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Diverse Motions and Character Shapes
for Simulated Skills

Shailen Agrawal, Shuo Shen, and Michiel van de Panne

Abstract—We present an optimization framework that produces a diverse range of motions for physics-based characters for tasks such
as jumps, flips, and walks. This stands in contrast to the more common use of optimization to produce a single optimal motion. The
solutions can be optimized to achieve motion diversity or diversity in the proportions of the simulated characters. As input, the method
takes a character model, a parameterized controller for a successful motion instance, a set of constraints that should be preserved, and
a pairwise distance metric. An offline optimization then produces a highly diverse set of motion styles or, alternatively, motions that are
adapted to a diverse range of character shapes. We demonstrate results for a variety of 2D and 3D physics-based motions, showing
that the approach can generate compelling new variations of simulated skills.

Index Terms—Physics-based Character Animation, Motion Control, Diversity Optimization.
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1 INTRODUCTION

PHYSICS-BASED motions are difficult to author. As
such, optimization has been a powerful tool in de-

signing the motion of physics-based characters. Given an
objective function and an initial guess at a motion or its
controls, a variety of numerical optimization methods
can be used to refine the motion control or the mo-
tion itself until the process converges to a result that
maximizes (or minimizes) a given objective function. In
this context, a well-posed optimization problem should
have a well-defined maximum (or minimum) and have
an objective function that accurately captures the user’s
intent. Objective functions that minimize control effort
are a common way of defining such an optimization
problem. However, this also unfortunately eliminates the
possibility of seeing the rich non-optimal variations in
style that are commonly seen in human motions and
which help give life to animated motions.

In this paper we propose to work with underconstrained
motion specifications such as “do a backflip and land in
this region” and to then automatically generate highly-
diverse motion variations that satisfy the given spec-
ifications. We also extend the idea by exploring how
characters with a diverse range of body proportions
can achieve the given motion task. Taken together, this
allows for a broad exploration of “the space of back flips”
and, similarly, the spaces of possibilities for other types
of underconstrained dynamic motions. We loosely refer
to these spaces of possible motion variations as motion
null spaces.

We expect that the proposed method can be applied in
a variety of scenarios. It can enhance the suite of appli-
cations that physics-based synthesis methods currently
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target. It can allow animators to reduce the amount of
manual iteration required to design a motion. Informal
discussions with animators reveal that when a new
motion is encountered quite some time is spent exploring
for a motion that has the “right” look. The exploration
of how a motion needs adapting for a diverse range of
character proportions can help an animator understand
how a class of motions is influenced by the various di-
mensions defining the shape of an articulated character.
Lastly, diverse motion synthesis can be used in situa-
tions when motion variation becomes important, i.e., for
crowds or non-repetitive motions for an individual.

Our primary contribution is a diversity optimization
framework that allows for the synthesis of sets of simu-
lated motions and character shapes that span the many
possible ways in which an underconstrained motion can
be achieved. As key elements of this framework, we
propose: (1) an objective function tailored to producing
diverse motions; (2) the exploration of shape diversity
in order to produce motion variations that result from
adaptation to a wide variety of character shapes; (3) the
use of round-robin covariance matrix adaptation (CMA)
as an effective optimization strategy; and (4) the use of
known pose similarity metrics as being equally suitable
as distance metrics for measuring motion diversity and
character shape diversity.

An abstract view of the diversity optimization prob-
lem is shown in Figure 1. The motion null space is
defined by the subspace of motions that satisfy physics,
satisfy the motion constraints, and are realizable by the
character and its underlying controller parameterization.
In this paper we do not recover the full motion null
space, but rather discover a set of maximally-diverse
examples that help define its extent. We also recover
the paths of progressive modification that lead to the
maximally-diverse set. Given an input motion, shown
in red, the goal is to develop synthesized variations
that are as distant as possible both from each other and
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Fig. 1. Abstract view of diversity optimization.

from the input motion. The straight lines in Figure 1
illustrate the relevant pairwise distances for the synthesis
of three new diverse motion variations. The degree of
achievable motion variation is constrained by factors
such as joint limits, torque limits, limits on the allowable
dimensions of the body parts i.e. size of the links in the
skeleton, and the particular choice of parameterization of
the underlying control. We call these emergent constraints
because it is difficult to know in advance how these
implicit and explicit limitations will end up shaping the
space of realizable motions for a given task.

Most previous methods aim to optimize an objective
function related to effort and task criteria in order to
find a single optimal solution. The free parameters are
commonly those that define the internal forces and
torques that drive the motion. Our work introduces mo-
tion diversity and shape diversity as objective functions,
and considers adding character shape parameters to the
list of free parameters. By character shape we refer to
the lengths of the various rigid links of the articulated
figures. This is also called Anthropometry in Kinesiology
literature. This paper introduces diversity optimization
for animation and generalizes the idea to encompass
character shape.

