
Robust Task-based Control Policies for Physics-based Characters

Stelian Coros Philippe Beaudoin Michiel van de Panne∗

University of British Columbia

(a) Go-to-line (b) Heading (c) Go-to-point (d) Point-with-heading (e) Heading-and-speed (f) Very Robust Walk

Figure 1: We precompute task-specific control policies for real-time physics-based characters. The character moves efficiently towards the
current goal, responds interactively to changes of the goal, and can respond to significant physical interaction with the environment.

Abstract

We present a method for precomputing robust task-based control
policies for physically simulated characters. This allows for char-
acters that can demonstrate skill and purpose in completing a given
task, such as walking to a target location, while physically interact-
ing with the environment in significant ways. As input, the method
assumes an abstract action vocabulary consisting of balance-aware,
step-based controllers. A novel constrained state exploration phase
is first used to define a character dynamics model as well as a fi-
nite volume of character states over which the control policy will
be defined. An optimized control policy is then computed using
reinforcement learning. The final policy spans the cross-product
of the character state and task state, and is more robust than the
conrollers it is constructed from. We demonstrate real-time results
for six locomotion-based tasks and on three highly-varied bipedal
characters. We further provide a game-scenario demonstration.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Simulation of Skilled Movement, Animation

1 Introduction

Human and animal motions are the product of physics and muscular
control. However, modeling the control needed to achieve physical
simulations of natural, agile motions remains difficult. It is not only
necessary to model individual skills such as walking and running,

∗e-mail: {scoros|beaudoin|van@cs.ubc.ca}

but also to find good ways of integrating these skills in a seamless
fashion in order to produce purposeful motion that achieves a given
goal or task.

This paper demonstrates the integration of physics-based locomo-
tion skills towards solving tasks such as efficiently moving to a
target location or target heading. As they go about their task, the
characters can be physically perturbed and have other dynamic
interactions with their environment. The individual skills or ac-
tions consist of step-based controllers of the type proposed in [Yin
et al. 2007] and are assumed to be given as input. Their task-
based integration is non-trivial because the individual actions do
not directly specify the final motion, as with kinematic models.
Instead, they control it indirectly by steering the evolution of the
high-dimensional character state. Given the many possible charac-
ter states and the indirect steering nature of the available actions,
this leads to an expansive space of possible motions that is diffi-
cult to model. To this end, we describe a process for creating a
compact, restricted model of the dynamics with the help of a set of
trusted states. The dynamics model is then developed by beginning
at the trusted states and computing the state closure under the set
of available individual actions, subject to a further limited-distance
constraint with respect to the trusted states.

The task goal is specified using a reward or cost function, such as
the distance to a goal point. The optimized control policy is then
computed using fitted value iteration, which is a model-based re-
inforcement learning algorithm. Importantly, the control policy is
defined over the cross product of the character state and the task
state. These are both continuously-valued in our case and results in
a high dimensional domain for the control policy. We show the fea-
sibility of modeling control policies and value functions in such a
case. The control policies also naturally integrate the need to main-
tain balance with the task objectives. For example, if a character is
in a falling state and only one action can be taken to avoid a fall, this
is captured by a control policy which is then invariant with respect
to the task state for that particular character state.

Our computed control policies add robustness in a number of im-
portant ways. First, they exploit actions (controllers) where they are
safe to use and avoid their use from states where this would lead to
failure. This allows for significant flexibility when designing the
individual controllers because there is no need to explicitly supply
a model of the preconditions for individual controllers. Second, al-

Figure 2: System overview. State exploration and fitted value
iteration are performed offline, while the remaining blocks form the
real-time control loop. The control policy makes decisions at every
character step, ∆T , while the controller makes decisions at every
simulation time step, ∆t. w denotes the task state.

though the form of controllers we use are already quite robust to ex-
ternal perturbations, we show that a task control policy makes them
even more robust. Third, our results show that it is now possible to
physically perturb simulated bipeds in significant ways while they
continually and purposefully attempt to achieve their locomotion-
based tasks. We are not aware of other demonstrations of this type
of capability across multiple tasks and for multiple characters.

