

D-Charts: Quasi-Developable Mesh Segmentation

•••••••••••••••••••••••••

Dan JuliusVladislav KraevoyAlla ShefferDepartment of Computer Science, University of British Columbia

Motivation

- Mesh segmentation into compact charts that unfold with minimal distortion
- Applications
 - Parameterization for mapping
 - Textures, Bumps, BRDFs, displacement maps, etc.
 - Geometry Images
 - Patterns for sewing, metal forging
 - CAD
 - Reverse engineering
 - Surface reconstruction

Developable surfaces

- Developable surfaces:
 - Surfaces that unfold onto the plane with zero distortion
 - Gaussian curvature is zero at every point
- Find a quasi-developable segmentation

Previous work

- Texture atlas generation
 - [Levy et al. '02], [Zhou et al. '04]
 - [Garland et al. '01], [Sander et al. '03] Planar
- Feature based
 - [Katz and Tal '03]
 - [Gelfand and Guibas '04] developable
- Patterns:
 - [McCartney et al. '99]
 - [Mitani and Suzuki '04] Not compact
- Developable surfaces
 - [Leopoldseder and Pottmann '98] Not segmentation

Not

- [Peternell '04]

[Gelfand and Guibas '04]

Lloyd based segmentation

- We use Lloyd segmentation approach
- Introduced by [Cohen-Steiner et al. '04] planar charts
- Various extensions presented at EG '05
- Charts represented by proxies:
 - Normal to plane
 - Seed triangle
- Challenges:
 - Developable proxies
 - Bound error

[Cohen Steiner et al. '04]

Lloyd based segmentation – Framework

- Lloyd iterations:
 - 1. Select random triangles to act as seeds
 - 2. Grow charts around seeds using a greedy approach
 - 3. Find new proxy for each chart
 - 4. Repeat from step 2 until convergence

[Cohen Steiner et al. '04]

Devlopable surfaces of constant slope

- Developable surfaces Hard to capture
 - Start with subset, broaden later
- Constant angle between surface normal and axis → Developable chart
- Proxy: <axis, angle> $\langle N_c, \theta_c \rangle$

Fitting error

- Measures how well triangle fits a chart
 - $F(C,t) = (N_C \cdot n_t \cos \theta_C)^2$
- Combine with compactness

 $Cost(C,t) = A_t F(C,t)^{\alpha} C(C,t)^{\beta}$

Algorithm overview

Bounded Lloyd iterations

- Initialization
 - Random / Furthest point seeds
 - Compute initial proxy
- Bounded Growing/Reseeding iterations
- Termination

Bounded Lloyd iterations – Growing

- Use greedy approach
 - Prioritize by Cost(C, t)
- Bound Fitting Error
 - Guarantee (nearly) developable charts

Bound Lloyd iterations – Reseeding

• Find new proxy

$$\min_{N_{C},\theta_{C}} \frac{1}{A_{C}} \sum_{t \in C} A_{t} F(C,t) \text{ s.t. } \|N_{C}\| = 1$$

Find new seed

 Minimal *Fitting Error* Close to center of chart

Algorithm overview

Hole filling

 Bound on Fitting Error Unclassified triangles Fill holes -Large holes New proxy Large Grow neighbors – Small holes **Small**

Algorithm overview

Merging

Merging

- Broaden set of captured developable surfaces
- Reduce number of charts

Algorithm overview

Post processing

- Straighten boundaries
- Darts/Gussets relax stress
 - Add seams toward high error regions
- Verify disc topology
- Parameterization

[Sander et al. '02] [Sheffer et al. '05]

Example results – CAD

Example results – Fandisk

UB

Example results – irregular meshes

Gargoyle	MCGIM	Iso-Charts	D-Charts
#Charts	10	11	10
L ₂ Stretch	1.009	1.019	1.006
L_{∞} Stretch	2.221	2.153	1.645
L_2^{Shear}	0.011	0.022	0.008

Horse	MCGIM	Iso-Charts	D-Charts
#Charts	15	13	12
L ₂ Stretch	1.014	1.035	1.01
L _∞ Stretch	2.803	2.766	2.315
L ₂ Shear	0.014	0.038	0.001

UB

Soft and paper-craft toys

Summary

- Segment mesh into nearly developable charts
- A simple metric of developability for surface charts – *The Fitting Error*
- Use bounded Lloyd iterations
- Use Holes / Merging to correct no. of charts

Thank you

djulius@cs.ubc.ca