
Volume xx (200y), Number z, pp. 1–14

Controller Design for Multiskilled Bipedal Characters

M. Firmin and M. van de Panne

University of British Columbia, Canada

Abstract

Developing motions for simulated humanoids remains a challenging problem. While there exists a multitude of
approaches, few of these are reimplemented or reused by others. The predominant focus of papers in the area
remains on algorithmic novelty, due to the difficulty and lack of incentive to more fully explore what can be
accomplished within the scope of existing methodologies. We develop a language, based on common features found
across physics based character animation research, that facilitates the controller authoring process. By specifying
motion primitives over a number of phases, our language has been used to design over 25 controllers for motions
ranging from simple static balanced poses, to highly dynamic stunts. Controller sequencing is supported in two
ways. Naive integration of controllers is achieved by using highly stable pose controllers (such as a standing or
squatting) as intermediate transitions. More complex controller connections are automatically learned through an
optimization process. The robustness of our system is demonstrated via random walkthroughs of our integrated set
of controllers.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Animation—Physical
Simulation

1. Introduction

Physics based animation is an approach to animation in
which characters, humanoid or otherwise, are simulated
within a virtual environment. While it has many benefits
over traditional animation techniques—keyframing and mo-
tion capture—there are still many obstacles to overcome be-
fore it can be adopted by the animation community at large.

One predominant issue is that while there are a multi-
tude of approaches to designing new and complex motions,
few are reused, reimplemented, or integrated with existing
techniques. For example, many papers have explored—in
depth—the creation of complex motions such as backflips,
rolls, and locomotion, but there has been little work that aims
to integrate the motions and methods.

Motion controller design for simulated characters and
robots alike generally involves complex algorithms and fine
tuning of many parameters before achieving a motion that is
both physically realistic and stylistically appealing. A sim-
ple method of authoring controllers that is accessible to ex-
perienced and novice users alike has the potential to greatly

further the number of motions a framework for physically
simulated characters can produce.

1.1. Overview of Approach and Contributions

To help overcome the prevalent issues in physics based ani-
mation, we propose a simple controller authoring language,
incorporating common features from research in the area.
We argue that such a language should be comprehensive
enough to allow for the development of complex motions,
while also being approachable for novice users.

The primary contribution of this paper is our take on such
a language. Our design is based around a finite state machine
model, which allows users to design motions by breaking
complex motions into smaller ones. The lowest level vocab-
ulary of the language is derived from the commonly seen
aspects of physics animation research, such as proportional
derivative or virtual force controllers. These motion primi-
tives can be abstracted in order to allow novice users to cre-
ate controllers based on intuitive concepts such as joint an-
gles or forces specified in Cartesian coordinates, while also
being open to fine tuning by expert users.

submitted to COMPUTER GRAPHICS Forum (4/2015).

2 M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters

In addition, we contribute a novel method for integrat-
ing the controllers developed using our language. This is
done by learning new inter-controller transitions through op-
timization.

Our language has been used to design over 25 con-
trollers for various motions ranging from simple static poses,
to highly dynamic motions such as backflips and forward
walkovers. We also demonstrate the connectivity of our con-
trollers by random walkthroughs of our integrated set of con-
trollers.

2. Related Work

There now exists a wealth of literature on controlling motion
for simulated humanoids. Our discussion is focused on three
topics. First, we describe the common control primitives and
techniques used by the physics based animation and robotics
communities. Next, we describe previous work toward gen-
erating controller transitions and longer motion sequences.
Finally, we describe how domain specific languages have
contributed to other fields.

A full review of the current state of physics based charac-
ter animation is beyond the scope of this paper, and can be
found in [GP12]

2.1. Controlling Simulated Humanoids

One classic approach to designing controllers is to break
complex motions into simpler motion phases. This idea
is commonly expressed as a finite state machine and can
be seen in many related works [RH91, LvdPF96, HW98,
LKL10]. In SIMBICON [YLvdP07], Yin et al create a num-
ber of locomotion controllers by splitting more complex mo-
tions into a small number of phases, which when repeated
cyclically, to generate robust motions.

Manipulation of a character’s joint space has been a com-
mon approach to physics based simulation. Proportional
derivative controllers, which produce a torque to achieve a
user specified angle at each joint, can be seen in many works
[HP97, HW98, YLvdP07]. Virtual force control through Ja-
cobian transpose has been crucial in the development of con-
trollers for both robotics [SADM94, PCT∗01] and physics
based animation [CBvdP10, HYL12]. While many existing
control frameworks operate primarily in joint space, oth-
ers attempt to abstract motion into high-level tasks or fea-
tures. In feature based control, motions are tied to character
features such as the center of mass or global angle of ro-
tation [MZS09, dLMH10, ABFHdL14]. This approach gen-
erally involves an underconstrained inverse dynamics prob-
lem, in which an optimization, constrained to the laws of
motion, is solved at every timestep with objective functions
related to the high level features. The free variables at each
step are the spatial body accelerations, joint angular acceler-
ations, and control torques.

Another approach involves the creation of physics based
controllers from motion captured data. This has been ex-
plored in [SKL07, DSAP08, LKL10].

2.2. Controller Transitions

While a great deal of research has been put into creating ro-
bust controllers for various motions, significantly less work
has been put into finding stable transitions between them,
especially for motions with little to no similar features. The
learning of a designated transition controller from motion
capture data has been explored in Sok et al’s [SKL07]. In
[LKL10], Lee et al.’s controllers track reference motion cap-
ture data. Controller sequencing is supported by combining
two reference motions, and warping the second to create a
smooth transition.

In [CKJ∗11], Coros et al. transition between similar lo-
comotion controllers for quadrupeds by linearly interpolat-
ing between the two. Recent works including [YLvdP07,
MDLH10, YL10, CBvdP10, TLC∗10] show how success-
ful transitions between similar locomotion controllers can
emerge with little extra work. In [WFH10], Wang et al. cre-
ate recovery controllers for various locomotion controllers.
While normally used for correcting deviations from the set
of acceptable states for the controller, the authors also show
how transitions can be created by "recovering" from the tran-
sitioning controller into the new one.

However, transitions between more dynamic or different
controllers can pose a much harder problem. Ha et al. ex-
plored the idea of planning out a sequence of poses in order
to transition to the desired pose at the beginning of a new
action in [HYL12]. The works of [FVdPT01] and [Woo98]
focus on creating transitions between a small set of care-
fully designed controllers. In the former, Faloutsos et al. at-
tempt to determine a set of pre-conditions for a given con-
troller that would result in a successful transition to it. Tran-
sitions between the complex, highly dynamic tasks of run-
ning and obstacle clearance are explored in Liu et al’s Ter-
rain Runner [LYvdPG12]. In [HL14], Ha et al. create transi-
tions through a concatenation of separate controllers. Here,
they optimize the controller to be transitioned to with respect
to a family of transitioning controllers, then choose the most
likely candidate controller from the family.