Figure 1 shows examples of tasks and characters for which we com-
pute optimized control policies. The go-to-line task consists of
walking (or running) forwards or backwards to the goal line. The
goal of the go-to-heading task is to walk in a specified direction.
The go-to-point task uses forward, backwards, or sideways walk-
ing to move to a goal location anywhere on the plane, and the go-
to-point-with-heading task has the additional requirement that the
character be facing in a given orientation when arriving at the goal.
The heading-and-speed task walks in a specified direction at a spec-
ified speed. For all these tasks, the simulated character can respond
in real time to changes of the goal and to physical interactions with
the environment, such as stumbling over an object or responding to
a push.

1.1 Overview

Figure 2 shows a block diagram of the system. The creation of
task-based control policies begins with the design of the N con-
trollers that will comprise the abstract action vocabulary available
to the control policy. The task control policy, π(s, w), then guides
the motion on a step-by-step basis in a way that best achieves the
task. Here, s is the character state and w is the task state, a simple
example of which is the (x, y) position of the goal relative to the
character, e.g., Figure 1(c).

The control policy for a task is pre-computed offline in two stages.
First, a state exploration stage samples the dynamics of the char-
acter in a process that captures the evolution of the character state
as different actions are applied. It also models the volume of state-
space over which the control policy is to be defined. Given the sam-
pled dynamics and a task description, the second stage computes an
optimized control policy. This is accomplished by instancing the
sampled dynamics into the task space and computing optimized ac-
tions for the cross-product of character states and task states. The
control policy is built using fitted value iteration, which repeatedly
improves upon a value function approximation (§4.3).

2 Previous Work

Control strategies have been developed for many physically-
simulated motions, including hopping, running, vaulting, and bi-

cycling [Raibert and Hodgins 1991; Hodgins et al. 1995], standing
balance [Khatib et al. 2004; Abe et al. 2007], falling and standing
up after a fall [Zordan et al. 2005; Faloutsos et al. 2001], and walk-
ing [Laszlo et al. 1996; Sok et al. 2007; Yin et al. 2007; da Silva
et al. 2008; Coros et al. 2008; Muico et al. 2009]. Many of these
control strategies can perform a variety of motions, such as walks
of differing styles, and can demonstrate limited transitions between
different controllers. Decisions regarding when to enact transitions
between different controllers are generally left to the user or a su-
pervisory controller with limited capabilities. Recent work has ex-
amined the composition of controllers using value-function-based
interpolation [da Silva et al. 2009], instead of viewing it as a se-
quencing problem.

A number of methods have recently been proposed for task-based
control policies using kinematic motion models. These specify the
best motion clip to transition to, based on knowledge of the task at
hand and the identity of the currently-playing clip [Choi et al. 2003;
Lee and Lee 2004; Lau and Kuffner 2005; Ikemoto et al. 2005; Lau
and Kuffner 2006; Treuille et al. 2007; McCann and Pollard 2007;
Lo and Zwicker 2008; Zhao and Safonova 2008]. Objective func-
tions for this kind of motion planning strike a compromise between
the quality of transitions between motion clips (visible jumps are
undesireable) and task-related criteria, such as the time or effort
used to meet a desired goal. The methods are commonly applied
to a graph-based model of possible motions that is instanced in the
task space at chosen sample points. The control policy is computed
in unison with a value function, which is a function of both the
character state, s, as represented by the current motion clip, as well
as the task state, w. Given a finite number of motion clips, s is
discrete in nature for most kinematic motion models. However, s is
continuous when working with dynamic characters because the re-
sult of physical simulations is not fully constrained. As we shall de-
tail later (§6), our controller-based actions behave differently from
kinematic motion clips in a number of important respects. Most
fundamentally, kinematic task control policies are limited in that
they do not allow physical interaction with the surrounding world.

Reinforcement learning has been applied in robotics in order to de-
velop control policies for walking [Atkeson and Stephens 2007;
Morimoto and Atkeson 2007; Morimoto et al. 2007; Byl and
Tedrake 2008]. Much of this work focuses on developing optimal
controllers for steady-state walking, while the primary focus of our
work lies with higher-level tasks. Like much of this work, how-
ever, our method plans on a step-by-step basis, i.e., using Poincaré
sections sampled at foot contact.

