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Figure 1: Resizing a clock model (267 connected components): Standard non-uniform scale distorts the shape of parts of the model, e.g. the
dial (b). Our approach resizes the clock in a more natural manner protecting its shape (c). (d) and (e) show part of the protective grid before
and after resizing.

Abstract

Resizing of 3D models can be very useful when creating new mod-
els or placing models inside different scenes. However, uniform
scaling is limited in its applicability while straightforward non-
uniform scaling can destroy features and lead to serious visual ar-
tifacts. Our goal is to define a method that protects model features
and structures during resizing. We observe that typically, during
scaling some parts of the models are more vulnerable than oth-
ers, undergoing undesirable deformation. We automatically de-
tect vulnerable regions and carry this information to a protective
grid defined around the object, defining a vulnerability map. The
3D model is then resized by a space-deformation technique which
scales the grid non-homogeneously while respecting this map. Us-
ing space-deformation allows processing of common models of
man-made objects that consist of multiple components and contain
non-manifold structures. We show that our technique resizes mod-
els while suppressing undesirable distortion, creating models that
preserve the structure and features of the original ones.
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1 Introduction

Digital 3D models are an inherent part of many applications in en-
tertainment, design, and engineering. Discrete digital models, such
as meshes, allow greater flexibility for modifications and adjust-
ments than any preceding physical model. Still, the creation of such
models from scratch is non-trivial, and there is an emerging trend
toward reuse of existing models, parts, or designs. To reuse such
man-made models some reshaping may be needed to better fit with
other models or parts. One of the principal ways of reshaping ob-
jects is through resizing. By resizing we mean scaling or stretching
the object along several orthogonal directions or dimensions to fit
a new prescribed size. Resizing is often necessary to satisfy engi-
neering requirements, to conform to related models or parts within
an assembly or scene, or simply to generate variations of an existing
model (Figure 2).

Resizing by simply applying a global scale usually does not suf-
fice, as models often contain various parts and features that can be
distorted by such scaling. Most notably, global non-uniform scal-
ing changes the surface curvature in parts of the model distorting
their shape as shown in Figure 1 (b). Clearly, the visual distortion
increases as a function of the scale magnitude. However, this dis-
tortion is not distributed uniformly across the surface. The visual
artifacts are localized in specific, vulnerable, regions of the surface.
Other regions are indifferent to the scale regardless of its magni-
tude. This observation suggests that resizing must be distributed
non-homogeneously throughout the model, protecting some parts,
while possibly stretching others excessively. In contrast to local
shape distortion, human perception seems far less sensitive to uni-
form scale of parts, even if some parts change their relative scale in
the model. For instance, while the proportions between the dial and
the pendulum of the clock Figure 1 (c) change, the model appears
visually correct. This suggests that uniform scale of internal parts
could be used to counteract undesirable non-uniform scaling.



Figure 2: The car (top) is stretched by our method to convert it into
a three- and four- seater. The seats were manually added.

Non-homogeneous resizing of an object could potentially rely on
an internal parametric representation of the model. Such represen-
tations contain parameters and constraints that try to capture the
designer’s intent and define semantics that facilitate future modi-
fications. This allows certain parts to be resized differently than
others. However, such representations are available only in models
created by specific applications such as CAD editors. Most discrete
digital models such as meshes have no notion of semantic parts or
constraints. The possibility of extracting this high-level informa-
tion from digital models (e.g., using reverse engineering) is still
limited. Instead, we present a method that uses low-level analysis
of the models to automatically detect vulnerability given the resiz-
ing axes.

We also observe that most man-made models consist of multiple
connected components, non-manifold structures, and intertwined
features (e.g., see Figure 3). Surface-based techniques (see [Botsch
and Sorkine 2008]) deal with manifolds and cannot handle individ-
ual parts while accounting for spatial relationships between them.
To protect global structures and preserve spatial relations between
object components our method uses a space-deformation technique.
This allows handling such complex models naturally, supporting
multiple components, avoiding self-intersections, and preserving
global relations.

