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Abstract

We present an optimization framework for generating diverse vari-
ations of physics-based character motions. This allows for the auto-
matic synthesis of rich variations in style for simulated jumps, flips,
and walks. While well-posed motion optimization problems result
in a single optimal motion, we explore using underconstrained mo-
tion descriptions and then optimizing for diversity. As input, the
method takes a parameterized controller for a successful motion in-
stance, a set of constraints that should be preserved, and a pairwise
distance metric between motions. An offline optimization then pro-
duces a highly diverse set of motion styles for the same task. We
demonstrate results for a variety of 2D and 3D physics-based mo-
tions and show that this approach can generate compelling new mo-
tions.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
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1 Introduction

Physics-based motions are difficult to author. As such, optimization
has been a powerful tool in designing the motion of physics-based
characters. Given an objective function and an initial guess at a
motion or its controls, a variety of numerical optimization methods
can be used to refine the motion control (or the motion itself) un-
til the process converges to a result that maximizes (or minimizes)
the objective function. In this context, a well-posed optimization
problem should have a well-defined maximum (or minimum) and
have an objective function that accurately captures the user’s intent.
Objective functions that minimize control effort are a common way
of defining such an optimization problem. However, this also un-
fortunately eliminates the possibility of seeing the rich non-optimal
variations in style that are commonly seen in human motions and
which help give life to animated motions.

In this paper we propose to work with underconstrained motion
specifications such as “do a backflip and land in this region” and
to then automatically generate highly-diverse motion variations that
satisfy the given specifications. This enables the exploration of “the
space of back flips” and, similarly, the spaces of possibilities for
other types of underconstrained dynamic motions. We loosely refer
to these spaces of possible motions as motion null spaces.

We expect that the proposed method can be applied in a variety
of scenarios. It can enhance the suite of applications that physics-
based synthesis methods currently target. It can allow animators to
reduce the amount of manual iteration required to design a motion.

Figure 1: Abstract view of diversity optimization.

Informal discussions with animators reveal that when a new mo-
tion is encountered quite some time is spent exploring for a motion
that has the “right” look. Lastly, diverse motion synthesis can be
used in situations when motion variation becomes important, i.e.,
for crowds or non-repetitive motions for an individual.

Our primary contribution is a framework that uses diversity opti-
mization to allow for the synthesis of sets of simulated motions that
span the many possible ways in which an underconstrained motion
can be achieved. As key elements of this framework, we propose:
(1) an objective function specifically tailored to diversity optimiza-
tion for physics-based character animation; (2) the use of round-
robin covariance matrix adaptation (CMA) as an effective optimiza-
tion strategy; and (3) the use of known pose similarity metrics as
being equally suitable as distance metrics for measuring motion di-
versity.

An abstract view of the diversity optimization problem is shown in
Figure 1. The motion null space is described by the subspace of
motions that satisfy physics, satisfy the motion constraints, and are
realizable by the character and its underlying controller parameter-
ization. In this paper we do not recover the full motion null space,
but rather discover a set of maximally-diverse examples that help
define its extent. Given an input motion, shown in red, the goal
is to develop synthesized variations that are as distant as possible
from each other and the input motion. The straight lines in Figure 1
illustrate the relevant pairwise distances for the synthesis of three
new diverse motion variations. The degree of achievable motion
variation is constrained by factors such as joint limits, torque lim-
its, and the particular choice of parameterization of the underlying
control. We call these emergent constraints because it is difficult
to know in advance how these implicit and explicit limitations will
end up shaping the space of realizable motions for a given task.