Several methods have been developed to enable real and simulated
humanoid robots to do online planning for reaching goal locations
while also avoiding known static and dynamic obstacles [Chestnutt
2007; Yoshida et al. 2005]. Terrain navigation can be achieved by
generating footstep plans. These are then given as input to walking
control strategies which may be based on preview-control meth-
ods [Kajita et al. 2003] or proprietary methods, i.e., Honda ASIMO.
The footstep plans can be generated using A* search [Chestnutt
et al. 2005]. or with the help of precomputation [Lau and Kuffner
2006]. However, walking motions for current biped humanoid
robots remain quite fragile and demonstrations of robustness to
moderate pushes are a recent development. One of our goals is
to develop physics-based characters that can cope with significant
physical interaction with the environment during the motion, this
being one of the primary benefits of using physics-based simulation
in applications such as games. The allowable footstep placements
for footstep-based planning generally need to be conservatively de-
signed, which helps limit the extent to which the robot state needs
to be considered when planning the next step. We allow for con-
trollers and controller transitions that can be quite dynamic but that
can fail as a result. Coping with this is then the job of the task-based

Figure 3: The outcome of an action is highly state dependent in
our framework. This example shows the results of the same action
applied to four different initial states.

control policy. We forego the deliberate-and-precise foot placement
that is common to humanoid robot control and demonstrate an al-
ternative approach for achieving locomotion tasks in a robust and
purposeful fashion.

3 Actions

Developing compact models for the action space is crucial for scal-
ing reinforcement learning to high-dimensional settings. For this
reason we work with a discrete action space and make decisions at
the granularity of character steps. Each action consists of a low-
level locomotion controller, such as one step of a walk or run cycle.

For our implementation, we use locomotion controllers of the type
proposed by [Yin et al. 2007]. These controllers track target joint
trajectories using proportional-derivative control. Balance strate-
gies are incorporated by having the torso and swing hip track de-
sired trajectories in a world frame, and also by using continuous
feedback that adjusts the placement of the swing foot. The action
vocabulary consists of either predesigned controllers, or intermedi-
ate controllers, which are defined by interpolating the torques out-
put by two other controllers. We later provide guidelines for the
design of controllers to be used in solving a task (§5).

While the controllers are constructed with the help of a target mo-
tion, they generally do not rapidly bring the character state onto
a specific motion trajectory. As such, they behave in ways that
are qualitatively different from high-gain trajectory tracking con-
trollers. For example, the same controller can be exploited for dif-
ferent purposes in different situations. A forwards walking con-
troller that is invoked from a backwards walking state may be used
to induce a rapid stop, while the same motion invoked from an
in-place walk will induce forwards motion. This is illustrated in
Figure 3. In such situations, the controller is best abstractly char-
acterized as implementing an acceleration action, and not as tighly
tracking a specific target motion. The impact of the controller be-
havior on the modeling of the dynamics is further examined in §6.

4 Policy Synthesis

Given a vocabulary of actions A : {ai}, the control policy needs to
decide which action should be used every time the character takes
a step. It does this as a function of the continuously-valued char-
acter state, s ∈ S, and task state, w ∈ W. The character state
s consists of the positions and velocities of the degrees of free-
dom of the character as seen in its own coordinate frame. Formally,
s = (p, v, q0, ω0, q1, ω1, ..., qn, ωn), where p, v, q0, ω0 are the root
position, velocity, orientation and angular velocity, and qi, ωi are
the relative orientation and angular velocity of joint i. The orien-
tations are represented by quaternions. The task state w is used to
parameterize the task. For example, it could be used to represent
the relative position and orientation of the goal with respect to the

Figure 4: Schematic illustration of how sampled state-to-state
dynamics are instanced in the task space. Left: Example transitions
as seen in state-space, S. Right: Example transitions as seen in
S ×W. The out of plane state-transition arcs, ∆w, are computed
from s and s′. w refers to the task state.

character. We also define a global state g = (s, w) and its corre-
sponding space G : S×W. Formally, the control policy is defined
as a mapping π : G→ A, or, equivalently, a = π(g).