1.1 Method Overview

The method we introduce in this paper is derived from the above ob-
servations. First, for each given scaling direction, we measure local
surface vulnerability by analyzing a combination of local differen-
tial surface properties. This measure distinguishes between regions
that can scale non-uniformly along the given direction and those
vulnerable to such scale. Next, we embed the model in a protec-
tive volumetric grid and gather the local surface measures to define
the vulnerability of each cell to spatial deformation. Using this in-
put, the resizing is applied non-homogeneously to the volumetric
grid, protecting the model by respecting the cells’ vulnerability. To
counteract shape distortion and excessive stretch we allow all cells
to scale uniformly with respect to one another.

Figure 3: Man made digital objects often contain numerous com-
ponents, and complex, non-manifold structures. The coloring illus-
trates the different connected components of the models.

The resizing operator is expressed as an aggregate of compatible
local transformations that are obtained by optimizing a quadratic
energy functional. With this optimization, regions that are less vul-
nerable to the stretch adhere to the global transformation in a coher-
ent manner, while vulnerable regions locally adhere to the source
shape to avoid distortion. Figures 1(d,e) and 5 show the protec-
tive grid before and after resizing. The illustration shows how the
stretch is distributed non-homogeneously throughout the volume to
protect the vulnerable parts of the model.

This approach bypasses the difficult reverse engineering task of de-
tecting the global structure, while implicitly preserving the main
characteristic features of the models under the stretch operation. We
demonstrate the effectiveness of our resizing method on a diverse
set of 3D models, generating scaled models that better preserve se-
mantic structures of the originals.

2 Background

The problem of resizing 3D models has not received much attention
so far. There is a substantial body of work studying the somewhat
related problem of reverse engineering, which aims to approximate
a given 3D model with parametric parts [Attene et al. 2007; Attene
et al. 2006; Várady and Martin 2002; Benkö et al. 2001]. Resizing
a parametric primitive is a trivial operation, but resizing a compo-
sition of such parts in a way that preserves the global design or
engineering rules remains difficult. The goal of this paper is not
to solve any reverse engineering problems, but to achieve similar
effects visually by simpler means.

Our analysis of mesh vulnerability is related to other works on mesh
analysis. Lee et al. [2005] introduce mesh saliency as a measure of
the visual importance of surface details. They measure saliency
as a combination of curvature at different scales. Gal and Cohen-
Or [2006] have also based their feature saliency on surface curva-
ture. They identify significant features to facilitate partial matching.
Slippage analysis, presented in [Gelfand and Guibas 2004], pro-
vides another analysis tool. Slippable motions are motions which,
when applied to a surface, slide the transformed version against the
stationary version without forming any gaps. A slippable motion
of each point P on a surface must be tangential to the surface at
that point. If only rigid motions are considered, slippage analysis
can detect rotationally and translationally symmetrical shapes such
as planes, spheres, and cylinders, which are often found as compo-
nents of mechanical parts.

Resizing can be seen as a special case of model deformation. Most
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Figure 4: 2D and 3D comparisons of our method to shape-preserving/as-rigid-as-possible deformation. (a) Original models; (b) a simple
non-uniform scale (shrinking the car and stretching the camera); (c) as-rigid-as-possible (top) and shape-preserving (bottom) deformation
weighted to protect vulnerable parts (for the car only the wheels are classified as such); (d) our non-homogeneous resizing.

mesh deformation techniques target natural models defined by a
single manifold surface [Botsch and Sorkine 2008] and as such are
unsuitable for our purposes. Masuda et al. [2007] extend these tech-
niques to deforming CAD models by combining volumetric and
surface-based deformation and using a user provided importance
map to disribute the distortion across the model. Those and other
typical deformation formulations penalize shear as much as bend-
ing, they tend to compensate for shear by introducing locally rigid
rotations which nevertheless accumulate, leading to global distor-
tion (Figure 4(c)(bottom)). Such formulations cannot be used in a
resizing setup where shear along the resizing axes is not only un-
avoidable, but in large regions of the models perfectly desirable.
Space-deformation methods [Sederberg and Parry 1986; Coquillart
1990; Ju et al. 2005] transform the embedding space rather than
specific representation of the geometry. However, existing space-
deformation methods treat the space homogeneously without being
aware of the features of the objects being transformed.