2 Related Work

Physics-based character control can be achieved in a variety of
ways. Many methods are based on tracking a reference motion
based on motion capture data, as seen in many recent methods:
[Sok et al. 2007; Yin et al. 2007; Muico et al. 2009; Lee et al.
2010; Kwon and Hodgins 2010; Yin et al. 2007; Ye and Liu 2010;
Da Silva et al. 2008; Liu et al. 2010; Coros et al. 2011] A second
approach is to develop appropriate objective functions without re-
lying on captured data and to then synthesize motions using online
or offline optimization. Representative examples of this approach



include [Liu and Popović 2002; Macchietto et al. 2009; Wang et al.
2009; de Lasa et al. 2010; Wu and Popović 2010; Borno et al. 2013].
A third approach involves users in authoring the shape of the con-
trolled motion, e.g., [Liu and Popović 2002; Yin et al. 2007; Coros
et al. 2010; Nunes et al. 2012]. In practice, methods often combine
multiple aspects of these three possible sources of motion. The ma-
jority of methods are focused on locomotion tasks and result in a
single motion style.

Numerous kinematic models for motion style and variation have
been proposed. Procedural noise [Perlin 1995] or learned models of
noise [Lau et al. 2009] can be added to kinematic character motions
to achieve motion variety and realism. Many statistical models have
been developed to learn motion styles or to estimate style and con-
tent in a separable fashion, e.g., [Brand and Hertzmann 2000; Hsu
et al. 2005; Wang et al. 2007]. However, these methods create kine-
matic models of existing styles and are limited in their ability to
create new and strikingly different styles of motion.

Variations of physics-based motions have also been explored. The
passive motion of objects can be shaped so that objects roll and
bounce to achieve given goals [Chenney and Forsyth 2000]. The
stochastic nature of the search allows for a variety of solutions to
be generated for the same problem. Natural sources of variation
such as motor noise and environmental conditions can be used to
achieve a degree of variation in walking gaits [Wang et al. 2010].
Another approach to generating motion variety is to provide tools
that enable the user to efficiently sift for desirable solutions among
many automatically-generated variations. This is applied to pas-
sive physics-based simulations in [Twigg and James 2007] and to
a control system for a 24-DOF monoped hopper dog in the Design
Galleries (DG) approach [Marks et al. 1997]. This latter example is
closest in spirit to the problem we wish to tackle. The motion of the
hopping dog is shaped by 7 time-varying sinusoids that modulate
the forward velocity, hopping height, and the pose of the ears, tail,
and neck. The amplitude, offsets, and frequencies of these sinu-
soids are then explored to produce motion variations. Our method
works on significantly more complex human and robot figures per-
forming a much wider range of more constrained motion tasks.

Diversity optimization is a problem of general interest in the con-
text of planning and AI [Hebrard et al. 2005; Coman and Muñoz-
Avila 2011; Srivastava et al. 2007; Ursem 2002]. The problem is
often posed as finding a diverse set of k configurations of a discrete
set of parameters such that a given goal, i.e., a target price range of
a product, is satisfied. A common diversity metric is to take the sum
of a pairwise distance metric over all possible pairs of the k config-
urations. More recently, the selection of diverse solutions has also
been addressed for problems such as designing furniture layouts
[Merrell et al. 2011], where solutions generated using Monte Carlo
sampling can be used to produced a diversified list using a maximal
marginal relevance criterion.

We draw inspiration from the above work in order to develop a
method that can propose novel motion styles for physics-based mo-
tion tasks. In order to ensure that a good exploration of the space
of realizable motions is achieved and is available to the user, we
seek to find the most diverse set of motion styles. In doing so, the
optimization naturally finds novel forms of coordinated full body
motion as well as exposing the emergent constraints that eventually
serve to limit the extent of possible motion variation. Our problem
is such that the cost of finding new samples that satisfy the task
constraints is a challenging problem as the solution set becomes
more distant from the input motion. As such, we develop an al-
gorithm that takes an integrated approach to maintaining task con-
straints and producing motion diversity. This stands in contrast to
approaches that generally assume a lightweight sample-generation
process [Marks et al. 1997; Wang et al. 2010; Merrell et al. 2011].

Figure 2: Effect of K on diversity optimization in a 2D domain
with a sum-of-squared-distances metric. All 4 synthesized solution
points begin at the reference point shown in red.

