vertex split operation, vi − Fi(V) equals 0 at the inserted vertex vi, this is
not necessarily the case for the adjacent vertices. Hence G(V ′) (Equation 15) is not
optimized.

To find the minimizer of G(V ′), after performing a sequence of vertex splits,
we use a Gauss-Newton minimization procedure combined with line-search. The

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

10

(a) (b)

(c) (d) (e)

Fig. 4. Deformation using mean-value encoding and decoding: (a) Original model. (b) Final mesh.
(c) Base mesh (anchors and fixed parts) with modified anchors. (d) Intermediate mesh after edge-

splits. (d) Intermediate mesh after relaxation. Note the smoothing effect on the legs and the

wings.

minimum is obtained when the Jacobian of G(V ′) is zero. The rows of the Jacobian
are:

∂G

∂vi
= vi − Fi(V)−

∑
(i,j)∈E

(vj − Fj(V))
∂Fj(V)

∂vi
(16)

Defining the Jacobian of G(V ′) as J , the vector of the functions Fi as F, and the
matrix of partial derivatives ∂Fj(V)

∂vi
as ∆F , the system can be rewritten in matrix

format as

J(V ′) = (I ′ −∆F)T (V ′ − F) = 0 (17)

where I ′ is an |V |×|V ′| sparse matrix with 1’s on the diagonal. Using Gauss-Newton
method we ignore the second order terms in the Hessian, defining

H = (I ′ −∆F)T (I ′ −∆F) (18)

Thus at each iteration of the procedure, we solve the linear system

Hδ = −J(V ′) (19)

and update V ′ = V ′ + αδ (0 ≤ α ≤ 1). We use standard bisection line-search
to compute α. We perform numerical derivation to compute the matrix of partial
derivatives ∆F for the three coordinates x, y and z. We use the conjugate gradient
method to solve the linear system (Equation 19).

For the models we edited, we found it is sufficient to perform optimization only
once during the reconstruction procedure for an intermediate mesh with about 3%

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

11

(a) (b)

Fig. 5. Lifting an octopus tentacle using one control vertex. The boundary of ROI is indicated by
the blue dots.

of the vertices. On average, the optimization for this intermediate mesh required
about 7 iterations to converge.

For extreme deformations, after the model is fully reconstructed, we apply sev-
eral Gauss-Seidel iterations, typically four, toward solving Equation 17. The Gauss-
Seidel procedure uses Equation 16 (equating it to zero) to set the value for vi.

Figure 4 shows the decoding stages for a deformed feline model. The parts of
the model that remain fixed, such as the head, are treated as anchors. The error
introduced by performing edge-splits alone is clearly visible on the intermediate
mesh (Figure 4(c)). For this 100K triangle model the decoding took 0.86 seconds.
The hierarchical encoding took 6.6 seconds.

The applications of the encoding and decoding mechanism described above are
based on modifying the positions of the anchor vertices, and reconstructing the
mesh subject to the new anchor positions. The next section describes several of
these applications.

4. Applications

The applications of our encoding and decoding mechanism include editing opera-
tions such as deformation, morphing and blending, as well as animation and fitting
of motion capture data. To control the change in the model shape for some of those
operations, we need to define a region of influence (ROI) for the modification per-
formed (Figure 5). The region defines which mesh vertices are recomputed using
the decoding mechanism and which are left in their original locations. The vertices
outside the region of influence are simply treated as additional anchors.

4.1. Deformation

Mesh deformation is probably the most useful and straightforward application of the
encoding/decoding mechanism we developed. A typical mesh deformation interface
modifies the locations of a set of control vertices and updates the coordinates of the

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

12

(a) (b) (c) (d) (e)

Fig. 6. Comparison of deformation methods, with details (zoom in on the tail): (a) Original model.

(b) Laplacian coordinates; (c) Extended Laplacian coordinates8; (d) Pyramid coordinates14; (e)
Mean-Value encoding. Note that only the last example preserves the original shape of the tail fins.

rest accordingly. In contrast to recent methods such as Yu at al.11, we require no
normal estimates, or curves of vertices to control the deformation. In our setting, the
control vertices become the anchors of the encoding. When desired, we can use the
region of influence to limit the deformation to only a part of the model. Given the
selected set of anchors, the hierarchical encoding procedure is applied, constructing
the appropriate multiresolution hierarchy. Since the hierarchy construction stage
does not depend on the positions of the anchors after deformation, the hierarchy is
precomputed only once per anchor and ROI selection. During the deformation itself,
the decoding procedure is applied on-the-fly when the user interactively modifies
the positions of the anchors.

Figures 1, 4, 5, and 6 show model deformation performed using mean-value en-
coding. In Figure 1 we successfully recreate a realistic roaring elephant pose using
only 17 anchor vertices. Figure 4 shows the algorithm stages for deforming the fe-
line model. Figure 5 demonstrates the preservation of high frequency details during
deformation and the smooth transition between the deformed and undeformed re-
gions of the mesh. Note that although the ROI boundary passes through one the
octopus’s eyes, the shape of the eyes is not affected.