2 RELATED WORK

Physics-based character control can be achieved in a
variety of ways. Many methods are based on tracking
a reference motion based on motion capture data [1]–
[9]. A second approach is to avoid relying on motion
capture data and to instead develop appropriate ob-
jective functions to synthesize motions using online or
offline optimization [10]–[15]. A third approach is to
involve users more direclty in authoring the shape of the
controlled motion [2], [10], [16], [17]. In practice, methods
often combine multiple aspects of these three possible
sources of motion. The majority of methods are focused
on locomotion tasks and result in a single motion style.

Numerous kinematic models for motion style and
variation have been proposed. Procedural noise [18] or
learned models of noise [19] can be added to kinematic
character motions to achieve motion variety and realism.
Many statistical models have been developed to learn
motion styles or to estimate style and content in a sep-
arable fashion [20]–[22]. However, these methods create

kinematic models of existing styles and are not capable
of generating new styles of motion.

Variations of physics-based motions have also been
explored. The passive motion of objects can be shaped so
that objects roll and bounce to achieve given goals [23].
The stochastic nature of the search allows for a variety
of solutions to be generated for the same problem.
Natural sources of variation such as motor noise and
environmental conditions can be used to achieve a de-
gree of variation in walking gaits [24]. Another approach
to generating motion variety is to provide tools that
enable the user to efficiently sift for desirable solutions
among many automatically-generated variations. This is
applied to passive physics-based simulations [25] and
to a control system for a 24-DOF monoped hopper dog
in the Design Galleries (DG) approach [26]. This latter
example is closest in spirit to the problem we wish to
tackle. The motion of an abstract hopping creature is
shaped by 7 time-varying sinusoids that modulate the
forward velocity, hopping height, and the pose of the
ears, tail, and neck. The amplitude, offsets, and frequen-
cies of these sinusoids are then explored to produce
motion variations. Our method works on significantly
more complex human and robot figures performing a
wider range of constrained motion tasks.

Optimization techniques for task achievement have
also targeted shape variation by introducing free pa-
rameters representing shape of the character into the
optimization and designing relevant objective functions
[27], [28]. Muscle routing and fiber length optimization
[29] also results in a type of shape variation. These
techniques try to find the optimal character shape for
a specified task, however we try to find a diverse set of
character shapes which all perform the same task. In this
paper we have also explored the effect of shape variation
when coupled with motion variation.

Diversity optimization is a problem of general interest
in the context of planning and AI [30]–[33]. The problem
is often posed as finding a diverse set of k configurations
of a discrete set of parameters such that a given goal, i.e.,
a target price range of a product, is satisfied. A common
diversity metric is to take the sum of a pairwise distance
metric over all possible pairs of the k configurations.
More recently, the selection of diverse solutions has also
been addressed for problems such as designing furniture
layouts [34], where solutions generated using Monte
Carlo sampling can be used to produced a diversified
list using a maximal marginal relevance criterion.

We draw inspiration from the above work in order to
develop a method that can propose novel motion styles
for physics-based motion tasks. In order to ensure that
a good exploration of the space of realizable motions is
achieved and is available to the user, we seek to find
the most diverse set of motion styles. In doing so, the
optimization naturally finds novel forms of coordinated
full body motion as well as exposing the emergent
constraints that eventually serve to limit the extent of
possible motion variation. In our problem the cost of
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finding new samples that satisfy the task constraints
becomes more difficult as the solution set becomes more
distant from the input motion. We therefore develop an
algorithm that takes an integrated approach to maintain-
ing task constraints and producing motion diversity. This
stands in contrast to approaches that generally assume
a lightweight sample-generation process [24], [26], [34].

3 DIVERSITY OPTIMIZATION

The goal of the diversity optimization is to generate a
set of N synthesized motions which are as different as
possible from each other while still satisfying desired
constraints. This is captured by maximizing the follow-
ing diversity objective:

D =

N∑
i=0

−C(Mi) +

N∑
j=0

(d(Mi,Mj) +Kdmin(Mi))


(1)

where {Mi} denotes the set of N motions, C(Mi) is
a positively valued constraint function, d(Mi,Mj) is a
distance measure between two motions and dmin(Mi) is
the minimal distance of all pairwise distances involving
motion Mi. K is a weighting constant that we discuss
in further detail. The motions themselves are parameter-
ized via their underlying controller according to Mi =
M(Pi), where Pi are the controller’s free parameters (§6).

The first term of the objective function, given by the
constraint function, evaluates to zero when the motion
constraints are satisfied. This “null space” corresponds
to a subspace in the parameter space that contains the
realizable motion styles that are of interest. Without loss
of generality, we assume that the constraint is initially
satisfied for M0, the reference motion that is used as a
starting point, i.e., C(M0) = 0. If this is not true, then
C(M0) can be used as an objective function in order
to satisfy this condition. The d(Mi,Mj) term encourages
diversity through a maximization of the sum of pairwise
distances between the motions. However, by itself this
can yield clusters of motions that have negligible dis-
tances within the cluster. The Kdmin(Mi) term addresses
this by encouraging dispersion between all motion pairs,
as measured by the minimum pairwise distance for any
given motion.