Policy synthesis begins by modeling the dynamics of the charac-
ter state in the state exploration stage. It is impractical to create a
sample-based model for the dynamics that encompasses all possible
states because of the high-dimensional nature of the character state.
Instead, we focus on modeling the dynamics in a limited region
of interest. This is defined with the help of a set of trusted states
which are treated as starting points for a structured, constrained ex-
ploration of the state space. We use a tree-structured exploration
process using the set of available actions. This computes an ap-
proximate closure for the trusted states under the set of available
actions. The character dynamics is modeled as the state transitions
encountered during this process, which are captured as a set of dy-
namics tuples, D : {(s, a, s′)}. Each tuple represents one character
step in the context of our locomotion-based tasks, and records the
starting state of the character s, the applied action a and the result-
ing state s′. We find s′ by running a forward-dynamics simulation
using the low-level controller associated with a until the next foot-
strike. An abstraction of the recorded state-to-state dynamics is
shown in Figure 4 (left).

Given the dynamics model, the control policy is computed by in-
stancing the character dynamics at multiple sample points in the
task space and applying an optimization procedure, fitted value it-
eration, to compute the best global policy. We now describe state
exploration, instancing the character dynamics, and fitted value it-
eration in more detail.

4.1 State Exploration

State exploration samples the character dynamics by beginning at
a given set of trusted states T and recursively exploring the appli-
cation of all possible actions, as described in Algorithm 1. With
each iteration we grow the set of sampled character dynamics tu-
ples, D, by adding new state-action-result tuples (s, a, s′), if they
meet two criteria. First, the resulting state s′ needs to remain suf-
ficiently close to one of the trusted states. This constraint serves as
a simple way of modeling what natural poses during a motion are
expected to look like and it helps focus our resources on regions of
state space that are likely to be important. Second, further recur-
sion is rejected if s′ is not considered to be a novel state, i.e., it is
within a threshold distance of an existing state. This prevents re-
visiting an already-explored area. The trusted and novelState func-
tions both make use of the same character-specific state distance
metric, d(sa, sb). For state s′ to be considered trustworthy requires
d(s′, s) < εT for at least one state s ∈ T . A novel state s′ is de-
fined as one which satisifies d(s′, s) > εN for all states s ∈ D. The

Algorithm 1 State Exploration

1: input Q: queue of states
2: input A = {ai}: set of actions
3: input T : set of trusted states
4: output D = {(s, a, s′)}: set of dynamics transition tuples
5: enqueue(s, ∀s ∈ T)
6: while s← dequeue() do
7: for all ai ∈ A do
8: s′ = forward dynamics simulation(s, ai)
9: if trusted(s′) then

10: D = D ∪ {(s, ai, s′)}
11: if novelState(s′) then
12: enqueue(s′)
13: end if
14: end if
15: end for
16: end while

character state distance metric is defined by:

d(sa, sb) = wv|vsa − vsb |+
nX

i=0

wωi |ωi,sa − ωi,sb |

+

nX

i=1

wqi dq(qi,sa , qi,sb),

where dq(qa, qb) is the rotation angle, in radians, represented by
the quaternion q−1

a qb. The weights used are character specific and
are defined in Table 1.

4.2 Instancing Dynamics

Figure 4 (right) provides an abstract illustration of how the sampled
dynamics is conceptually instanced at multiple points in the task
space to produce a dynamics model that spans both the character
state and the task state. As with motion graphs, the dynamics of the
character state is treated as being invariant with respect to the (x, z)
position (where y is up) and the facing orientation of the character
in the world. We adopt an approach similar to that of [Treuille
et al. 2007] and [Lo and Zwicker 2008] and use a set of task state
sample points, {wj} that cover the space of possible goal positions
and/or orientations as required by specific tasks. During instanc-
ing, the effect of each action on the task state, ∆w, is computed
from s and s′ for every dynamics tuple d, as illustrated in Figure 4.
The result of this operation is a set of augmented dynamics tuples
(s, w, a, s′, w′) ≡ (g, a, g′).