Recently, content-aware resizing had been addressed in image-
space [Gal et al. 2006; Avidan and Shamir 2007; Wolf et al. 2007].
However, both in images and in video, the nature of the problem,
and hence the solution, is different. Image space is discrete, and
resizing individual pixels is prone to aliasing artifacts. Avidan and
Shamir [2007] show that by distributing the error among a finite
set of seams, the majority of the pixels remain unchanged and the
general look of the image is preserved. In contrast, the methods em-
ployed in [Gal et al. 2006; Wolf et al. 2007] use a global approach
where the error is distributed across all pixels. Such a global ap-
proach has the advantage that important regions can rotate or uni-
formly scale, distributing the error to less important parts. When
resizing geometric models, aliasing is not a concern, therefore we
also take the global approach.

Finally, an interesting insight into resizing patterns in natural envi-
ronments can be found in [Thompson 1942].

3 Our Approach

While a one-directional stretch, say a horizontal one, can distort
vulnerable surface parts, it does preserve structural features such
as straight lines and parallelism, as well as orthogonality between
axis-aligned lines. Minimizing the distortion of the vulnerable re-
gions with non-homogeneous similarity or shape-preserving trans-
formations [Gal et al. 2006; Popa et al. 2006; Wolf et al. 2007] or
as-rigid-as-possible deformations [Alexa et al. 2000; Sorkine and
Alexa 2007; Igarashi et al. 2005] simply redistributes the distortion,
pushing it to other parts of the model (Figure 4(c) (top)). A better

way to preserve structure while resizing is to minimize bending, ac-
cepting a certain degree of shear and allowing uniform scale. The
low-distortion result in Figure 4(d) preserves the global structure
while introducing significant per-triangle shear and some changes
in scale.

The vulnerability of the surface to resizing depends on the resizing
direction and is fairly independent of the actual amount of stretch
(see Section 4). Therefore, we first estimate the degree of vulner-
ability on the mesh given the resizing axes and then use this in-
formation inside a linear resizing formulation. This formulation
effectively minimizes the visual shape distortion by distributing the
resizing non-homogeneously across the input model. Hence, we
target a non-homogeneous scaling transformation with the follow-
ing requirements:

• Modulation: It should locally control the deviation from a
uniform scale based on the level of vulnerability of local re-
gions.

• Compatibility: It should preserve shape continuity by using
local transformations that agree on shared vertices.

• Axis alignment: It should locally preserve orthogonality and
avoid rotations, so as to prevent surface distortion.

• Consistency: It should obey the global non-uniform scale.

Our method addresses the tradeoff between these possibly conflict-
ing requirements using a two-step procedure, where each step is
framed as a quadratic constrained optimization problem, solved
using a linear system of equations. The system yields a non-
homogeneous transformation defined across the model bounding
box that generates the desired global resizing, while preserving the
global structure of the model and minimizing the visual deforma-
tion of its features (Figure 5).

4 Estimating Vulnerability

Surface vulnerability to nonuniform scale is strongly linked to the
direction of the scale. For instance, let’s consider a cylinder, it is not
vulnerable to scaling along its axis, but is vulnerable, to different
degrees, to scaling in other directions. Our directional vulnerability
measure is based on estimating the effect a non-uniform scale may
have on the model, and is based on two components, slippage and
normal curvature.