Figure 2 illustrates the effect of assigning different
values to K, the weight assigned to the dmin term, for
an example where squared Euclidean distances are used
as the distance measure. A stochastic optimization pro-
duces solutions such as the ones shown. Choosing K = 0
results in undesirable clusters of points located at ex-
tremal points of the feasible domain because the benefit
of the large inter-cluster distances outweighs the benefit
of increasing the intra-cluster distances. As shown by
the K = 100 result, large values of K can resolve
the clustering problem but result in the optimization
converging to solutions that fail to find extremal points
in the domain due to an insufficient reward for diversity.
An appropriate middle ground is to choose a value for

Fig. 2. Effect ofK on diversity optimization in a 2D domain
with a sum-of-squared-distances metric. All 4 synthesized
solution points begin at the reference point shown in red.

K that encourages both diversity and dispersion. We use
K = 10 for all our results.

We use Covariance Matrix Adaptation Evolution Strat-
egy [35] (CMA-ES, however we will refer to it as just
CMA in the rest of this paper) as our stochastic op-
timization strategy. CMA is a derivative-free iterative
algorithm which maintains a Gaussian distribution of
the parameters. At each iteration, the covariance matrix
is adapted using the weighted fitness of the sampled dis-
tribution. Adaptation of the covariance matrix amounts
to learning a second order model of the underlying
objective function. The Gaussian is initialized with a
spherical distribution and at each iteration M samples
for the parameter vector are generated using the current
Gaussian distribution. A subset comprised of the best
samples for each iteration (according to their respective
fitness values) is used to update the Gaussian distribu-
tion. Eventually after repeating this process for a few
iterations the distribution converges to a region of low
objective function value.

We develop a round-robin CMA algorithm for maximiz-
ing D, developed on top of a standard CMA implemen-
tation. This applies one generation of CMA optimization
to each of the N motions, in turn, before moving on to
the next generation of the optimization for each of the
motions. During the optimization of motion variation
i, the other motions are held fixed. Optimization for
is performed using 500-1000 CMA generations with 16
samples per generation (M). CMA is terminated when
the maximum generation count is reached (1000) or
when the diversity objective advances by less than a
given ε. Good results are typically obtained within the
first 500 generations. When the character dimensions are
also treated as free parameters (§8), optimization is typ-
ically performed for 2000 generations with a maximum
generation count of 3000.

Each of the N CMA optimizations maintains its own
state information, including a mean and covariance ma-
trix associated with its samples. Because the objective
function is constructed over mutual distance metrics,
the results of optimizing a given motion Mi will also
inadvertently change the objective function values seen
by the other motion variations. An assumption of the
round-robin optimization process is that these changes
will be sufficiently small to avoid adverse behavior. In
practice, we have not encountered adverse behavior. An
alternative strategy is to add motion variations one at a
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time, each time optimizing only the most recently added
motion. In practice, we found that this progressive addition
strategy performed worse than the round-robin method
(§9). All our results are thus computed using round-
robin CMA optimization. One other potential strategy
is to treat the synthesis of all N motions as part of
a single large optimization problem having N × |P |
parameters, where |P | denotes the cardinality of the set
of free parameters to be optimized for each motion. This
strategy results in an N -fold increase of the number of
optimization parameters and thus it does not scale well.

4 DISTANCE METRICS

The pairwise distance metric provides the foundation for
the measurement of the diversity of the solution set. We
define separate distance metrics for motion-diversity and
shape-diversity objective functions.

4.1 Motion Distance Metric

We investigate three possible choices: (1) hands + feet
(HF); (2) mass distance (MD); and (3) weighted joint an-
gles (WJA). These choices correspond to pose similarity
metrics that are commonly used to identify good transi-
tion points when performing kinematic motion blending
between motion clips. The distance metrics between
corresponding poses q and q′ are defined according to:

dHF(q, q′) =
∑

i∈hands,feet

||xi − x′i||2

dMD(q, q′) =
∑
i

mi||xi − x′i||2

dWJA(q, q′) =
∑
i

wi(θi − θ′i)2

where xi and x′i correspond to the locations of the center
of mass of link i for pose q and q′, respectively, after the
character’s centers of mass have been aligned for the
two poses. θ refers to the character’s joint angles and
root angle. The MD distance metric has been previously
used as a similarity metric [36], [37]. We use the WJA
weights suggested in a previous study on pose similarity
metrics [38].