3 Diversity Optimization

The goal of the diversity optimization is to generate a set of N
synthesized motions which are as different as possible from each
other while still satisfying desired constraints. This is captured by
maximizing the following diversity objective:

D =

N∑
i=0

(
−C(Mi) +

N∑
j=0

(d(Mi,Mj) +Kdmin(Mi))

)
(1)

where {Mi} denotes the set of N motions, C(Mi) is a posi-
tively valued constraint function, d(Mi,Mj) is a distance mea-
sure between two motions and dmin(Mi) is the minimal distance
of all pairwise distances involving motion Mi. K is a weight-
ing constant that we discuss in further detail. The motions them-
selves are parameterized via their underlying controller according
toMi = M(Pi), where Pi are the controller’s free parameters (§5).

The first term of the objective function, given by the constraint
function, evaluates to zero when the motion constraints are satis-
fied. This “null space” corresponds to a subspace in the parameter
space that contains the realizable motion styles that are of inter-
est. Without loss of generality, we assume that the constraint is
initially satisifed for M0, the reference motion that is used as a
starting point, i.e., C(M0) = 0. If this is not true, then C(M0) is
used as an objective function in order to first satisfy this condition.
The d(Mi,Mj) term encourages diversity through a maximization
of the sum of pairwise distances between the motions. However,
by itself this can yield clusters of motions that have negligible dis-
tances within the cluster. The Kdmin(Mi) term addresses this by
encouraging dispersion between all motion pairs, as measured by
the minimum pairwise distance for any given motion.

Figure 2 illustrates the effect of assigning different values to K, the
weight assigned to the dmin term, for an example where squared
Euclidean distances are used as the distance measure. The solutions
shown are generated from a stochastic optimization (CMA [Hansen
2006]). K = 0 results in undesireable clusters of points located at
extremal points of the feasible domain because the benefit of the
large inter-cluster distances outweighs the benefit of increasing the
intra-cluster distances. As shown by the K = 100 result, large
values of K can resolve the clustering problem but result in CMA
converging to solutions that fail to find extremal points in the do-
main due to an insufficient reward for diversity. It should be noted
that increasing K does not always imply a larger value for dmin, as
can be also be seen from the figure. An appropriate middle ground
is to choose a value for K that encourages both diversity and dis-
persion. We use K = 10 for all our results.

We develop a round-robin CMA algorithm for maximizing D, de-
veloped on top of a standard CMA implementation. This applies
one generation of CMA optimization to each of the N motions,
in turn, before moving on to the next generation of the optimiza-
tion for each of the motions. During the optimization of motion



variation i, the other motions are held fixed. Optimization is per-
formed using 500-1000 CMA generations with 16 samples per gen-
eration. CMA is terminated when the maximum generation count
is reached (1000) or when the diversity objective advances by less
than a given ε. Good results are typically obtained within the first
500 generations.

Each of the N CMA optimizations maintains its own state infor-
mation, including a mean and covariance matrix associated with its
samples. Because the objective function is constructed over mutual
distance metrics, the results of optimizing a given motion Mi will
also inadvertently change the objective function values seen by the
other motion variations. An assumption of the round-robin opti-
mization process is that these changes will be sufficiently small to
avoid adverse behavior. In practice, we have not encountered ad-
verse behavior. An alternative strategy is to add motion variations
one at a time, each time optimizing only the most recently added
motion. In practice, we found that this progressive addition strat-
egy performed worse than the round-robin method (§6). All our re-
sults are thus computed using round-robin CMA optimization. One
other potential strategy is to treat all N motions as a single large
optimization problem having N × |P | parameters, where |P | de-
notes the cardinality of the set of free parameters to be optimized
for each motion. This strategy results in an N -fold increase of the
number of optimization parameters and thus it does not scale well.