Figure 6 uses a simple example to compare our deformation technique to defor-
mations generated by several recent techniques. As expected, a purely linear defor-
mation technique, such as Laplacian coordinates10 (Figure 6(b)) leads to extreme
shear, when the anchor position undergoes rotational displacement. The method
of Sorkine et. al8 (Figure 6(c)) significantly reduces the distortion, but still leads
to visible shearing artifacts near the tail fins. The Pyramid coordinates14 method
(Figure 6(d)) causes less shearing artifacts, but exhibits discontinuities near the
anchor and along the boundaries of the ROI. In contrast, our mean-value encod-
ing and decoding mechanism produces a smooth and intuitive deformation with no
undesirable artifacts (Figure 6(e)). To perform the comparison we reimplemented

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

13

Laplacian coordinates10. For Sorkine et. al8 and Pyramid coordinates14 we used
software provided by the authors.

Table 1 provides statistics and runtime results for the examples described above.
All runs were performed on a P4 3GHz machine. We use G(V ′) to measure the
difference in shape between the original and deformed models. The value of G(V ′)
for all the models deformed using mean-value encoding is less than 1e−3 (Table 1).
This provides a numerical indicator that our deformation procedure preserves the
local shape of the models. In contrast, when using other methods for the dolphin
deformation the error is one or more orders of magnitude larger.

Model #vert. ROI #anchors G(V ′) Enc. Dec.
#vert. (sec.) (sec.)

Feline 49864 34759 9 0.000232 6.65 0.863
Octopus 149678 19196 1 0.000003 3.52 0.745
Dolphin 5937 1156 1 0.000146 0.190 0.054
Sheffer and Kraevoy14 0.001061
Sorkine et al.8 0.006401
Alexa10 0.011042

Table 1. Deformation statistics. G(V ′) measures the value of the function on the deformed model,

given the original mean-value encoding.

4.2. Animation

The mean-value encoding mechanism can be used to animate models by prescribing
space-time trajectories for anchor vertices. The encoding and the appropriate hi-
erarchy are computed in the pre-processing step. During animation, the Euclidean
positions of the vertices at each time-step are computed based on the anchor posi-
tions and the encoding.

We use this algorithm to create animated sequences from motion capture data.
Mocap data provides trajectories for real human/animal motion by capturing the
motion of a set of markers on moving subjects. Reconstruction of fully realistic
complex motion from such data requires deep knowledge of anatomy and is beyond
the scope of this work. Nevertheless, using our encoding based approach, we are
able to create convincingly realistic motion using only a mean-value encoding of a
human shape and the Mocap trajectories.

We define a corresponding anchor on the mesh for each marker in the Mocap
data (Figure 7). We can now treat the Mocap data as the trajectory defined for the
anchor vertices and compute the animation sequence as described above.

The resulting sequences demonstrated in Figures 8 and 9 and in the companion
movie look very realistic: the full body motion is accurately reconstructed from
the movement of the anchors and the high-frequency details of the male model,
such as muscles and facial features, are fully preserved during animation. Note that

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

14

Fig. 7. For each Mocap marker we define a corresponding anchor on the mesh.

Fig. 8. Reconstruction of walking motion from Mocap data. (top) Original Mocap data. (bottom)
Animation sequence.

animation reconstruction is significantly more challenging than regular deformation,
since no ROI is given and the coordinates for all the vertices in the mesh need to be
computed solely on the basis of the anchor coordinates. Since most previous editing
methods rely on a ROI specification, they would not be suitable for this task.

4.3. Morphing and Blending

Morphing and blending operations generate the vertex coordinates for intermediate
models as a function of the coordinates of the input models. A blending operation
computes one intermediate model which is seen as a weighted average of the inputs
while morphing operations compute a sequence of such intermediate models. Both
operations typically consist of three stages 19. The first two stages compute a cor-
respondence and a common connectivity for the input models. At the end of the

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

15

Fig. 9. Reconstruction of more complex sitting motion from Mocap data. (top) Original Mocap

data. (bottom) Animation sequence.

(a) (b) (c) (d)

Fig. 10. Transferring the face of (b) to (a)): (a) & (b) Original models. (c) Blending using Alexa10.

Note the discontinuity around the face and the high frequency noise particularly noticeable on the
teeth. (d) Blend using mean-value encoding.

Fig. 11. Turning a cat into a dog. Note the preservation of local details and the smooth rotation
of the legs and tail.

second stage, we have several models with the same connectivity with different ge-
ometries. For local morphing and blending, the common connectivity computation
can be restricted to only a part of the model 20,8. We focus on the final stage of the
process where the geometry for the intermediate models is computed. This is typi-
cally done by computing weighted averages of the geometry encoding of the inputs.
For standard morphing, the averaging is based on the time-step. For blending, the

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

16

averaging captures which parts of the output model should be more similar to one
or the other of the inputs.