The distance between two motions is computed as a
sum of the pose distances for a number of corresponding
sample points on the pair of motions to be compared.
Meaningful correspondences are obtained by using the
phase-based structure of the motions (§6). Within each
phase, correspondences are established using the nor-
malized time, t̂, where t̂ = (t − tstart)/(tend − tstart). For
walking motions, we use 10 samples for each of four
motion phases. For jumping motions, we use 10 samples
for each of the two airborne motion phases and do not
sample the other phases because the most interesting
variations should occur during airborne segments.

Interesting motion variations can be found using all
three distance metrics. Many of the results given in

the rest of the paper and the accompanying video
use the mass-distance metric because of its convenient
parameter-free nature. The choices of distance metric are
further detailed in the results section (§7).

4.2 Shape Distance Metric
The shape distance is defined according to:

dSHAPE(s, s′) =
∑

i∈links

wi|Li − L′i|

where a shape, s, is defined according to a set of
link lengths, {Li}. We use uniform weights values of
wi = 1. A useful alternate choice would be to make these
proportional to the link masses. Note that the shape
distance metric (and hence the shape diversity) has no
dependence on the motions. However, given a body
shape, it should be possible to perform the desired skill.
This is captured by the constraint function in equation
(1).

5 CHARACTER MODELS

2D human model: The planar human figures have 17
links and are simulated using Box2D [39] or Vortex [40].
After taking symmetry into account, there are 10 joints
that require independent control. The character has a
mass of 80 kg and a height of 160 cm. High-valued
torque limits are used so as to allow the character to
perform highly dynamic motions that can make for
compelling animations: 300 Nm for the hips and upper-
waist, 200 Nm for the knees, ankles, lower-waist, and
shoulders, and 50 Nm for the remaining joints. All joints
are controlled using using proportional-derivative (PD)
controllers with gains that are manually set to appro-
priate values for the input motions. The feet, pelvis, and
upper torso are assigned target orientations in the world
coordinate frame during the stance phase. In all other
cases, joints have target orientations specified in local
coordinates, i.e., with respect to their proximal (parent)
link.

3D human model: This model has 15 links and 24
internal degrees of freedom. The shoulders, hips, waist,
ankles, neck and wrist joints are modeled as Universal
joints (U-joints are joints which allow the links connected
to it to bend in any direction but not twist with respect
to each other, i.e., have 2 DOF), while the elbows and
knees are modeled as hinge joints. We choose to use
U-joints instead of Spherical joints (3 DOF) for some
joints which should ideally be modeled with Spherical
joints because the simulator (Vortex) we used allowed
us to use “Position-locked” PD control only for hinge
joints and U-joints. Position-locked PD control enables
us to take large time step (a frequency of 120 Hz) for
our simulation. The character has a mass of 80 kg and
height of 180 cm. Torque limits are 200 Nm for the hips
and waist, 150 Nm for the knees and ankles, 50 Nm
for the neck, and 100 Nm for the shoulders, elbows,
and wrists. Joints are driven using PD controllers. For
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Fig. 3. Sampled Character Shapes

walking gaits we track the pelvis, swing-leg femur, and
swing-leg foot orientation in a world-aligned coordinate
frame [2]. During jumps, we similarly track the desired
pelvis orientation in world space during stance phases.
Otherwise, all joints track joint-local target angles. The
forward dynamics is simulated using Vortex [40].

3D bird-robot walker: The model has 10 links and 14
internal degrees of freedom. The middle pair of joints on
each leg are modeled as hinge joints and the remaining
joints are U-joints. The character weighs 70 kg and is
2.9 m tall. The control setup is analogous to that of the
3D human model.

Shape Parameterization: A parameterized 2D human
model is created by allowing each link length Li to vary
from the default according to L′i = rL0, 0.4 ≤ r ≤ 2.5. A
minimal length of L′i ≥ 0.03 m is also enforced. The mass
of each link is held constant and thus an increase in the
length of a link corresponds to a decrease in its density.
Figure 3 shows a character with the default dimensions
on the left, followed by four characters that are randomly
sampled from the parameterized version of the model.

6 CONTROL PARAMETERIZATION

Controller phases: Motions are the product of a param-
eterized controller and forward dynamics simulation.
The control is broken into multiple phases as shown
in Figure 4 for jumping motions and walking motions.
Transitions between phases occur after a phase-specific
time, denoted by ∆ti or upon a transition event, i.e.,
becoming airborne, reaching peak height, or making
ground contact. Each phase i has an associated target
pose, Ωi. Within phase i, the target pose is interpolated
linearly over time between Ωi−1 and Ωi using the known
transition time. For phases that terminate upon transition
events, a transition time is estimated using a simple
prediction mechanism. An exception is the extend phase
of the jump, which directly transitions to its target
pose in order to rapidly create upward momentum. A
balance controller is implemented during the start and
end phases of jumps and is implemented using virtual
forces applied to the center of mass using a Jacobian
transpose model [16]. Lastly, a simple landing controller
helps to accelerate the motion optimization by providing

Fig. 4. Motion control phases.

intelligent foot placement. This is only implemented for
our 2D character. In the falling phase of jumps, the feet
are servo-ed to the target landing position where the
COM is predicted to pass through the ground, with an
additional offset that is a linear function of the horizontal
velocity.