4 Motion Distance Metrics

The pairwise distance metric provides the foundation for the mea-
surement of the diversity of the solution set. We investigate three
possible choices: (1) hands + feet (HF); (2) mass distance (MD);
and (3) weighted joint angles (WJA). These choices correspond to
pose similarity metrics that are commonly used to compute good
transition points between motions. The distance metrics between
corresponding poses q and q′ are defined according to:

dHF(q, q′) =
∑

i∈hands,feet

||xi − x′i||2

dMD(q, q′) =
∑
i

mi||xi − x′i||2

dWJA(q, q′) =
∑
i

wi(θi − θ′i)2

where xi and x′i correspond to the locations of the center of mass
of link i for pose q and q′, respectively, after the character’s centers
of mass have been aligned for the two poses. θ refers to the charac-
ter’s joint angles and root angle. The MD distance metric has been
previously used as a similarity metric [Lamouret et al. 1996; Kovar
et al. 2002]. We use the WJA weights suggested in a previous study
on pose similarity metrics [Wang and Bodenheimer 2003].

The distance between two motions is computed as a sum of the
pose distances for a number of corresponding sample points on the
pair of motions to be compared. Meaningful correspondences are
obtained by using the phase-based structure of the motions (§5).
Within each phase, correspondences are established using the nor-
malized time, t̂, where t̂ = (t− tstart)/(tend− tstart). For walking
motions, we use 10 samples for each of four motion phases. For
jumping motions, we use 10 samples for each of the two airborne
motion phases and do not sample the other phases because the most
interesting variations should occur during airborne segments.

Interesting motion variations can be found using all three distance
metrics. Many of the results given in the rest of the paper and the
accompanying video use the mass-distance metric because of its
convenient parameter-free nature.

5 Models and Control Parameterization

2D human model: The planar human figures have 17 links and
are simulated using Box2D [Box2D ] or Vortex [CMLabs ]. After
taking symmetry into account, there are 10 joints that require inde-
pendent control. The character has a mass of 80 kg and a height of
160 cm. High-valued torque limits are used so as to allow the char-
acter to perform highly dynamic motions that can make for com-
pelling animations: 300 Nm for the hips and upper-waist, 200 Nm
for the knees, ankles, lower-waist, and shoulders, and 50 Nm for
the remaining joints. All joints are controlled using proportional-
derivative (PD) controllers with gains that are manually set to ap-
propriate values for the input motions. The feet, pelvis, and upper
torso are assigned target orientations in the world coordinate frame
during stance phase. In all other cases, joints have target orienta-
tions specified in local coordinates, i.e., with respect to their proxi-
mal (parent) link.

3D human model: This model has 15 links and 24 internal degrees
of freedom. The shoulders, hips, waist, ankles, neck and wrist joints
are modeled as U-joints, while the elbows and knees are modeled
as hinge joints. The character has a mass of 80 kg and height of
180 cm. Torque limits are 200 Nm for the hips and waist, 150
Nm for the knees and ankles, 50 Nm for the neck, and 100 Nm
for the shoulders, elbows, and wrists. Joints are driven using PD
controllers. For walking gaits we track the pelvis, swing-leg femur,
and swing-leg foot orientation in a world-aligned coordinate frame
[Yin et al. 2007]. During jumps, we similarly track the desired
pelvis orientation in world space during stance phases. Otherwise,
all joints track joint-local target angles. The forward dynamics is
simulated using Vortex [CMLabs ].

3D bird-robot walker: The model has 10 links and 14 internal de-
grees of freedom. The middle pair of joints on each leg are modeled
as hinge joints and the remaining joints are U-joints. The character
weighs 70 kg and is 2.9 m tall. The control setup is analogous to
that of the 3D human model.