Slippage: Slippage analysis [Gelfand and Guibas 2004] estimates
surface persistence subject to a given transformation (or transfor-



Figure 5: One slice of the protective grid containing the phone model before (left) and after (right) resizing. The change illustrates how the
space deforms non-homogeneously to protect vulnerable parts of the model. Note that the bounding box is not tight to increase flexibility.

mation type). Specifically, it measures whether a local region on a
surface remains on the surface after the transformation is applied.
It is easy to see that a surface patch is slippable subject to non-
uniform scale, if and only if the surface normal across the patch
is perpendicular to the scale axis. On typical scanned or remeshed
models slippage can be measured around mesh vertices, by pro-
jecting the normals in each vertex’s umbrella onto the scaling axis
and summing up the projection lengths, possibly with some weight-
ing. However, man-made models, such as the fuel-tank (Figure 6),
often contain very large triangles, spanning significant portion of
the model, leading to unreliable vertex-based slippage estimation.
Most notably, since the meshes are coarse, we rarely obtain absolute
zero slippage (consider for instance the vertices bounding the cylin-
drical part of the canister in Figure 6). Thus, we choose to compute
slippage on mesh faces, using the projection of the face normal onto
the scale axis as per-triangle slippage measure. To eliminate local
singularities we average the face slippage with slippage on neigh-
boring faces using weighting based on the faces’ normal similarity
and length of shared edges.

Normal Curvature: While slippage analysis can discriminate be-
tween vulnerable (non-slippable) and non-vulnerable (slippable) re-
gions, it is not sufficiently discriminative for our purposes. For ex-
ample, consider two objects: a cone aligned with the scaling axis
and a sphere. When stretching the cone, the cone’s slope changes
while its overall shape is preserved. In contrast, on the sphere every
local region is deformed. The slippage metric would classify both
surfaces as vulnerable, without clearly distinguishing between the
different degrees of vulnerability. The differentiating factor in this
and similar scenarios is the normal curvature of the surface in the
direction of the scaling axis, which predicts the amount of surface
bending subject to the scale. We measure normal curvature at mesh
vertices, projecting the scale axis to the surface tangent plane. Prior
to the computation, we segment the mesh along sharp creases to
obtain more reliable results.

Given a scaling axis u, the per-face vulnerability metric θu com-
bines slippage with normal curvature,

θu = su(εκ + κu),

where su measures per-face slippage for the axis u and κu measures
the per-face normal curvature, computed as average of vertex cur-
vatures. We add εκ to the curvature to prevent zero curvature from
canceling non-zero slippage (we use εκ = 1e−4). To concentrate
the scaling in zero vulnerability regions, we clamp both slippage
and normal curvature at fairly small values of 0.1 and 1/(3d), re-
spectively, where d is the bounding-box diagonal. We then scale
both to a unit range for compatibility. Figure 6 shows the vulnera-
bility of the fuel tank model along the principal axes.

Transfer to Grid: To perform the actual resizing we embed the

Figure 6: A 3D fuel tank model and its face vulnerability values in
the three major directions - red indicates high vulnerability.

model in a protective volumetric grid (Figure 7). Using a grid-
based space-deformation allows us to apply resizing to complex
man-made models that often have multiple connected components.
Surface-based transformation computation would have difficulties
in these cases. In addition, a volumetric structure allows preserving
spatial relation among parts which are not necessarily geodetically
close. Using surface-based representation, only geodesic proximity
can be accounted for. Space deformation alleviates both concerns
by implicitly taking spatial relationships into account.

To convert the surface vulnerability values to grid cell values, the
vulnerability per grid cell is defined as the maximum vulnerability
value of the mesh faces that intersect it. The choice of maximum
makes the vulnerability assignment conservative, reducing the like-
lihood of feature distortion.

5 The Resizing Operator

Given a global resizing transformation < Sx, Sy, Sz >, we dis-
tribute it among a grid of cells aligned with the resizing axes. Our
vulnerability analysis associates each grid cell c with a triplet of
scalars < θx

c , θy
c , θz

c > that indicates how vulnerable the cell is to
scale along each direction. Using this input, we first compute scale-
only transformation gradients for each cell such that the aggregate
of all the cells’ scales amounts to the global resizing transforma-
tion. Given the gradients, the method computes full per-cell trans-
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Figure 9: Scaling a complex church model without destroying its unique architectural style. Note the preservation of details in the close-up
pairs (in each pair the left is simple scaling and the right is our approach).

(a) (b)

Figure 7: The volumetric protective grid of the fuel tank.

formations enforcing compatibility between adjacent cells. Finally,
in each cell the transformation is carried back to the object using
interpolation (Figure 8).