Creating robust transitions between different controllers
can allow a physically simulated character to be manipulated
through higher-level, task based control. For instance, the
user can specify a simple task such as walking to a given
point, and the framework would figure out a sequence of
controllers to achieve this goal. This idea is explored by
Coros et al. in [CBvdP09], using locomotion controllers as
input. Alternatively, da Silva et al achieve composition of
controllers using an interpolation scheme, linear Bellman
combination, in [DSDP09]

submitted to COMPUTER GRAPHICS Forum (4/2015).

M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters 3

2.3. Domain Specific Languages

Existing domain specific languages or tools have been
shown to greatly influence their fields by simplifying the
design process, and engaging a much broader community
into the problem solving process. Examples of this in-
clude Renderman [Ups89] for rendering problems and FoldIt
[CKT∗10] for protein folding. The Robot Operating Sys-
tem [QCG∗09] is a general set of software libraries and tools
for helping to build robot applications.

Closer to this work, domain specific languages such as
Improv [PG96] and the Smart Object format [KT99] allow
a user to script simple interactions between characters and
environmental objects, as well as define simple kinematic
motions. In [BK13], Backman and Kallmann create a visual
language for designing physics-based controllers using mo-
tion graphs.

3. Language Features

In our work, we aim to consolidate these common features
into one easy to use scripting language that can be used to
author a wide variety of motions for a simulated humanoid.
In the following sections, we describe the basic layout of
our language, discuss the motion primitives we have chosen
to include, and present various feedback rules that have been
incorporated into the language.

In this section, we briefly describe the language and its
features, and present a few example controllers and motions.
A more in depth description of the language, as well as the
code for all of the controllers designed in it, can be found in
the appendices of [Fir14].

3.1. Hierarchical Phase-Based Structure

One of the most prevalent features in controller design is
the finite state-machine. In this, a complex motion is broken
down into a number of simpler motions, or phases. For ex-
ample, a backflip motion could be broken into a squat phase
followed by jumping, aerial, and landing phases.

For this reason, short motion phases represent the funda-
mental unit of a controller designed in our language. In each
phase the user specifies a number of motion primitives, such
as a PD controller or Virtual Force on a given joint or body
part, any desired feedback laws, and a number of transition
conditions for moving on to the next phase.

Another important feature in designing controllers is the
ability to easily re-use controller elements. If a user creates
a squat motion, and wants to use it in both a backflip and
hop motion, this should be simple to achieve. We support
this through a hierarchical controller structure , where any
given controller can include another. In our previous exam-
ple, the user would first design the squat controller. Then,
that controller can be included as an identical phase in both
the backflip and hop controllers.

This idea also facilitates the parameterization of controller
scripts. A user can start by designing a simple walking script.
Then, by passing in different sets of parameters, he or she
can modify the walk for different styles of walking without
having to reimplement the original script. This idea can also
be extended to parameterizing for a given feature, such as
the center of mass velocity.

3.2. Motion Primitives

Another important consideration when designing a language
is the choice of features that will serve as the basic control
primitives. We want these features to be simple enough that
somebody without extensive knowledge in the field can use
them effectively, but still expressive enough so that the lan-
guage can achieve its purpose. For our language, these prim-
itives correspond to the basic actions that the character can
take in any given phase. In addition, we would like these
primitives to be based on concepts that are already widely
utilized by the motion control community. Here, we describe
many of the simple motion primitives that a user can specify
in our language.

1. Proportional Derivative Controller
The proportional Derivative (PD) Controller is denoted
by

τc = kp(θa−θd)− kd θ̇a (1)

where τc is the calculated control torque for a joint, θa
the joint’s current angle, θd , the desired angle, and kp,kd
position and velocity gains, respectively. PD controllers
have long been one of the primary motion primitives
used in control research. They are simple enough to al-
low novice users to specify a desired joint angle in the
local frame, while also allowing expert users to tweak
the gains to attain better results. Our system also allows
the goal angle for the PD Controller to be linearly inter-
polated between the current angle and the specified an-
gle over a given duration of time. This allows the user to
specify a time for the desired angle to be realized, while
creating a smooth, linear motion between the two angles.

2. Global PD Controller
The global PD controller takes as input the desired angle
of a given body part specified with respect to the world
frame. An example usage is to keep the body upright by
specifying a desired angle on the upper torso. The user
specifies which joint(s) should be active to help realize
the desired angle.

3. Virtual Force
The Virtual Force primitive allows users to specify a
desired force upon a given body part. The character
achieves this force virtually by manipulating internal con-
trol torques along a chain of joints between the given part
and a specified base joint. The Jacobian Transpose is used
to determine control torques based on the desired virtual

submitted to COMPUTER GRAPHICS Forum (4/2015).

4 M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters

force:

τc = JT F (2)

Virtual Forces abstract control so that users can specify
a desired force in Cartesian coordinates. This can be ex-
tended to balance and speed control, gravity compensa-
tion, or forces specified on end effectors.

4. Inverse Kinematics
Inverse Kinematics takes as input a desired location either
in world space or relative to a base joint, and computes
the joint angles necessary to move a given body part to
that location.
Our system uses cyclic coordinate descent, as outlined
in [Wel93], in order to determine the necessary angles
along a chain of joints between the part being moved
and a specified base joint. The desired angles are then
achieved using PD Controllers to produce necessary joint
torques.

5. Joint symmetry
The symmetry primitive allows the user to specify that
a given joint should match the angle of another. This is
useful when the exact angle of the symmetric counterpart
is unknown, such as when it is adjusted by feedback laws.

3.3. Feedback

Another desired feature for control is the ability to provide
more global real time feedback. We accomplish this in two
separate ways. The first is a simple PD Controller modi-
fier based on the joint space feedback rules used in SIMBI-
CON [YLvdP07], while the second, based on virtual forces,
provides feedback in the Cartesian frame.

The PD Controller modifier is given by

θd = θd0 + cdd + cvv (3)

where θd is the modified desired joint angle for the PD con-
troller, θd0 the initial desired angle, d the horizontal distance
between center of mass and a given body part, v the center
of mass velocity, and cd ,cv gain parameters. This form of
feedback control is used primarily in the SIMBICON-like
locomotion scripts.

The second type of feedback employs virtual forces. Vir-
tual force feedback can be used to control both character bal-
ance and velocity. For balancing, we use a simple linear con-
troller

F = cdd + cvv (4)

to determine a virtual force to apply to the center of mass.
This force is realized virtually, using the joint chain running
between the ankles and upper torso. Here, d represents the
distance between the center of mass and the center of pres-
sure, v is the center of mass velocity, and cd and cv are gain
parameters. By changing the definition of d, we can use the
same feedback law to direct the character’s center of mass
to other desired locations, such as directly above one of the

ankles. This idea is shown in the stair climbing scripts by
using virtual forces to reposition the center of mass over the
leading foot during double stance.