Controller phases: Motions are the product of a parameterized
controller and forward dynamics simulation. The control is broken
into multiple phases as shown in Figure 3 for jumping motions and
walking motions. Transitions between phases occur after a phase-
specific time, denoted by ∆ti or upon a transition event, i.e., be-
coming airborne, reaching peak height, or making ground contact.
Each phase i has an associated target pose, Ωi. Within phase i, the
target pose is interpolated linearly over time between Ωi−1 and Ωi

using the known transition time. For phases that terminate upon
transition events, a transition time is estimated using a simple pre-
diction mechanism. An exception is the extend phase of the jump,
which directly transitions to its target pose in order to rapidly create
upward momentum. A balance controller is used during the start
and end phases of jumps and is implemented using virtual forces
applied to the center of mass using a Jacobian transpose model.
Lastly, a simple landing controller helps to accelerate the motion
optimization by providing intelligent foot placement. This is only
implemented for our 2D character. In the falling phase of jumps,
the feet are servoed to the target landing position where the COM is
predicted to pass through the ground, with an additional offset that
is a linear function of the horizontal velocity.

Optimization free parameters: The principal free parameters in
the diversity optimization are the target poses for each phase of the
controller. For 3D human jumps, all sagittal joint angles are in-
cluded, with the exception of the wrists and neck, yielding 49 opti-
mization parameters. For 3D human walks, all joints are included
(sagittal and non-sagittal) except for the neck joints, for a total of
52 optimization parameters. For 2D jumps, all joints are included,
with the exception of the neck. Additional parameters include the



Figure 3: Motion control phases.

transition times and phase-specific kp, kd gains for the hips, knees,
and ankles, for a total of 101 parameters.

Constraints: The constraint function C is modeled using a penalty
that evaluates to zero when the constraints are satisfied and applies
a quadratically rising penalty outside of this region. The constraint
violations should be weighted sufficiently to rapidly dominate the
diversity objective term once constraints are violated. In practice
we find that provided it is sufficiently large, the specific choice of
weight is not important given that the optimization method (CMA)
is invariant with respect to order preserving transformations of the
objective function value. Like a barrier method, the constraint pro-
vides a gradient for the optimization to follow to achieve accomoda-
tion of the constraints, while following the diversity gradient when
constraints are satisfied. Obtaining meaningful results requires that
a suitable constraint null space exists. We revisit this issue in the
discussion of results.

6 Results

We explore the creation of a set of four diverse motion variations for
nine constrained motion tasks. The results are illustrated in Figure 4
and in the accompanying video. The differences between some of
the motion variations are best observed when viewing them at half
speed (see A/V controls panel in QuickTime Player). For a given
motion task, we use Mn to refer to the motion variations, where n
denotes the row number. The top row, M0, corresponds to the input
motion and the remaining rows, M1–M4, correspond to the four
synthesized motion variations. We refer to the individual image
columns using the letters A–F. Images within a column are chosen
to correspond to a particular motion phase, which is more meaning-
ful than a time-based correspondence.

Four maximally-diverse motion variations can by synthesized in
30 minutes using 16 threads on an 8 core Xeon machine using an
unoptimized multithreaded implementation with Vortex and with
40% CPU usage. All the 3D examples are simulated using Vor-
tex, as are the 2D jump-high and jump-forward shown in the ac-
companying video. A time step of 120 Hz is achieved using the
“position-locked” PD-control available in Vortex. The remainder
of our 2D simulations are implemented using our original multi-
threaded Box2D implementation with 16 threads on an 8-core Xeon
machine. These run at 3900 Hz because of the explicit integration
of the PD-controllers. Computing 4 variations of an input motion
thus requires 1–4 hours of computation for these motions.

6.1 Motion Tasks

Backflip: We first create diverse variations for a standing back-
flip with a landing constraint. The landing constraint that requires
the center of mass of the foot to end within a 30 cm landing
box. The constraint penalty is zero for landing within this box.
Constraint costs outside of this region are modeled according to
C(M) = K||d||2, where K = 5000 and d is the Euclidean dis-
tance by which the constraint is violated. Falls are given a large
constant penalty, as is a failure of the root link to achieve a near-

360◦ rotation. The constraint violation penalty and falling penalty
are also modeled in a similar way for the remaining motions, unless
stated otherwise. An input motion is manually authored using the
given phase structure. The landing constraint is placed to match the
landing location of the input motion.