5.1 Cell Scale Calculation

The scaling transformations < sx
c , sy

c , sz
c > for each grid cell

should satisfy the aforementioned requirements of modulation,
compatibility, axis-alignment and consistency. Since we only con-
sider scales, axis alignment is satisfied by default. Combining the
other three requirements, we obtain the per-cell scales as the solu-
tion of a constrained minimization problem.

To account for modulation, we consider the scaling of a partic-
ular cell with respect to two directions u and v, where u, v ∈
{X, Y, Z}, u 6= v. Its resistance to change with respect to these
two directions is given by θu

c and θv
c , respectively. Since globally

the grid must scale non-uniformly, the role of θu
c and θv

c is to mea-
sure how much of the non-uniformity can be accommodated by the
cell c. We assume that the worst per-cell scale in each direction is
given by the corresponding global scale. Note that in reality some
cells might scale more than that, since other cells scale less or not
at all. However, the global scale gives a good approximation of the
worst case. Hence, in the first step we define the acceptable per-cell
scale s̃u

c and s̃v
c for cell c by a linear combination of uniform and

global scales weighted by the vulnerability in the given direction:

s̃u
c = θu

c · 1 + (1 − θu
c ) · Su

Figure 8: The fuel tank stretched by a factor of two, (top) simple
scale, (bottom) non-homogeneous resizing. Note the preservation
of fine details in our result.

s̃v
c = θv

c · 1 + (1 − θv
c ) · Sv.

Since we allow uniform scale, we are interested in relative scale or
aspect ratio between su

c and sv
c rather than their absolute values.

Hence, we can minimize:

(
su

c

sv
c
− s̃u

c

s̃v
c
)2.

To avoid non-linear optimization, we replace this term by a similar
but simpler quadratic expression,

Lc(u, v) = (
su

c

s̃u
c
− sv

c

s̃v
c
)2.

The degree to which we want this function to be minimized for each
cell depends on how much we want the aspect ratio to be preserved
and is a function of the smaller of the two vulnerabilities θu

c or θv
c .

In other words, if the scale in one of the directions is free to change,
then there is only minor need for the aspect ratio to be preserved.
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Figure 10: Resizing decorative models: Stretching a candelabrum consisting of 87 parts and an antique phone consisting of 22 parts. The
middle column shows the result of a simple scale. On the right are the non-homogeneous results.

Assembling all the cells and the three pairwise scales together we
obtain:

Fm =
∑

c

ωxy
c Lc(x, y) + ωyz

c Lc(y, z) + ωxzLc(x, z),

where ωuv
i = max(min(θu

c , θv
c ), 10−4) controls the distribution of

the non-uniform scale through the domain. ωuv is always positive,
as even in cells that are free to scale in some direction, excessive
scale is undesirable. Rather, we want to distribute the scale more
evenly throughout the model when possible, taking advantage of
uniform scaling as necessary.

To satisfy the compatibility requirement, adjacent cells must apply
the same scale to their shared faces. Given two cells c and d, ad-
jacent along axis w, compatibility requires their scales in the two
directions u, v orthogonal to w to be the same:

su
c = su

d

sv
c = sv

d.

However, since compatibility cannot always be guaranteed, we
phrase it as a least-squares penalty term added to the minimization
functional:

Fc =
∑
c,d

φcφd((su
c − su

d)2 + (sv
c − sv

d)2), (1)

where the summation runs over all pairs of adjacent cells, and
φi is an indicator function with value one if the cell i intersects
the surface and 0.1 if it does not. This implies that compatibil-
ity is more important along the surface. We found that preserving
some degree of compatibility outside the model captures better the
model’s global structure, reducing distortion and enforcing more
global changes.

Lastly, to enforce the global scaling, we must require that for each
row of cells in any direction, the combined scale is equal to the

input scale in that direction:∑
i

sx
i,j,k = Sx, ∀j, k,∑

j

sy
i,j,k = Sy, ∀i, k,

∑
k

sz
i,j,k = Sz, ∀i, j.