Optimization free parameters: The principal free pa-
rameters in the diversity optimization are the target
poses for each phase of the controller. For 3D human
jumps, all sagittal joint angles are included, with the ex-
ception of the wrists and neck, yielding 49 optimization
parameters. For 3D human walks, all joints are included
(sagittal and non-sagittal) except for the neck joints, for
a total of 52 optimization parameters. For 2D jumps,
all joints are included, with the exception of the neck.
Additional parameters include the transition times and
phase-specific kp, kd gains for the hips, knees, and ankles,
for a total of 101 parameters.

Constraints: The constraint function C is modeled
using a penalty that evaluates to zero when the con-
straints are satisfied and applies a quadratically rising
penalty outside of this region. The constraint violations
should be weighted sufficiently to rapidly dominate the
diversity objective term once constraints are violated. In
practice we find that provided it is sufficiently large, the
specific choice of weight is not important given that the
optimization method (CMA) is invariant with respect to
order preserving transformations of the objective func-
tion value. Like a barrier method, the constraint provides
a gradient for the optimization to follow to achieve
accommodation of the constraints, while following the
diversity gradient when constraints are satisfied. Obtain-
ing meaningful results requires that a suitable constraint
null space exists. We revisit this issue in the discussion
of results.

7 RESULTS FOR MOTION VARIATIONS

We first explore the creation of a set of four diverse
motion variations for nine constrained motion tasks
while holding the character shape fixed. The results are
illustrated in Figure 5 and in the accompanying video.
The differences between some of the motion variations
are best observed when played at half speed For a given
motion task, we use Mn to refer to the motion variations,
where n denotes the row number. The top row, M0,
corresponds to the input motion and the remaining
rows, M1–M4, correspond to the four synthesized motion
variations. We refer to the individual image columns
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(a) Back flip. (b) Jump forward. (c) Jump onto.

(d) Jump over. (e) Jump high. (f) Jump backwards

(g) Bird robot jump forward (h) Ministry of silly walks (i) Bird robot silly walks

Fig. 5. Results for 2D motions (a,b,c,d,e) and 3D motions (f,g,h,i). For each task we show the input motion, M0, on the
first row and the four synthesized variations, M1–M4, on the remaining rows.
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using the letters A–F. Images within a column are chosen
to correspond to a particular motion phase, which is
more meaningful than a time-based correspondence.

Four maximally-diverse motion variations can be syn-
thesized in 30 minutes using 16 threads on an 8 core
Xeon machine using an unoptimized multi-threaded im-
plementation with Vortex and with 40% CPU usage. All
the 3D examples are simulated using Vortex, as are the
2D jump-high and jump-forward shown in the accom-
panying video. A time step of 120 Hz is achieved using
the “position-locked” PD-control available in Vortex. The
remainder of our 2D simulations are implemented using
our original multi-threaded Box2D implementation with
16 threads on an 8-core Xeon machine. These run at
3900 Hz because of the explicit integration of the PD-
controllers. Computing 4 variations of an input motion
thus requires 1–4 hours of computation for these mo-
tions.

7.1 Motion Tasks

Backflip: We first create diverse variations for a standing
backflip with a landing constraint. The landing con-
straint that requires the center of mass of the foot to end
within a 30 cm landing box. The constraint penalty is
zero for landing within this box. Constraint costs outside
of this region are modeled according to C(M) = K||d||2,
where K = 5000 and d is the Euclidean distance by
which the constraint is violated. Falls are given a large
constant penalty, as is a failure of the root link to achieve
a near-360◦ rotation. The constraint violation penalty and
falling penalty are also modeled in a similar way for the
remaining motions, unless stated otherwise. An input
motion is manually authored using the given phase
structure. The landing constraint is placed to match the
landing location of the input motion.

Figure 5(a) illustrates four motions created from a
single diversity-optimization run that uses the WJA dis-
tance metric. M1 and M2 show significant variations in
takeoff pose (C), overall height (D), and landing pose (F).
M3 learns to assume a pike pose during the flight phase.
While some of the motions exhibit qualities that might
not be capable of being matched by an athlete, these
are also the qualities that make the motion appealing. If
desired, the limits of human musculature and joints can
be modeled with more fidelity in order to achieve more
subdued results. We have also successfully experimented
with backflip variations without a landing constraint,
which leads to back flips that also vary in their hori-
zontal distance traveled.