Figure 4(a) illustrates four motions created from a single diversity-
optimization run and uses the WJA distance metric. M1 and M2

show significant variations in takeoff pose (C), overall height (D),
and landing pose (F). M3 learns to assume a pike pose during the
flight phase. While some of the motions exhibit qualities that might
not be capable of being matched by an athlete, these are also the
qualities that make the motion appealing. If desired, the limits of
human musculature and joints can be modeled with more fidelity in
order to achieve more subdued results. We have also successfully
experimented with backflip variations without a landing constraint,
which leads to back flips that also vary in their horizontal distance
traveled.

Jump forward: We compute variations for a forward jump with a
landing-box constraint, as shown in Figure 4(b) and using the mass
distance metric. A manually authored controller is first developed
that is capable of a small in-place jump. This is then optimized
using CMA, with the landing-box constraint penalty serving as an
objective function. The resulting motion is the input motion mo-
tion for the diversity optimization. The same manually authored
controller also serves as a starting point for the development of the
input motions for all the other jump motions. M1 and M3 produce
jump variations with different styles of back arches, whileM2 real-
izes a jump with considerable forward pitch of the torso. M4 bears
a resemblence to M0 but considerably differs in phases C–E.

Jump onto: This motion is constrained to land on top of the box,
with the landing constraint implementing a small safety margin.
The input motion is obtained by optimizing the small in-place jump
to first jump forward onto a box of height h = 0. The motion is
then adapted to a box height of h = 0.5 m using a continuation-
based optimization [Yin et al. 2008]. The degree of available style
variation decreases as the box height increases and so we therefore
stop at a moderate box height for this example. The weighted joint-
angle distance metric is used to create the four motion variations
shown in Figure 4(c). M1 and M2 create jump styles that perform
pikes, each with its own style of arm motion. M3 performs a tuck
jump with a forward-pitched torso. M4 develops a jump with a
backwards arch.

Jump over: A jump over an obstacle is implemented using an
obstacle-clearance constraint and a landing constraint that enforces
a minimal jump length. The input motion is developed in an
analagous fashion to the Jump Onto motion. The small in-place
jump is first optimized to meet the required jump length. The mo-
tion is then adapted to clear an obstacle height of h = 0.55 m
using continuation-based optimization. Four diverse motion varia-
tions are synthesized using the weighted joint angle distance metric
and are illustrated in Figure 4(d).

Jump high: An in-place jumping motion is developed using two
constraints: a minimal-height constraint for the peak-COM height
and a landing constraint. The input motion is created by optimiz-
ing the small in-place jump to satisfy the given constraints. Four
diverse motion styles are produced using the mass distance metric
and are shown in Figure 4(e). The resulting variations include two
different styles with backwards arches (M1,M2) and two jumps,
M3 and M4, that perform pikes of varying extents in conjunction
with different types of coordinated arm movements.



(a) Back flip. (b) Jump forward. (c) Jump onto.

(d) Jump over. (e) Jump high. (f) Jump backwards

(g) Bird robot jump forward (h) Ministry of silly walks (i) Bird robot silly walks

Figure 4: Results for 2D motions (a,b,c,d,e) and 3D motions (f,g,h,i). For each task we show the input motion, M0, on the first row and the
four synthesized variations, M1–M4, on the remaining rows.



Backwards jump: The backwards jump for the 3D human model
requires landing within a 0.25 m of a target point that is located
0.8 m behind the character. The input motion comes from a man-
ually authored jump that is then optimized to satisfy the landing
constraint. Four diverse style variations are synthesized using the
mass distance metric and are shown in Figure 4(f). The resulting
dynamic motions exhibit a wide range of mid-air poses.

Robot jump: This jump uses a landing constraint located 4 m
ahead of the starting location with a radius of 0.75 m. An addi-
tional upper body rotation constraint is uses to prevent excessive
forward pitch. A manually authored small jump is optimized to sat-
isfy the landing constraint which then serves as the input motion.
Four diverse styles are produced using the mass distance metric (see
Figure 4(g). The styles achieve a wide range of mid-air poses.