The desired per-cell scales are obtained by optimizing Fm + αFc

subject to the global scaling constraints. The weight α is set to 4/3.
The resulting linear system is solved using a preconditioned MIN-
RES solver [Toledo 2003]. For our matrix which is of the shape(

A BT

B 0

)
we use

(
D 0
0 BD−1BT

)
, where D = diag(A), as

the preconditioner.

5.2 Global Transformation Assembly

After the first step, we obtain < sx
c , sy

c , sz
c > for each grid cell.

We now need to combine all cells together and derive the locations
of the grid vertices. Had the compatibility constraints been fully
satisfied, it would have been enough to scale each cell as specified
and simply assemble them, using an iterative process, which sets
the appropriate per-cell translations progressively. However, as cell
scales might not be fully compatible, we use a least-squares for-
mulation to obtain the coordinates for all the grid vertices at once,
while keeping the per-cell scales as much as possible. When com-
positing the cells together, we want to preserve axis alignment, as
shearing the grid can introduce undesirable bending in the resized
model. We solve for each coordinate independently, to prevent un-
desirable rotations. Scale preservation for a direction u is expressed
as

Fp =
∑

c

θu
c

∑
(e1,e2)∈h

((eu
1 − eu

2 ) − su
c )2,

where the index h runs over the four u-aligned edges (e1, e2) of



each cell, and θu
c is the directional vulnerability. Orthogonality is

expressed as follows:

Fo =
∑

c

φc

∑
(e1,e2)∈o

(eu
1 − eu

2 )2,

where the index o runs over the eight edges orthogonal to u. We
minimize Fp +Fo, assigning equal weight to scale and orthogonal-
ity preservation, subject to enforcing the u values for vertices on the
bounding box of the object to match the new scale. The three lin-
ear systems obtained are symmetric positive definite and are solved
using a conjugate gradient solver with incomplete Choleski precon-
ditioner [Toledo 2003].

Original Scaled Non-homogeneous

Figure 11: Preserving structural features when resizing mechani-
cal shapes: shrinking a fan and stretching a camera.

6 Results

Throughout the paper we demonstrate the application of our method
to a large variety of models, including elaborate decorative shapes
such as the clock (Figure 1) the candelabrum, and the antique phone
(Figure 10); mechanical shapes such as the fan, the camera (Figure
11), the wrench (Figure 12), and the car (Figure 2); and architec-
tural structures such as the church (Figure 9).

As demonstrated by the candelabrum and the clock examples, our
method faithfully preserves the intricate shapes of the model fea-
tures, taking advantage of uniform scale to prevent bending and
excessive stretch. It accurately maintains structural features, such
as straight lines, parallelism and orthogonality in CAD models such
as the camera, the fan (Figure 11) or the wrench. The spatial grid

allows for effective distribution of scaling throughout the less vul-
nerable regions of the models, as demonstrated by the scaling of
the church example, where it takes the viewer some time to realize
which parts were stretched and which scaled uniformly.

The fountain (Figure 13) is another interesting example, as it con-
tains both man-made and natural shapes (humans). The method au-
tomatically detects the vulnerability of the human figures to stretch-
ing. By implicitly taking spatial relationships into account in the
grid optimization it adjusts the scaling of the rest of the scene to
protect the human figures, while preserving the horizontal and ver-
tical fountain structures.

Figure 2 shows an application of resizing in a modeling setup, easily
converting the two-seat car to a three-seat or even a four-seat car by
simply stretching it and adding more seats.

Figure 12: Stretching a wrench (top) using simple stretch (middle)
and non-homogeneous resizing (bottom).

While the focus of our work is on the resizing of man-made mod-
els where the preservation of structure is most critical, our method
works on “organic” models as well (Figure 15(top)). However since
such models contain less evident structures, the gain is less signif-
icant. Another interesting example is shown in Figure 15(bottom).
In this case the microscope model is resized in a direction that is
misaligned with major model parts. Our resizing method provides
intuitive results in such cases as well.