Jump forward: We compute variations for a forward
jump with a landing-box constraint, as shown in Fig-
ure 5(b) and using the mass distance metric. A manually
authored controller is first developed that is capable
of a small in-place jump. This is then optimized using
CMA, with the landing-box constraint penalty serving as
an objective function. The resulting motion is the input
motion motion for the diversity optimization. The same

manually authored controller also serves as a starting
point for the development of the input motions for
all the other jump motions. M1 and M3 produce jump
variations with different styles of back arches, while M2

realizes a jump with considerable forward pitch of the
torso. M4 bears a resemblance to M0 but considerably
differs in phases C–E.

Jump onto: This motion is constrained to land on top
of the box, with the landing constraint implementing a
small safety margin. The input motion is obtained by
optimizing the small in-place jump to first jump forward
onto a box of height h = 0. The motion is then adapted
to a box height of h = 0.5 m using a continuation-based
optimization [41]. The degree of available style variation
decreases as the box height increases and so we therefore
stop at a moderate box height for this example. The
weighted joint-angle distance metric is used to create
the four motion variations shown in Figure 5(c). M1 and
M2 create jump styles that perform pikes, each with its
own style of arm motion. M3 performs a tuck jump with
a forward-pitched torso. M4 develops a jump with a
backwards arch.

Jump over: A jump over an obstacle is implemented
using an obstacle-clearance constraint and a landing con-
straint that enforces a minimal jump length. The input
motion is developed in an analogous fashion to the Jump
Onto motion. The small in-place jump is first optimized
to meet the required jump length. The motion is then
adapted to clear an obstacle height of h = 0.55 m using
continuation-based optimization. Four diverse motion
variations are synthesized using the weighted joint angle
distance metric and are illustrated in Figure 5(d).

Jump high: An in-place jumping motion is developed
using two constraints: a minimal-height constraint for
the peak-COM height and a landing constraint. The
input motion is created by optimizing the small in-
place jump to satisfy the given constraints. Four diverse
motion styles are produced using the mass distance
metric and are shown in Figure 5(e). The resulting varia-
tions include two different styles with backwards arches
(M1,M2) and two jumps, M3 and M4, that perform pikes
of varying extents in conjunction with different types of
coordinated arm movements.

Backwards jump: The backwards jump for the 3D
human model requires landing within a 0.25 m of a
target point that is located 0.8 m behind the character.
The input motion comes from a manually authored jump
that is then optimized to satisfy the landing constraint.
Four diverse style variations are synthesized using the
mass distance metric and are shown in Figure 5(f). The
resulting dynamic motions exhibit a wide range of mid-
air poses.

Robot jump: This jump uses a landing constraint
located 4 m ahead of the starting location with a radius
of 0.75 m. An additional upper body rotation constraint
is uses to prevent excessive forward pitch. A manually
authored small jump is optimized to satisfy the landing
constraint which then serves as the input motion. Four
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diverse styles are produced using the mass distance
metric (see Figure 5(g). The styles achieve a wide range
of mid-air poses.

Human and Robot silly walks: A diverse range of
exaggerated dynamic walks can be achieved, making it
easy to create physics-based walks that are reminiscent
of Monty Python’s “Ministry of Silly Walks” [42]. A step-
length constraint is applied in the diversity optimization
results shown in Figure 5(h,i). Each step requires the
character to achieve a step length of (1.0± 0.5, 0.0± 0.5)
m for the human and (1.2±0.3, 0.0±0.3) m for the robot,
where (x, y) represents the forward and lateral length of
the step. An upper body orientation constraint requires
that the pelvis and torso remain within 15◦ of the
vertical. The character is evaluated from a static position
corresponding to the pose demanded by the first phase
of the controller and is simulated for 30 steps. The first
10 steps are used to allow the character to attain a limit
cycle behavior. The constraints and motion diversity are
then evaluated over the last 20 steps. If the character
falls during the first step, a penalty of 50,000 is applied,
with the penalty linearly decreasing to 0 for falling after
the 30th step. This provides a suitable gradient for the
optimization to exploit. Four variations are synthesized
using the mass-distance metric. The resulting styles are
highly diverse and dynamic in nature. The robot silly
walks have particularly interesting styles: M1 is a tip-toe
walk; M2 has a serious and purposeful tone; M3 is an
asymmetric loping walk; and M4 yields a chin-in-the-air
proud style of walk.

7.2 Control over Magnitude of Motion Variation

We provide two methods for control over the mag-
nitude of motion variation. The first takes advantage
of the progressive nature of the CMA optimization,
which provides a solution path from the initial motion
to each of the maximally diverse motions. We param-
eterize this path according to the underlying distance
metric, and allow the user to explore intermediate points
along these paths. A second method is to place intuitive
constraints on the controller. We experiment with two
different strength models for motions, a default strength
model and a second ’supernatural’ strength model that
increases the joint PD constants and torque limits by
a factor of 1.5–3. These two methods are illustrated in
Figure 6 and the accompanying video. A third method
would be to constrain the motion variations to be within
some desired ε of a reference motion in terms of energy
expenditure or distance metric. We leave the exploration
of this idea as future work.