Similarly, by manipulating v, we can regulate the charac-
ter’s velocity. Here, we replace v with (vd− va), where vd is
a desired velocity, and va the current velocity. This will cre-
ate a virtual force on the center of mass, attempting to ’push’
or ’pull’ the character until it reaches the desired velocity.

3.4. Phase Transitions

For a controller model based on finite state machines, the
ability to determine when to transition between phases is es-
sential. Our language offers the user a number of different
phase transitions they can use:

1. Time - The simplest form of transition. Transitions af-
ter a given amount of time has elapsed since entering the
phase.

2. Contact - Switch phases after a specified body part has
contacted the ground or another environmental object.
This is useful in situations such as switching from an
aerial phase to a landing phase in a jump controller.

3. No Contact - Switch phases after contact between the
ground and a given body part has been broken. For ex-
ample, switching from a preparation phase to an aerial
phase in a jump controller.

4. Stable - Switch phases after the character has become
stable, i.e. after all joint velocities as well as the center
of mass velocity have dropped below some given toler-
ance. This is useful for highly dynamic phases/controllers
where slight disturbances in the input state can cause the
controller to fail.

5. Fallen - Switch transitions after the character’s torso ori-
entation has passed a given limit. This is useful in de-
termining if the character has fallen or a controller has
failed.

6. Iterations - The controller will switch to the next phase
after a given number of iterations of the phase.

Each phase in a controller supports multiple transitions,
which are specified in an order of importance. The controller
will check each specified transition condition in order, and if
it succeeds, switch to the given phase for that specific tran-
sition. This design helps to create branches in a controller,
allowing the character to choose different actions based on a
number of parameters. For instance, in the landing phase of
the backflip script, two phase transitions are specified. First,
if the character’s upper torso has exceeded a certain global
angle range (fallen forward), then the controller switches to
phase which calls a crawling script. Second, if the character
has fallen backward, then the controller switches to a phase
which calls the supine script. Finally, if neither fallen transi-
tion takes place, the character waits until it is stable and then
transitions to a rising phase.

submitted to COMPUTER GRAPHICS Forum (4/2015).

M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters 5

3.5. Case Study: Step-Up Motion

We now show an example script for a step-up motion and
explain the thought process and workflow used to design it.
The finished motion can be seen in Figure 1.

In simple english, we wish to accomplish the following:

1. Stand in a balanced state
2. Lift the right foot up
3. Move the right foot over the step
4. Move the right foot down onto the step

The script for this motion is as follows
1 SCRIPTS standVFFB . t ;
2
3 BEGINSCRIPT s t e p _ u p (x , y)
4 PHASE 0
5 > standVFFB . t (. 1) ;
6 TRANSITION t o (1) . a f t e r (c o m p l e t e) ;
7 ENDPHASE
8 PHASE 1
9 ACTIONS

10 IK r F o o t . t a r g e t l o c a l (0 . 1 , −.6 , 0) . ba se (rHip) ;
11 VFFB uTorso (3 0 0 0 . , 2 5 0 .) . by (l An k le) . ove r (cop) ;
12 ENDACTIONS
13 TRANSITION t o (2) . a f t e r (t ime . 2) ;
14 ENDPHASE
15 PHASE 2
16 ACTIONS
17 IK r F o o t . t a r g e t g l o b a l (x , y ,−10)
18 . ba se (rHip)
19 . t o l e r a n c e (0 . 0 0 1) ;
20 VPD r F o o t (0.0 , −300 , −30). j o i n t (rAnk le) ;
21 VFFB uTorso (3 0 0 0 , 2 5 0) . by (l An k le) . ove r (l F o o t) ;
22 ENDACTIONS
23 TRANSITION t o (3) . a f t e r (t ime . 3) ;
24 ENDPHASE
25 PHASE 3
26 ACTIONS
27 POSE rHip (0 . 0) . t ime (5) ;
28 VPD r F o o t (0.0 , −1000 , −100). j o i n t (rAnk le) ;
29 VFFB uTorso (3 0 0 0 , 2 5 0 .) . by (l An k le) . ove r (l F o o t) ;
30 ENDACTIONS
31 TRANSITION t o (4) . a f t e r (c o n t a c t r F o o t) ;
32 ENDPHASE
33 . . .

Figure 1: step up script

The first line in the script lists all of the controllers called
by this script, which lets the system know it should load
these as well. This is comparable to an #include state-
ment in C. In this case, we include the stand script, because
we would like to start and end from it, thereby extending the
range of controllers that can be connected to this one through
direct transition.

The actual script begins on line 3. It is given a name and a
list of parameters—in this case, x and y—which correspond
to the height of the block that the character will step onto.

In phase —-lines 4 through 7—the system calls the stand-
VFFB.t (stand with virtual force feedback) script, with an
input parameter 0.1. When the stand script has finished run-
ning, the system transitions to phase 1 of the original step up
controller.

In phase 2, we would like to begin raising the right foot
so that it can be placed on the next stair. This could be done
in a number of ways. We could specify PD controllers on
the right hip, knee, and ankle, but this would lead to much
trial and error trying to place the foot exactly where we want
it. Another method would be to specify an upward force on
the right foot using virtual forces. This only requires one
parameter, but it would be difficult to determine when we
would like to stop moving the foot upward. We choose to
use the inverse kinematics primitive, shown on line 10. This
allows us to specify a (x,y,z) location to move the foot to—in
this case, given in the local coordinate frame of the right hip.

To ensure that the character remains balanced, we also
include a virtual force feedback primitive (line 11). We use
parameters for position and velocity gain of 3000 and 250
respectively, and specify that the character should use the
chain of joints between the center of mass and left ankle in
order to keep the center of mass positioned over the center
of pressure. We specify a transition out of this phase after a
sufficient time duration has passed to bring the foot upwards.

Now that the right foot has been raised, we would like to
position it over the step. Here, we again use inverse kine-
matics (line 17). This time, the goal location is specified in
global coordinates. The script parameters x and y represent
the position of the top center of the step, in global Cartesian
coordinates. Since the inverse kinematics primitive does not
control the global angle of the base joint, we also include a
virtual, or global, PD controller (line 20). We specify the de-
sired angle—0.0, or horizontal—so that the foot may remain
oriented correctly with the block.

In phase 3, we bring the foot down so that it rests flat on
the block. This is done by applying a PD controller at the
right hip, and transitioning out of the phase as soon as the
foot makes contact with the block.

The remainder of the script (which is omitted) shifts the
character’s weight to its right foot with a VFFB primitive,
then lifts the left foot to join the right in a similar fasion.