To blend or morph models, we average the mean-value encodings of the models
based on the appropriate weights. This provides an encoding which can be seen as
a local shape average between the inputs. We then use the decoding mechanism
to obtain the intermediate model(s). The results are demonstrated in Figures 10
and 11. In Figure 10 we use blending to paste a skull onto a complex polyhedron.
Using mean-value encoding the blend is seamless and the details on the skull, such
as the writeup and the teeth are perfectly preserved (Figure 10(d)). In contrast,
performing the blending using Laplacian coordinates 10 results in visible artifacts
(Figure 10(c)).

The cat to dog morphing sequence (Figure 11) uses four anchors on the animal
bodies for registration. The mean-value based morphing generates rotational motion
for the tail and legs to perform a smooth transition between these features on the
two models. The timings for performing both operations are comparable to those
for deformation. For example, the blended model in Figure 10 took 2.8 seconds to
compute, including encoding and decoding.

5. Conclusions

We introduce a new, robust method for mesh editing based on a novel local represen-
tation, the mean-value encoding. The encoding captures the local shape properties
of the mesh and is invariant under rigid transformations. Even more important,
the encoding is a continuous function of the model geometry with similar models
having similar encodings. Using this encoding we developed an efficient and robust
decoding algorithm. We demonstrated the use of mean-value encoding for several
mesh editing applications, including deformation, motion reconstruction from Mo-
cap data, morphing and blending. Using our algorithm the editing times are com-
parable to those of recent state-of-the art mesh editing techniques, while the quality
of our results is better.

Acknowledgements

To appear in the final version of the paper.

References

1. Pierre Alliez and Craig Gotsman. Recent advances in compression of 3D meshes. In
Proceedings of the Symposium on Multiresolution in Geometric Modeling, 2003.

2. Denis Zorin, Peter Schröder, and Wim Sweldens. Interactive multiresolution mesh
editing. In SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 259–268, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

3. Leif Kobbelt, Jens Vorsatz, and Hans-Peter Seidel. Multiresolution hierarchies on
unstructured triangle meshes. Computational Geometry, 14(1-3):5–24, 1999.

June 15, 2006 12:41 WSPC/INSTRUCTION FILE IJSM

17

4. Igor Guskov, Wim Sweldens, and Peter Schröder. Multiresolution signal processing
for meshes. In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, pages 325–334. ACM Press/Addison-Wesley Publishing Co.,
1999.

5. Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. Interactive multi-
resolution modeling on arbitrary meshes. Computer Graphics, 32(Annual Conference
Series):105–114, 1998.

6. Stephan Bischoff and Leif Kobbelt. Sub-voxel topology control for level-set surfaces.
Computer Graphics Forum, 22(3):273–280, 2003.

7. Stephan Bischoff and Leif Kobbelt. A remeshing approach to multiresolution model-
ing. In Symposium on Geometry Processing, pages 189–196, 2004.

8. Olga Sorkine, Yaron Lipman, Daniel Cohen-Or, Marc Alexa, Christian Rössl, and
Hans-Peter Seidel. Laplacian surface editing. In Proceedings of the Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pages 179–188. Eurographics Asso-
ciation, 2004.

9. Shin Yoshizawa, Alexander G. Belyaev, and Hans-Peter Seidel. Free-form skeleton-
driven mesh deformations. In Proceedings of the eighth ACM symposium on Solid
modeling and applications, pages 247–253. ACM Press, 2003.

10. Marc Alexa. Local control for mesh morphing. In Proceedings of the International
Conference on Shape Modeling & Applications, pages 209–215. IEEE Computer Soci-
ety, 2001.

11. Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-
Yeung Shum. Mesh editing with Poisson-based gradient field manipulation. ACM
Transactions on Graphics, 23(3):644–651, 2004.

12. Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining Guo, and
Heung-Yeung Shum. Large mesh deformation using the volumetric graph Laplacian.
ACM Transactions on Graphics, 24(3):496–503, 2005.

13. Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. Linear rotation-
invariant coordinates for meshes. In Proceedings of ACM SIGGRAPH 2005, page
accepted for publication. ACM Press, 2005.

14. Alla Sheffer and Vladislav Kraevoy. Pyramid coordinates for morphing and deforma-
tion. In 3DPVT ’04: Proceedings of the 3D Data Processing, Visualization, and Trans-
mission, 2nd International Symposium on (3DPVT’04), pages 68–75. IEEE Computer
Society, 2004.

15. Michael S. Floater. Mean value coordinates. Computer Aided Geometric Design,
20(1):19–27, 2003.

16. K. Hormann. Barycentric coordinates for arbitrary polygons in the plane. Technical
report, Clausthal University of Technology, September 2004.

17. William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes: The Art of Scientific Computing. Cambridge University Press,
Cambridge (UK) and New York, 2nd edition, 1992.

18. P. Lindstrom and G. Turk. Fast and memory efficient polygonal simplification. In
Proceedings of IEEE Visualization, pages 279–286, October 1998.

19. Marc Alexa. Recent advances in mesh morphing. Computer Graphics Forum,
21(2):173–196, 2002.

20. Henning Biermann, Ioana Martin, Fausto Bernardini, and Denis Zorin. Cut-and-paste
editing of multiresolution surfaces. In SIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, pages 312–321. ACM
Press, 2002.