Finally, we note that typical man-made models usually have suf-
ficient variation in vulnerability across the model. This variation
can be exploited by our approach for effective non-homogenous re-
sizing. This is true even in cases where no part of the model has
absolute zero vulnerability (see Figure 16).

Table 1 summarizes the statistics for the demonstrated models.
Most of the models are quite complex, with many having dozens
of connected components and fairly large face counts. Interest-
ingly, in our experiments a rather coarse grid is sufficient to cap-
ture the vulnerability metric across the models. This is because in
our setup the grid resolution need not capture all the model details,
but only the local vulnerability. Most of the models were stretched
or squashed by factors of 1.5 to 2, as these appear to be typical
for realistic resizing scenarios. We ran the experiments on Pentium
4 3.0GHz workstation and measured both the initialization and ac-
tual resizing times. The initialization cost includes the vulnerability
computation and initialization of the Choleski preconditioners used
for global transformation assembly. Initialization is performed only
once after the user selects the scaling axes and grid resolution and is
independent of the amount of scaling applied to the specified axes.
The times for both steps range from around 0.5 seconds to 15 sec-
onds.

Limitations: There are times when parts of the model are not
vulnerable to scale in a certain direction, but scaling them non-
uniformly adversely affects the object’s design. In Figure 14, scal-
ing the Japanese lantern stretches the rims of two lantern parts in an



Figure 13: Fountain model with crowd. In contrast to homogeneous scale which distorts the human figures (middle), our method automati-
cally detects their vulnerability and protects them (right).

Figure 14: A Japanese lantern is stretched in an unnatural manner by the automatic method. This can be easily corrected by explicitly
protecting the rim regions, using the visualized user interface.

Model Num. Num. Grid Stretch Init. Run

faces comp. resolution time time

Car 29636 40 30,73,35 1.8/2.2 7.3 4.2

Candelabrum 11284 87 80,64,25 1.65 8.8 6.5

Clock 55725 267 50,115,22 1.4 8.7 5.8

Fan 501956 309 20,20,57 0.65 1.5 0.7

Phone 29416 22 50,29,42 1.5 4.5 2.6

Fuel tank 9236 61 40,14,17 2.0 0.8 0.4

Church 39306 129 80,52,50 1.4 15.2 11.8

Camera 6868 29 60,38,56 1.8 9.6 4.8

Wrench 3092 4 60,5,17 1.7 2.5 1.6

Lantern 2125 7 60,61,61 1.5 15.5 10.9

Fountain 42988 766 50,23,38 1.5 2.4 1.5

Table 1: Model statistics. All times are measured in seconds.

unnatural manner. To introduce design intent into the vulnerability
map, we allow the users to change the vulnerability values on the
grid as shown in the figure. Using the new vulnerability map, the
method creates a more desirable resized model.

It is important to note that while our method creates models with
no visible artifacts, we do not claim that it can precisely preserve
the surface structures and curvature in an engineering sense. In-
telligent models that exactly preserve complex spatial relations and

constraints between parts require high-level reverse engineering.

7 Conclusions

Resizing provides an effective mechanism for creating rich geo-
metric content. However, naive resizing or resizing using existing
deformation tools can create visible artifacts. This work presents a
novel resizing method that protects geometric features and model
structures. We reap the benefits of using a space deformation
method which allows dealing with complex models consisting of
numerous parts and non-manifold structures. As demonstrated by
the examples, the method resizes models in an intuitive manner.
Our method augments the set of tools that simplify the creation of
3D geometry, enabling reuse and redesign of existing models.

Our protective grid uses a distortion vulnerability measure defined
on 3D objects. We believe that this scheme could be extended to
other vulnerability measures which protect other types of features
as well. These could include saliency measures, perceptually im-
portant quantities, as well as high level information such as sym-
metry. In a similar manner, the vulnerability measure itself could
be useful in other contexts beyond resizing.
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Figure 16: An example where no part has zero-vulnerability in the scaling direction. From left to right: original model (the coloring expresses
the vulnerability), simple homogeneous resizing, non-homogeneous resizing.

Figure 15: Additional examples. From left to right: original model,
simple homogeneous resizing, non-homogeneous resizing.
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