Through this process we have designed a successful
initial—albeit jerky—stepping up motion, shown in Fig-
ure 1. The motion can be smoothed or stylized by fine tuning
gains and other parameters, either by hand or through an op-
timization technique.

When designing a controller, we generally start by outlin-
ing what each phase should do. Then, each phase is authored
in succession, fine tuning parameters until we are happy with
the phase. Finally, after all phases have been authored to cre-
ate an initial approximation to the desired motion, we go
back through the controller and further fine tune for realism,

submitted to COMPUTER GRAPHICS Forum (4/2015).

6 M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters

style, or robustness from different starting states or character
perturbations. While it is generally fairly straightforward to
create an initial approximation for a motion, fine tuning it
can be tricky and time-consuming.

3.6. Case Study: Somersault

Another motion created in our language is the somersault, as
shown in Figure 2. To create this motion, we start by modify-
ing the forward walkover script as both motions have similar
beginnings. When running this initial script, we immediately
see that the character needs to be more bent over to ready
himself for a rolling motion. Therefore, we adjust the angles
for the hips, shoulders, and ankles until we see the character
place his hands closer to the feet.

Next, we notice that the character needs to adjust his back
and neck in order to provide a better arch for achieving a
roll. By adjusting these joint angles, we achieve a start to
a rolling motion, but the character is still unable to com-
plete the roll and end on his feet. To solve this, we adjust
the hips and knees so that he forms a tighter ball and rolls
onto his feet, while also bringing the arms around to push
off the ground. Finally, we call the squat-with-virtual-force-
balance-feedback script in order to achieve balance, and end
in a state from which various other motions can be started.

From start to finish, the entire motion took less than a half
hour to create, and the majority of this time was spent try-
ing to perfect the final stage of the roll so that the character
would end on his feet, rather than falling backward or for-
ward. Most adjustments were achieved by directly manipu-
lating the desired angles with PD Controllers, while virtual
force feedback was included for balance at the end of the
motion.

Figure 2: Somersault script

3.7. Language Re-use

We support re-use of our language in three primary ways.
First, a controller written in our language can serve as a tem-
plate for future controllers. If a user wants to design a motion
similar to one already in the database, they can use the exist-
ing one as a base, modifying it appropriately. For example, if
the user wanted to design a handstand motion, he could start
from the forward walkover controller as the two will likely
have similar structure.

Second, individual controllers are commonly re-used dur-
ing the development of other motions. For instance, the step

controller serves as a lead-in to both the handstand and for-
ward walkover motions, and the squat controller is used to
balance the character at both the beginning and end of the
backflip controller.

Finally, a controller can be reused with a different set of
parameters to create a new motion. This is shown in the
SIMBICON-like locomotion scripts. The walk, fast walk,
walk-in-place, and backward walk controllers all consist of
a single call to the same four-phase SIMBICON script with
a unique set of parameters in order to create a different mo-
tion. For instance, the walk script is given as below. For ex-
act descriptions of the parameters, please refer to the original
SIMBICON paper [YLvdP07].

1 SCRIPTS s i m b i c o n . t ;
2
3 BEGINSCRIPT walk (vo id)
4 PHASE 0
5 # (dt , cde , cdo , cve , cvo , t o r , swhe ,
6 # swho , swke , swko , s t k e , s tko , a n k l e)
7 > s i m b i c o n . t (. 3 , 0 . 0 , −2.2 , −.2 , 0 . 0 , 0 . 0 , −.4 ,
8 . 7 , 1 . 1 , . 0 5 , 0 . 0 5 , 0 . 1 , −.2) ;
9 TRANSITION t o (0) . a f t e r (c o m p l e t e) ;

10 ENDPHASE
11 ENDSCRIPT

By simply changing these parameters, different locomotion
scripts can be authored.

3.8. Controller Transitions

While our language facilitates the design of scripts for indi-
vidual motions, connecting these controllers is a more chal-
lenging problem.

A naïve approach is to design the majority of controllers
to start from a single pose, so that they may be connected by
using the given pose as an intermediate controller. For exam-
ple, when we design the hop motion, the first step is to call
the stand script, which consists of a simple pose complete
with balance feedback. In addition, it waits until the charac-
ter has achieved stability for the joints and for center of mass
before exiting and returning to the main hop motion. In this
way, we guarantee that the hop starts from a very specific
initial state, as defined by the stand script. The process of
transitioning from another controller to the hop then simply
requires designing other scripts to end at the stand pose—or
close enough that the stand script will be successful.

As an example, if we wish to connect the walk con-
troller to the hop controller, we use the intermediate walk-
to-stop controller, which slowly brings the walk motion to a
standstill, after which the stand motion may then be called.
Once the character has reached stability in the stand, the
hop can be successfully executed. The stand script is chosen
as an intermediate because it is highly stable and provides
sufficient feedback. Other scripts, including the squat and
SIMBICON-like locomotion scripts, are also highly stable
and make for good intermediate controllers.

submitted to COMPUTER GRAPHICS Forum (4/2015).

M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters 7

While this process is often successful, enabling us to cre-
ate long sequences of connected controllers such as that in
Figure 5, it often requires small stability tolerances, which
leads to lengthy pauses while the character attempts to
achieve stability. In addition, it can fail for dynamic motions,
which would require unrealistic tolerances.

An alternative is to employ an optimization to automati-
cally create new transitions. This method is explored in the
next section.

4. Optimizing for New Transitions

We propose a method to automatically learn transition
controllers that connect existing controllers, based on Co-
variance Matrix Adapatation [Han06], an evolutionary,
derivative-free optimization technique. Our transition opti-
mization approach takes as input two controllers: A and B.
Then, by mutating specified phases within controller A, it
produces a new controller that can successfully transition
from A to B. This process is illustrated in Figure 3

Figure 3: The last two phases of Controller A (represented
by the first four circles) are mutated to connect to Controller
B (represented by the last four circles).

4.1. Unknowns

In our optimization scheme, we are attempting to optimize
over specified phases of a given input controller. To do this,
we optimize all numerical parameters that are used in the
phase specification, in other words, those used in motion
primitives, feedback laws, and transitions.

For example, in the PD Controller primitive, the desired
joint angle, gains, and duration are all included in the un-
knowns. In virtual force feedback laws, the gain parameters
are subject to optimization. For transitions, the phase time or
stability tolerance are both optimized. Integer values such as
the number of iterations before transitioning or categorical
parameters such as the given body part or joint are not opti-
mized. The set of motion primitives present is not changed.
In this way, we keep the original intent of the controller, and
simply modify the exact values used. Our unknown vector x
is a simply list of all of these numerical values.