Human and Robot silly walks: A diverse range of exaggerated
dynamic walks can be achieved, making it easy to create physics-
based walks that are reminiscent of Monty Python’s “Ministry of
Silly Walks” [YouTube ]. A step-length constraint is applied in the
diversity optimization results shown in Figure 4(h,i). Each step re-
quires the character to achieve a step length of (1.0 ± 0.5, 0.0 ±
0.5) m for the human and (1.2 ± 0.3, 0.0 ± 0.3) m for the robot,
where (x, y) represents the forward and lateral length of the step.
An upper body orientation constraint requires that the pelvis and
torso remain within 15◦ of the vertical. The character is evaluated
from a static position corresponding to the pose demanded by the
first phase of the controller and is simulated for 30 steps. The first
10 steps are used to allow the character to attain a limit cycle be-
havior. The constraints and motion diversity are then evaluated over
the last 20 steps. If the character falls during the first step, a penalty
of 50,000 is applied, with the penalty linearly decreasing to 0 for
falling after the 30th step. This provides a suitable gradient for the
optimization to exploit. Four variations are synthesized using the
mass-distance metric. The resulting styles are highly diverse and
dynamic in nature. The robot silly walks have particularly interest-
ing styles: M1 is a tip-toe walk; M2 has a serious and purposeful
tone; M3 is an asymmetric loping walk; and M4 yields a chin-in-
the-air proud style of walk.

6.2 Control over Magnitude of Motion Variation

We provide two methods for control over the magnitude of motion
variation. The first takes advantage of the progressive nature of the
CMA optimization, which provides a solution path from the initial
motion to each of the maximally diverse motions. We parameter-
ize this path according to the underlying distance metric, and allow
the user to explore intermediate points along these paths. A second
method is to place intuitive constraints on the controller. We ex-
periment with two different strength models for motions, a default
strength model and a second ’supernatural’ strength model that in-
creases the joint PD constants and torque limits by a factor of 1.5–3.
These two methods are illustrated in Figure 5 and the accompanying
video. A third method would be to constrain the motion variations
to be within some desired ε of a reference motion in terms of en-
ergy expenditure or distance metric. We leave the exploration of
this idea as future work.

The set of motion variations can be further shaped through ad-
ditional motion constraints, the creation of an intial motion that
more closely resembles the desired class of motions, and refining
the choice of free parameters according to the degrees of freedom
where the variation is desired.

(a) Parameterized optimization path (b) Altered character strength

Figure 5: Two methods for controlling the degree of diversity.
(a) The figures in light blue, orange, pink, green, and blue show
results at points that are 0, 25, 50, 75, and 100% along the opti-
mization path. (b) The orange figures is significantly stronger than
the blue figure.

6.3 Performance

We conducted a simple test to compare the simultaneous optimiza-
tion ofN motion variations, as performed by the round-robin CMA,
against the progressive addition strategy (§3) that only optimizes the
most recently added motion until it is as diverse as possible. This is
tested for N = 4 on the backflip problem. Using the results from 5
runs we obtainDmin = 41.8, D = 54.4, Dmax = 64.1 for the one-
at-a-time results, and Dmin = 71.2, D = 83.5, Dmax = 103.7
for the N = 4 simultaneous optimizations. The results show that
the worst-case simultaneous optimization still significantly outper-
forms the best one-at-a-time optimization. Another naive approach
would be to generate many motion variations that satisfy the task
constraint and then simply retain the N variations that are most
diverse. However, the problem domain is such that there is no ef-
ficient way to generate motion variations that satisfy the task con-
straint, and particularly not for large motion variations that satisfy
the task constriant. The method presented in this paper is motivated
in part by the desire to develop such a motion null space.

We use a set of four motion variations, i.e., N = 4, to provide a
consistent picture of the types of motion variations that are gen-
erated. In general, repeating the stochastic optimization may pro-
duce additional motion variations. While computing the required
distance metrics is O(N2), the dominant cost lies with the simu-
lations used to evaluate the CMA samples. As such, the overall
diversity optimization is effectively O(N). Our experiments with
N = 10 show that this does produce additional distinctive motion
variations, although the mean distance between motion variations
does begin to fall.