The set of motion variations can be further shaped
through additional motion constraints, the creation of
an initial motion that more closely resembles the de-
sired class of motions, and refining the choice of free
parameters according to the degrees of freedom where
the variation is desired.

(a) Parameterized optimization
path

(b) Altered character strength

Fig. 6. Two methods for controlling the degree of diversity.
(a) The figures in light blue, orange, pink, green, and blue
show results at points that are 0, 25, 50, 75, and 100%
along the optimization path. (b) The orange figures is
significantly stronger than the blue figure.

Jump forward Back flip
MD metric SD metric MD metric SD metric

objective µ σ µ σ µ σ µ σ
MD 30.6 9.6 1.36 0.42 21.8 8.0 1.37 0.52
SD 17.2 18.4 3.05 0.93 5.3 3.1 1.76 0.46

TABLE 1
Optimization allowing for changes in character shape.

The results provide the mean and standard deviation for
each type of metric when optimized for motion diversity

(MD, row 1) and shape diversity (SD, row 2).

8 RESULTS FOR SHAPE VARIATIONS

Diverse solutions for a given task can also be obtained by
allowing for variation in the dimensions of the links of a
character, which we refer to as its shape. Characters hav-
ing different body dimensions (shapes) will necessarily
need to develop different motions in order to accomplish
the same task. These types of motion variations are
fundamentally different than the motion variations that
can be achieved by adapting only the applied control.

We explore the effect of adding shape parameters to
the optimization free parameters in two settings: (1)
optimization for motion diversity; and (2) optimization
for shape diversity. These are applied to the Jump for-
ward and Back flip tasks. Example results from a typical
run with N = 4 variations are illustrated in Figure 7.
The motions are best seen in the accompanying video
material. The optimizations use 10 shape parameters
and 36 control parameters and thus have 36 + 10 = 46
free parameters in total. The CMA optimization pro-
cess converges in approximately 2000 generations, which
requires about 2 hours of compute time in our multi-
threaded implementation. In order to be able to compare
the effect of optimizing for motion diversity against
optimizing for shape diversity, we compute both metrics
for all motions, even though only one of them is being
used a given time as the objective function. The results
are given in Table 1, as measured across twelve motions,
consisting of three runs with N = 4 variations each.

For both the jump and the backflip, the use of the
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(a) Jump forward with mo-
tion diversity

(b) Jump forward with shape
diversity

(c) Back flip with motion di-
versity

(d) Back flip with shape di-
versity

Fig. 7. Optimization results that allow for changing char-
acter proportions. Motions can be optimized for motion
diversity (a,c) or shape diversity (b,d). For each task we
show the input motion, M0, on the first row and the four
synthesized variations, M1–M4, on the remaining rows.

motion metric as the objective function produces signif-
icantly more motion variation than is achieved as a by-
product from optimizing for shape variation. A similar
principle holds true for shape diversity optimization –
it produces significantly more shape diversity than is
achieved as a by-product of optimizing for motion vari-
ation. Nevertheless, optimization for either metric still
introduces variation with respect to the other distance
metric. An objective function that explicitly rewards both
motion diversity and shape diversity may be a good
compromise in many situations, although we leave a
more detailed investigation as future work. As seen in
the video results, changes in shape can produce motion
variations that would likely be difficult to achieve oth-
erwise. The backflips of short characters and characters
with very long arms are good examples of this.

9 DISCUSSION AND CONCLUSIONS

The ability to automatically synthesize diverse styles
of physics-based motions provides for a new type of
‘imagination amplification’ for animation. The synthe-
sized motions and the synthesized character proportions
continue to diverge from each other until they are limited
by some combination of joint limits, torque limits, ability
to recover balance, and the built-in constraints of the
controller parameterization and shape parameterization.
The interplay of these limiting factors is such that it
is difficult for an animator to preconceive of how they
might shape the space of possible motions. Our work
provides a new tool to greatly facilitate the exploration
of the space of possible motions. While some exploration
of possible motions is also achieved with current opti-
mization methods by manually adding or reweighting
objective function terms, we argue that this is neither
convenient nor principled if the objective function must
be specifically tailored to each motion. We show that
pose similarity metrics drawn from previous work can
also be used as distance metrics for achieving diverse
motion variations.