4.2. Objective Function

Our overall function E is given as the weighted sum of a
number of individual objectives terms

E =
n

∑
i

wiFi(x) (5)

where Fi are individual objective functions and wi their cor-
responding weights.

We split the individual objectives into two groups, those
that are always present during the optimization, and others
that are optional. The primary goal of the first group is for the
character to match a trajectory that is known to be successful
upon switching to the new controller. We define this using
as three separate objective terms. The second group helps to
provide stylized or smoother transitions.

The first of the objective terms is trajectory of the center
of mass. We define this objective term as

F1 =
n

∑
t=0

(ca,t − cd,t)
2 (6)

where cd;t is the position of the center of mass in the known
trajectory at time t, and ca;t is the position of the center of
mass in the current iteration of the optimization.

To avoid possible local minima where the center of mass
trajectory is matched, but in a different manner than in-
tended, we add in an objective term to track the global ori-
entation of the character.

F2 =
n

∑
t=0

(φa,t −φd,t)
2 (7)

where φa;t is the angle of the upper torso in world coordi-
nates in the current iteration at time t, and φd;t is the desired
angle at time t.

Finally, we also track the local joint angles of the character

F3 =
m

∑
i=0

n

∑
t=0

(θi:a,t −θi:d,t)
2 (8)

with θi:a,t ,θi:d,t the joint angles of the ith joint at time t
in the current iteration of the optimization and the desired
trajectory respectively.

Together, the objective functions given in equations 6,7,
and 8 encode a target trajectory (5) that the optimized con-
troller should follow. For most optimizations, weights of
w1 = 100,w2 = 1, and w3 = 1 were used. The first objective
term F1 was weighted significantly higher than the others, as
it provided the main trajectory to follow, while the other two
primarily helped to avoid local minima.

submitted to COMPUTER GRAPHICS Forum (4/2015).

8 M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters

The goal trajectory can be created by simply recording
the trajectory of a script that is known to work, given some
initial state. For example, suppose the user wishes to con-
nect a forward walkover script to a walking script. They can
run the walking script from the initial standing state (which
is known to be successful), and generate the trajectory from
there. In addition, it is easy to create a transition from one
script to a point partway through another (such as connect-
ing the handstand to a point halfway through the forward
walkover), by removing the unwanted sections of the trajec-
tory.

In addition to the basic trajectory objective, we allow the
user to specify extra objective functions, such as limiting the
time spent in a phase or minimizing energy cost. For mini-
mizing the time spent in phase p, we use the objective func-
tion

Ftime = tp

where tp is the time spent in phase p. The objective function
for minimizing energy cost is given as

Fenergy = tp
joints

∑
i

τ
2
i

where τi is the control torque of joint i, and tp the time spent
in phase p.

These additional objective functions allow for more stylis-
tically pleasing transitions and are useful in improving exist-
ing transitions.

4.3. (1+1)-CMA-ES

As the objective function defined in section 4.2 has no
well-defined gradient, we consider a derivative-free opti-
mization technique, Covariance Matrix Adaptation (CMA)
[Han06]. CMA is an evolutionary algorithm well suited
to solving discontinuous, non-convex problems, which has
shown to be successful for similar problems in previous
works [CKJ∗11, HL14, TGLT14, ASvdP13].

We opt to use (1+1)-CMA-ES [ISH06], an elitist variant to
the original CMA. In (1+1)-CMA, only one offspring is gen-
erated for each parent, replacing it if it has a better fitness.
Instead of keeping track of an evolution path, as in standard
CMA-ES, we keep track of an averaged success rate, and
adjust the global step size in accordance with this. If the suc-
cess rate is low, the step size should be decreased, and vice
versa. (1+1)-CMA-ES has proven to be successful in pre-
vious works [AvdP13] and has the benefit of being easy to
implement, while still maintaining the performance of the
original CMA.

The full optimization strategy can be summarized as fol-
lows: In each generation of the optimization, we create one
child set of unknowns based on a normal distribution around
the current optimal unknowns and scaled by the (1+1)-
CMA-ES step size. After running the simulation with the

child parameters, the objective function is evaluated, and if it
has a better fitness than the previous optimal, the child set of
unknowns replaces the parent. Finally, the success rate is up-
dated and used to determine the new step size. The process is
then repeated until the fitness drops below a pre-defined tol-
erance, or a designated limit for the number of generations
is reached.

The (1+1)-CMA algorithm from [ISH06], as adapted for
our simulation, is reprinted below.

Data: xparent, C = I, p̄succ = ptarget
succ , pc, tol

Result: xparent
while f (xparent)> tol do

determine A such that C = AA>;
z∼N (0, I);
xchild← xparent +σAz;
updateStepSize(σ,λsucc, p̄succ);
if f (xchild)≤ f (xparent) then

xparent← xchild;
updateCov(C,Az, p̄succ, pc);

end
end

Algorithm 1: Transition Optimization Algorithm

The variables xparent and xchild represent the optimization
parameters of the parent and child generations, respectively.
The remainder of the variables are the covariance matrix C,
averaged success rate p̄, target success rate ptarget

succ , evolu-
tion path pc, and step size σ. λsucc is a binary variable with
value 1 if f (xchild) < f (xparent), and 0 otherwise. The func-
tion f (x) represents the evaluated objective functions upon
running the transition simulation with parameters x. Details
of the functions updateStepSize to update σ and updateCov
to update the covariance matrix C can be found in [ISH06].

5. Results and Discussion

5.1. Implementation

Our simulation is implemented using the Open Dynamics
Engine [SO03] for a 17 link planar character. The con-
troller authoring language is designed using Boost’s xpres-
sive grammar building library [Nie07]. The scripted sim-
ulations run in real time, while the transition optimization
framework runs offline.

For most transitions, the (1+1)-CMA-ES optimization
converges within 200 generations, providing favorable re-
sults. An initial step size of 0.002 was used for the majority
of motions. The overall time spent optimizing each transition
is dependent upon the length of the goal trajectory and the
transitioning controller. Goal trajectories were generally be-
tween 2 and 5 seconds, leading to optimization times ranging
from 10 minutes to an hour.

The number of phases necessary for convergence is highly

submitted to COMPUTER GRAPHICS Forum (4/2015).

M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters 9

Sequence 1

stand
hands and knees
crawl
crawl to squat
squat
rise
stand
step
forward walkover
walk
stop
stand
step
handstand
walk on hands
handstand
handstand to supine
supine
hands and knees
crawl
crawl to squat
squat
stand
step
handstand (failure)

Sequence 2

stand
stand to hands and knees
hands and knees
crawl
crawl to squat
squat
backflip (failed landing)
crawl
crawl to squat
squat,
backflip
squat
rise
stand
step
handstand
walk on hands
handstand
handstand to supine
supine
kip (failure)

Figure 4: Random Motion Sequences

dependent on the length and number of parameters in each
phase. Transitions from controllers with simple phases, such
as the walk to stand transition, would require optimizing
over more phases. All results were optimized using four to
ten phases from the transitioning script, except for the walk-
to-stand transition, which was optimized over 4 full walk
cycles, or 16 phases.