7 Discussion and Conclusions

The ability to automatically synthesize diverse styles of physics-
based motions provides for a new type of ‘imagination amplifica-
tion’ for animation. The synthesized motions continue to diverge
from each other until they are limited by some combination of joint
limits, torque limits, ability to recover balance, and the built-in con-
straints of the controller parameterization. The interplay of these
limiting factors is such that it is difficult for an animator to pre-
conceive of how they might shape the space of possible motions.
Our work provides a new tool for exploring the space of possi-
ble motions. While some exploration of possible motions is also
achievable with current optimization methods by manually adding
or reweighting objective function terms, we argue that this is neither
convenient nor principled if the objective function must be specifi-
cally tailored to each motion. We further show that pose similarity
metrics drawn from previous work can also be used as distance met-



rics for achieving diverse motion variations.

The method may fail to produce expected styles of motion variation
for several reasons. The solution may not converge to a global max-
imum. The solution may be strongly multimodal with considerable
distances between modes, in which case CMA may have trouble
finding distant modes. We have observed one case of a flip being
discovered as a new means for performing a high jump. Undesir-
able motion variations may also occur if the parameterization of the
controller is ill suited to producing natural human motions. As a re-
sult, the design of the underlying controller and the choice of initial
motion will also influence the final result. The quality of our re-
sults for common motions such as walking depend on the viewer’s
expectations of the character. The walk variations produced for the
robot are plausible while those produced for the human model are
physically plausible and entertaining but not natural.

Care needs to be taken to avoid overconstraining the motion. A mo-
tion that is tightly constrained, such as hitting a particular keyframe
at a given point in time, will have a limited subspace within which
to optimize for diversity and our method would likely have trou-
ble meeting such specific constraints. The optimization problem
also benefits from the use of feedback-based control that is built
into the motion parameterization, such as the balancing controller
or the use of a SIMBICON-style feedback loop in our 3D walk-
ing examples. These feedback structures allow the optimization
to make faster progress and also result in a more robust simulated
motion. An alternate approach would be to investigate the use of
trajectory-based optimization methods for such problems, instead
of the control-based method that we currently employ.

An interesting direction for future work would to be explore the
design of a multidimensional motion null space with the help of
our diversity results. We currently only support the exploration of
continuously parameterized solutions along the optimization paths
resulting from the CMA solutions, i.e., the result shown in Fig-
ure 5(a). It may be possible to use the current results to define
a large subspace in which arbitrary convex combinations of con-
trol parameters, Pj , yield a continous multidimensional motion null
space that contains significantly more variations than that observed
along the optimization paths alone. Effort metrics can be incor-
porated into the system by performing an epsilon-optimal search.
Another exciting possibility would be to use a video-to-controller
system [Vondrak et al. 2012] in order to quickly and automatically
create the input motion and its controller from a direct demonstra-
tion. Diversity optimization could then be used to immediately cre-
ate feasible style variations that are constrained to have a similar
outcome.
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for human motion. In ACM Transactions on Graphics (TOG),
vol. 24, ACM, 1082–1089.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. ACM Transactions on Graphics, 473–482.

KWON, T., AND HODGINS, J. K. 2010. Control systems for hu-
man running using an inverted pendulum model and a reference
motion capture sequence. The ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (SCA 2010).

LAMOURET, A., VAN DE PANNE, M., ET AL. 1996. Motion
synthesis by example. In Eurographics Workshop on Computer
Animation and Simulation, 199–212.

LAU, M., BAR-JOSEPH, Z., AND KUFFNER, J. 2009. Modeling
spatial and temporal variation in motion data. In ACM Transac-
tions on Graphics (TOG), vol. 28, ACM, 171.

LEE, Y., KIM, S., AND LEE, J. 2010. Data-driven biped control.
ACM Trans. Graph. 29 (July), 129:1–129:8.
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