Diversity optimization works equally well for explor-
ing the space of body shapes that are capable of a given
task. The optimization provides the successful body
shapes as well as the accompanying motions and their
underlying controllers. We show that shape variation
can be a natural byproduct of aiming to achieve motion
variation, and vice-versa, i.e., that some motion varia-
tion will naturally occur as a byproduct of optimizing
for shape variation. Taken together, motion variation
and character shape variation provide a significant and
interesting space of motions to explore. The diversity
optimization provides easy access to this space. As such
it serves a very different purpose from the task-and-
effort goals that have been traditionally explored in the
context of physics-based animation methods. Taken in
isolation, the motions produced by our method are not
optimal with respect to any given objective function, and
yet we argue that they are interesting solutions.
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The method may fail to produce expected styles of
motion variation for any of several reasons. The solution
may not converge to a global maximum. The solution
may be strongly multimodal with considerable distances
between modes, in which case CMA may have trouble
finding distant modes. We have observed one case of
a flip being discovered as a new means for performing
a high jump. Undesirable motion variations may also
occur if the parameterization of the controller is ill-suited
to producing natural human motions. As a result, the
design of the underlying controller and the choice of
initial motion will also influence the final result. We
currently do not yet use a principled mechanism for
scaling joint torque limits as a function of the character
dimensions. This might result in characters of large or
small proportions being limited in their capabilities.

The quality of our results for common motions such
as walking depend on the viewer’s expectations of the
character. The walk variations produced for the robot
are plausible while those produced for the human model
are physically plausible and entertaining but not natural.
Also, the lack of any explicit optimization for control
effort may also contribute to a motion being unnatu-
ral. We expect that effort-related terms could also be
included in the objective functions or that other forms of
optimization could be added as a separate post-process,
although we have not experimented with this.

We use a set of four motion variations, i.e., N = 4,
to provide a consistent picture of the types of motion
variations that are generated. In general, repeating the
stochastic optimization may produce additional motion
variations. While computing the required distance met-
rics is O(N2), the dominant cost lies with the simula-
tions used to evaluate the CMA samples. As such, the
overall diversity optimization is effectively O(N). Our
experiments with N = 10 show that this does produce
additional distinctive motion variations, although the
mean distance between motion variations does begin to
fall.

We conducted a simple test to compare the simultane-
ous optimization of N motion variations, as performed
by the round-robin CMA, against the progressive addi-
tion strategy (§3) that only optimizes the most recently
added motion until it is as diverse as possible. This
is tested for N = 4 on the backflip problem. Using
the results from 5 runs we obtain Dmin = 41.8, D =
54.4, Dmax = 64.1 for the one-at-a-time results, and
Dmin = 71.2, D = 83.5, Dmax = 103.7 for the N = 4
simultaneous optimizations. The results show that the
worst-case simultaneous optimization still significantly
outperforms the best one-at-a-time optimization. An-
other naive approach would be to generate many motion
variations that satisfy the task constraint and then simply
retain the N variations that are most diverse. However,
the problem domain is such that there is no efficient way
to generate motion variations that satisfy the task con-
straint, and particularly not for large motion variations
that satisfy the task constriant. The method presented in

this paper is motivated in part by the desire to develop
such a motion null space.

Care needs to be taken to avoid overconstraining the
motion. A motion that is tightly constrained, such as
hitting a particular keyframe at a given point in time,
will have a limited subspace within which to optimize
for diversity and our method would likely have trouble
meeting such specific constraints. The optimization prob-
lem also benefits from the use of feedback-based control
that is built into the motion parameterization, such as
the balancing controller or the use of a SIMBICON-style
feedback loop in our 3D walking examples. These feed-
back structures allow the optimization to make faster
progress and also result in a more robust simulated
motion. An alternate approach would be to investigate
the use of trajectory-based optimization methods for
such problems, instead of the control-based method that
we currently employ.

An interesting direction for future work would to
be explore the design of a multidimensional motion
null space with the help of our diversity results. We
currently only support the exploration of continuously
parameterized solutions along the optimization paths
resulting from the CMA solutions, i.e., the result shown
in Figure 6(a). It may be possible to use the current
results to define a large subspace in which arbitrary
convex combinations of control parameters, Pj , yield
a continous multidimensional motion null space that
contains significantly more variations than that observed
along the optimization paths alone. Another exciting
possibility would be to use a video-to-controller system
[43] in order to quickly and automatically create the
input motion and its controller from a direct demon-
stration. Diversity optimization could then be used to
immediately create feasible style variations that are con-
strained to have a similar outcome.
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data using short-horizon model-predictive control,” in Computer
Graphics Forum, vol. 27, no. 2. Wiley Online Library, 2008, pp.
371–380.

[8] L. Liu, K. Yin, M. van de Panne, T. Shao, and W. Xu, “Sampling-
based contact-rich motion control,” ACM Transctions on Graphics,
vol. 29, no. 4, p. Article 128, 2010.

[9] S. Coros, A. Karpathy, B. Jones, L. Reveret, and M. Van De Panne,
“Locomotion skills for simulated quadrupeds,” ACM Transactions
on Graphics (TOG), vol. 30, no. 4, p. 59, 2011.
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