After converging to a solution, the system automatically
generates and writes out a new script with the optimized pa-
rameters. This script can then be run in real time in the same
way as any standard script written in the language.

5.2. Controllers

Our language has been used to design over 25 separate con-
trollers ranging from simple, static, balancing controllers
such as the stand and squat controllers to more complex,
dynamic controllers including the backflip and kip. Fig-
ure 5 shows a chart of our implemented controllers. Figure 6
shows many of the controllers we have authored sequenced
together in one long motion, as well as the corresponding
path through the controller graph. We encourage the reader
to consult the accompanying video for examples of all con-
trollers and transitions created through our framework.

Random walkthroughs of our integrated controllers graph
produce the sequences of motions given in Figure 4.

Figure 7: Selection of Controllers. Top: Walk, Middle: Back-
flip, Bottom: Forward Walkover

5.3. Controller Robustness

There are a number of situations in which a given controller
can fail. Perhaps one of the most predominant issues is that
of significant perturbations of the initial character state. The
domain of initial states which will cause a controller to
achieve its desired goal is known as the basin of attraction
to that controller.

In general, smoother, slower motions with significant
feedback built in tend to have larger basins of attraction,
while highly dynamic controllers are much more sensitive
to their initial state. For instance, the squat and stand con-
trollers generally have very little dynamic motion as the feet
never have to leave the ground. Virtual force feedback terms
help to control the center of mass and maintain stability.

As it starts and ends from the highly stable squatting state,
the backflip is surprisingly stable for small changes in initial
state and environment. Figure 8 shows the backflip controller
performed on various terrain slopes.

SIMBICON style locomotion controllers are also very ro-
bust, as they have significant feedback to control foot place-
ment. Figure 9 shows a number of locomotion controllers
over terrain of varying slope.

5.4. Transitions

We develop a number of new transitions to the integrated
controller graph using our optimization framework, as well
as improve upon existing transitions between controllers for
style or smoothness.

Figures 10 and 11 illustrate newly optimized transitions.
The naïve transition results in the character falling over in
both cases. After optimization, the transitions are successful
and smooth. In these, the character learns to adjust his walk
to prepare for the upcoming motion, a forward walkover in
the first example, and coming to a sudden stop in the second.

submitted to COMPUTER GRAPHICS Forum (4/2015).

10 M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters

Figure 5: Graph of currently implemented controllers. Diamond nodes represent dynamic actions while rectangular nodes
are static poses. Solid arrows are naïve transitions while white arrows are the result of an optimized transition, and dashed
arrows are corrective transitions that are utilized upon failure of a controller. The symbol represents a controller that can
be parameterized (based on velocity for SIMBICON-like controllers, and step height and width for the step up controller).

Figure 12 shows how our framework can be used to im-
prove a transition that is successful, but unrealistic. The
naïve attempt to transition between the walk and run con-
trollers results in an awkward jump during the transition
where center of mass velocity is reduced from the walk ve-
locity of 1.2m/s to around 0.8m/s. After optimization, the
character learns to lean forward and take short rapid steps
during the walk in order to smoothly transition into the run,
increasing walk velocity to be similar to that of the run con-
troller, from about 1.0m/s to 2.0m/s.

Figure 13 shows another example of a transition that is
smoothed through our optimization framework. Here, the
character transitions from a walking handstand directly into
the end of the forward walkover motion. The naïve transi-
tion, while successful, is awkward as the character sways
back and forth on his wrists before regaining forward mo-
mentum. After optimization, he learns to orient his legs and
torso in the direction of the walkover, thereby producing a
much smoother, cleaner transition. In this example, the ad-

ditional objective function of minimizing energy was also
used.

In Figure 14, the framework achieves a better transition
between the forward walkover and run controllers. The ini-
tial attempt causes the character to jog backward for several
steps in order to regain his balance. After optimization, the
character smoothly transitions from the walkover into a run.

Finally, our transition optimization framework can also be
used to determine how to adjust a controller when a previ-
ously successful transition has failed due to a change in ini-
tial character state. For example, a naïve transition between
the skip and walk controllers is successful in most attempts,
but under certain perturbations of the character state seen
in random walkthroughs of the controller graph, it will fail.
Figure 15 shows how our optimization framework has been
used to correct this, by adjusting the skip controller so that
the transition into the walk is successful.

submitted to COMPUTER GRAPHICS Forum (4/2015).

M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters 11

Figure 6: Sequence of connected controllers. The path taken through our controller graph is shown on the left, and the corre-
sponding visual simulation on the right.

Figure 8: Robustness of backflip controller. Top: 7.5 degree
slope (successful). Middle: 8 degree slope (fails initially).
Bottom: -4 degree slope (fails on landing)

6. Conclusions and Future Work

Authoring controllers for humanoid motion is still a chal-
lenging problem, with no clearly defined standard for their
design. Current approaches continue to focus on algorithmic
novelty, while the capabilities of existing techniques has still
not been explored to its full potential. This work attempts to
address these problems by defining a universal controller au-
thoring language that is simple enough to be intuitive, while
still being comprehensive, employing many common fea-
tures of existing approaches. We have demonstrated how the
language can be used to design a large number of controllers

Figure 9: SIMBICON style controllers (walk, skip, fastwalk,
run) over varying terrain

for a planar humanoid character. We have further shown how
these controllers can be integrated through a system of de-
signing and optimizing transition motions.

There is still much to be considered before a language
such as the one we have presented could be adopted by
the community at large. Perhaps one of the most significant

submitted to COMPUTER GRAPHICS Forum (4/2015).

12 M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters

Figure 10: Optimizing the transition between the walk and
forward walkover controllers. The top sequence shows the
initial attempt, and the lower sequence shows the successful
transition after optimization

Figure 11: Optimizing the transition between the walk and
stand controllers. The top sequence shows the initial at-
tempt, and the lower sequence shows the successful tran-
sition after optimization

questions is whether it is necessary to introduce an entirely
new domain specific language, or to build upon an existing
scripting language such as Python, Javascript, or Lua. By
building on an existing language, we could utilize existing
features, such as debugging, error logging, and extensibil-
ity. However, it is hard to keep an existing language focused
and stop divergence from the original goal. In creating a new
language, we try to eliminate distractions and present the
user with no more than they need: a set of control primitives
that can be used to author a wide range of diverse motions.
Whether its final form is an entirely new language, or as a
library on top of an existing one, we believe there is sig-
nificant value in a universal control authoring language that
inspires reuse and robustness.

Another extension to this work could be to create a GUI
interface such as that described in [BK13] to the language.
While a universal domain specific language for motions con-
trol can help to bring controller design to a wider audience,
users with little to no programming experience may have
trouble picking it up. However, care must be taken to not
over-simplify the language by doing so, thereby limiting the
range of possiblities provided by it.

Figure 12: Optimizing the transition between the walk and
run controllers. controllers. The top sequence shows the ini-
tial attempt, which is successful but awkward, and the lower
sequence shows the smoother transition after optimization

Figure 13: Optimizing the transition between the walking
handstand and forward walkover controllers. The top se-
quence shows the naïve transition, which is successful but
awkward, and the lower sequence shows the smoother tran-
sition after optimization

The use of hierarchical controllers, while greatly helping
to promote re-use and templating in the language, can also
be a hinderance. If the user wishes to change a parameter
in a parent script, he or she must carefully consider all con-
trollers that build off that script. One simple change can of-
ten cause the child controllers to fail where they succeeded
before. Controller hierarchies should be used sparingly and
only when there is a strong reason for them such as for a fam-
ily of similar controllers, such as in the SIMBICON-based
locomotion scripts.

Crowd sourcing is an obvious future direction. A read-
ily available, web based version of our framework in which
novice and professional users alike could design and submit
motions would be essential for creating a vast database of
controllers. In addition, the framework should be able to au-
tomatically detect how newly submitted controllers could be
integrated with existing ones in the database. Our framework
of learning new transistions between controllers is a start to

submitted to COMPUTER GRAPHICS Forum (4/2015).

M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters 13

Figure 14: Optimizing the transition between the forward
walkover controllers and run controllers. The center of mass
trajectory is shown, with X representing the transition. The
naïve approach on the left shows the character running
backward slightly to regain his balance. The optimized re-
sult is on the right.

Figure 15: Optimizing to correct the transition between the
skip and walk controllers. The sequence on the left shows the
failed attempt encountered during a random walkthrough of
the controller graph. The right sequence shows the success-
ful, corrected transition after optimization

this, but it is still limited in that it only handles controllers
that start from a specified character state. One idea to tackle
this problem is to learn a model of the basin of attraction of
valid input states for a controller [FVdPT01]. Another possi-
bility is to interpolate between existing transition controllers
that have been shown to be successful for different character
states.

At the time of writing, our language is limited to a planar
character. However, extending the language to support three
dimensional characters should be fairly straightforward. The
most significant hinderance would be the number of addi-
tional parameters that would be introduced when a char-
acter has free range in a three dimensional space, which
would likely increase the amount of time spent on fine tun-
ing these parameters. The transition optimization framework
could potentially benefit from being extended into 3D, as
there would be more values contributing to the objective tra-
jectory, helping to define it better, leading to a more con-
strained problem. While the language is currently limited to
motions for a bipedal, humanoid character, we believe that
many of the concepts presented in this work could be ex-
tended to other characters, such as quadrupeds.

The idea of creating controllers from motion captured
data has been explored in [SKL07, DSAP08, LKL10]. This
presents another possible future direction for our work, in
combining our optimization framework with motion capture

data. Given that a center of mass trajectory could be deter-
mined from the mocap data, our system could be used to op-
timize an existing controller to match the captured motion,
as well as create transitions into the motion.

Another interesting direction is to further generalize the
language to create primitives at a higher level. An idea sim-
ilar to Ha and Liu’s control rigs could map lower level con-
trollers such as PD or Jacobian transpose control to more in-
tuitive, human-readable instructions, such as those used by a
coach when teaching his students [HL14]. This could open
up the language to novice users who could issue a simple in-
struction as they would to another human being. Generaliz-
ing the language even further could allow the user to specify
tasks such as "move to a given location," allowing the system
to automatically find a path through the integrated controller
graph which would achieve the desired result.

While designing controllers in our language, the majority
of time and effort is spent on fine tuning parameters in or-
der to create a robust and realistic motion. This is especially
true for longer motions, where the entire motion would have
to be replayed everytime a parameter is changed. A possi-
ble direction for future work builds on the live coding ex-
amples described in Bret Victor’s talk Inventing on Princi-
ple [Vic12]. In these examples, Victor demonstrates a cod-
ing environment in which users can update a script and see in
real-time how their changes will affect not only the present,
but also the past and future states in the simulation. We be-
lieve that a similar idea applied to our work could greatly
reduce the amount of time a user spends tuning parameters
to achieve the perfect motion.

References
[ABFHdL14] AL BORNO M., FIUME E., HERTZMANN A.,

DE LASA M.: Feedback control for rotational movements in fea-
ture space. In Computer Graphics Forum (2014), vol. 33, Wiley
Online Library, pp. 225–233. 2

[ASvdP13] AGRAWAL S., SHEN S., VAN DE PANNE M.: Diverse
motion variations for physics-based character animation. In Pro-
ceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (2013), ACM, pp. 37–44.

[AvdP13] AGRAWAL S., VAN DE PANNE M.: Pareto optimal con-
trol for natural and supernatural motions. In Proceedings of the
Motion on Games (2013), ACM, pp. 7–16. 8

[BK13] BACKMAN R., KALLMANN M.: Designing controllers
for physics-based characters with motion networks. Computer
Animation and Virtual Worlds 24, 6 (2013), 553–563. 3, 12

[CBvdP09] COROS S., BEAUDOIN P., VAN DE PANNE M.: Ro-
bust task-based control policies for physics-based characters. In
ACM Transactions on Graphics (TOG) (2009), vol. 28, ACM,
p. 170. 2

[CBvdP10] COROS S., BEAUDOIN P., VAN DE PANNE M.: Gen-
eralized biped walking control. ACM Transactions on Graphics
(TOG) 29, 4 (2010), 130. 2

[CKJ∗11] COROS S., KARPATHY A., JONES B., REVERET
L., VAN DE PANNE M.: Locomotion skills for simulated
quadrupeds. ACM Transactions on Graphics (TOG) 30, 4 (2011),
59. 2, 8

submitted to COMPUTER GRAPHICS Forum (4/2015).

14 M. Firmin& M. van de Panne / Controller Design for Multiskilled Bipedal Characters

[CKT∗10] COOPER S., KHATIB F., TREUILLE A., BARBERO J.,
LEE J., BEENEN M., LEAVER-FAY A., BAKER D., POPOVIĆ
Z., ET AL.: Predicting protein structures with a multiplayer on-
line game. Nature 466, 7307 (2010), 756–760. 3

[dLMH10] DE LASA M., MORDATCH I., HERTZMANN A.:
Feature-based locomotion controllers. ACM Transactions on
Graphics (TOG) 29, 4 (2010), 131. 2

[DSAP08] DA SILVA M., ABE Y., POPOVIĆ J.: Simulation of
human motion data using short-horizon model-predictive control.
In Computer Graphics Forum (2008), vol. 27, Wiley Online Li-
brary, pp. 371–380. 2, 13

[DSDP09] DA SILVA M., DURAND F., POPOVIĆ J.: Linear bell-
man combination for control of character animation. In Acm
transactions on graphics (tog) (2009), vol. 28, ACM, p. 82. 2

[Fir14] FIRMIN M.: Design and integration of controllers for
simulated characters. Master’s thesis, University of British
Columbia, 2014. 3

[FVdPT01] FALOUTSOS P., VAN DE PANNE M., TERZOPOULOS
D.: Composable controllers for physics-based character anima-
tion. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques (2001), ACM, pp. 251–260.
2, 13

[GP12] GEIJTENBEEK T., PRONOST N.: Interactive character
animation using simulated physics: A state-of-the-art review. In
Computer Graphics Forum (2012), vol. 31, Wiley Online Library,
pp. 2492–2515. 2

[Han06] HANSEN N.: The cma evolution strategy: a comparing
review. In Towards a new evolutionary computation. Springer,
2006, pp. 75–102. 7, 8

[HL14] HA S., LIU C. K.: Iterative training of dynamic skills
inspired by human coaching techniques. ACM TRANSACTIONS
ON GRAPHICS (2014). 2, 8, 13

[HP97] HODGINS J. K., POLLARD N. S.: Adapting simulated
behaviors for new characters. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques
(1997), ACM Press/Addison-Wesley Publishing Co., pp. 153–
162. 2

[HW98] HODGINS J. K., WOOTEN W. L.: Animating human
athletes. Springer, 1998. 2

[HYL12] HA S., YE Y., LIU C. K.: Falling and landing motion
control for character animation. ACM Transactions on Graphics
(TOG) 31, 6 (2012), 155. 2

[ISH06] IGEL C., SUTTORP T., HANSEN N.: A computational
efficient covariance matrix update and a (1+ 1)-cma for evolution
strategies. In Proceedings of the 8th annual conference on Ge-
netic and evolutionary computation (2006), ACM, pp. 453–460.
8

[KT99] KALLMANN M., THALMANN D.: Modeling objects for
interaction tasks. Springer, 1999. 3

[LKL10] LEE Y., KIM S., LEE J.: Data-driven biped control.
ACM Transactions on Graphics (TOG) 29, 4 (2010), 129. 2, 13

[LvdPF96] LASZLO J., VAN DE PANNE M., FIUME E.: Limit cy-
cle control and its application to the animation of balancing and
walking. In Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques (1996), ACM, pp. 155–
162. 2

[LYvdPG12] LIU L., YIN K., VAN DE PANNE M., GUO B.: Ter-
rain runner: control, parameterization, composition, and planning
for highly dynamic motions. ACM Trans. Graph. 31, 6 (2012),
154. 2

[MDLH10] MORDATCH I., DE LASA M., HERTZMANN A.: Ro-
bust physics-based locomotion using low-dimensional planning.
ACM Transactions on Graphics (TOG) 29, 4 (2010), 71. 2

[MZS09] MACCHIETTO A., ZORDAN V., SHELTON C. R.: Mo-
mentum control for balance. In ACM Transactions on Graphics
(TOG) (2009), vol. 28, ACM, p. 80. 2

[Nie07] NIEBLER E.: Boost. xpressive, 2007. 8

[PCT∗01] PRATT J., CHEW C.-M., TORRES A., DILWORTH P.,
PRATT G.: Virtual model control: An intuitive approach for
bipedal locomotion. The International Journal of Robotics Re-
search 20, 2 (2001), 129–143. 2

[PG96] PERLIN K., GOLDBERG A.: Improv: A system for script-
ing interactive actors in virtual worlds. In Proceedings of the
23rd annual conference on Computer graphics and interactive
techniques (1996), ACM, pp. 205–216. 3

[QCG∗09] QUIGLEY M., CONLEY K., GERKEY B., FAUST J.,
FOOTE T., LEIBS J., WHEELER R., NG A. Y.: Ros: an open-
source robot operating system. In ICRA workshop on open source
software (2009), vol. 3. 3

[RH91] RAIBERT M. H., HODGINS J. K.: Animation of dynamic
legged locomotion. In ACM SIGGRAPH Computer Graphics
(1991), vol. 25, ACM, pp. 349–358. 2

[SADM94] SUNADA C., ARGAEZ D., DUBOWSKY S.,
MAVROIDIS C.: A coordinated jacobian transpose control for
mobile multi-limbed robotic systems. In Robotics and Automa-
tion, 1994. Proceedings., 1994 IEEE International Conference
on (1994), IEEE, pp. 1910–1915. 2

[SKL07] SOK K. W., KIM M., LEE J.: Simulating biped behav-
iors from human motion data. In ACM Transactions on Graphics
(TOG) (2007), vol. 26, ACM, p. 107. 2, 13

[SO03] SMITH R., OTHERS: Open dynamics engine, 2003. 8

[TGLT14] TAN J., GU Y., LIU C. K., TURK G.: Learning bicycle
stunts. ACM TRANSACTIONS ON GRAPHICS 33, 4 (2014). 8

[TLC∗10] TSAI Y.-Y., LIN W.-C., CHENG K. B., LEE J., LEE
T.-Y.: Real-time physics-based 3d biped character animation us-
ing an inverted pendulum model. Visualization and Computer
Graphics, IEEE Transactions on 16, 2 (2010), 325–337. 2

[Ups89] UPSTILL S.: RenderMan Companion: A Programmer’s
Guide to Realistic Computer Graphics. Addison-Wesley Long-
man Publishing Co., Inc., 1989. 3

[Vic12] VICTOR B.: Inventing on principle, 2012. 13

[Wel93] WELMAN C.: Inverse kinematics and geometric con-
straints for articulated figure manipulation. PhD thesis, Simon
Fraser University, 1993. 4

[WFH10] WANG J. M., FLEET D. J., HERTZMANN A.: Optimiz-
ing walking controllers for uncertain inputs and environments.
In ACM Transactions on Graphics (TOG) (2010), vol. 29, ACM,
p. 73. 2

[Woo98] WOOTEN W. L.: Simulation of leaping, tumbling, land-
ing, and balancing humans. 2

[YL10] YE Y., LIU C. K.: Optimal feedback control for char-
acter animation using an abstract model. ACM Transactions on
Graphics (TOG) 29, 4 (2010), 74. 2

[YLvdP07] YIN K., LOKEN K., VAN DE PANNE M.: Simbi-
con: Simple biped locomotion control. In ACM Transactions on
Graphics (TOG) (2007), vol. 26, ACM, p. 105. 2, 4, 6

submitted to COMPUTER GRAPHICS Forum (4/2015).