4.3 Fitted Value Iteration

We compute the optimized control policy using a reinforcement
learning framework [Sutton and Barto 1998]. Tasks are specified
via a reward function R(g, a). The reward function measures the
immediate benefit of the character taking action a when at state g.
The goal of the optimal control policy is to maximize the cumula-
tive long term reward, V (g) =

P∞
t=0 γtR(t) where γ ∈ (0, 1) is a

discount factor that ensures a finite cumulative reward over an infi-
nite planning horizon. The optimal value function can be written in
the recursive form given by the Bellman equation,

V ∗(g) = max
a

�
R(g, a) + γV ∗(g′)

�
,

where g′ = (s′, w′) represents the character and task states which
result from applying action a at g. For any given global state g the
optimal policy, π∗(g), is given by the action that maximizes V ∗(g).

Estimations of the value function vij are stored at each sample point
gij , corresponding to the instancing of state si at the task state

Algorithm 2 Fitted Value Iteration

1: input A = {ai}: set of abstract actions
2: input D = {(g, a, g′)}: global state dynamics tuples
3: input R(g, a): reward function
4: output π∗(g): control policy over S×W
5: output V (g): value function over S×W
6: V (g) = 0 for all g ∈ G
7: while not converged do
8: for all g ∈ G do
9: a∗ = argmax

a∈A

�
R(g, a) + γV (g′)

�

10: π∗(g) = a∗

11: Ṽ (g) = R(g, a∗) + γV (g′)

12: V (g)← αṼ (g) + (1− α)V (g)
13: end for
14: end while

point wj . After initializing all vij to zero, fitted value iteration
(FVI) [Ernst et al. 2005] works by iteratively computing improved
value function estimates for all gij . The resulting (gij , vij) tuples
are then used to define the new value function V (g) using locally-
weighted interpolation. Algorithm 2 provides a full description of
the process. We use a form of FVI that follows the core idea of
the TD(0) temporal difference learning method with learning rate
α. We update the value function in-place, which simplifies our im-
plementation, but we could equivalently use other variants of FVI
such as batch-mode FVI [Ernst et al. 2005; Lo and Zwicker 2008].
We have experimented with varying the learning rate, α, and the
resulting policy is largely unaffected although overly small values
of α can dramatically slow the convergence rate. In practice, we
use α = 0.8.

Due to the step-to-step nature of our planning process, by default
the discounting of the rewards would be step-based rather than
time-based. As a result, the character aims to reach the goal in
the fewest number of steps rather than in the shortest amount of
time. We can alter this behavior by making the discount rate be a
function of ∆T , the duration of a locomotion step. To this end, we
use γ(∆T) = γ∆T .

Given a query point gq = (sq, wq) we estimate V (gq) from a set
of sample points, {(gij , vij)}, using a mix of kNN and multilin-
ear interpolation. We first identify the set of k nearest neighbors
{ŝi}, among all the sampled character states. For each ŝi, we
use multilinear interpolation to obtain an estimate V (ŝi, wq). Fi-
nally, we perform kNN interpolation among these values to obtain
V (gq) =

P
i f(d(ŝi, sq))V (ŝi, wq). In the abstract view shown

in Figure 4, this corresponds to first interpolating onto the plane
corresponding to wq for all k neighboring states in S, and then in-
terpolating within this new plane for the query character state, sq ,
using kNN interpolation. We use k = 6 and a weighting kernel
defined by f = 1/d2. Since FVI repeatedly needs to evaluate the
value function at the states s′ found in D, we precompute and store
their k nearest neighbors.

In addition to storing value function estimates, we also store the op-
timal action π∗(gij), computed for each sample point gij . At run
time, for a query point gq = (sq, wq), the control policy selects
the action associated with gij where si is the character state closest
to sq and wj is the task state closest to wq . We use this form of
nearest-neighbors rather than a weighted interpolation when com-
puting the desired actions in order to remain consistent with a dis-
crete action model. However, given compatible action represen-
tations, we speculate that interpolation would also likely produce
good results.

humanoid bird raptor
wω wq wω wq wω wq

torso-neck — 1 1.5 1 1.5
pelvis-torso 1 1.5 — —
hips 0.5 1.5 0.1 1.5 0.1 1.5
knees 0.2 1 0.05 1 0.05 1
neck-head 0 0 0.05 1.5 0.05 1.5
body-tail — — 0.05 1

Table 1: Character-specific weights used in the state distance met-
ric. The weights for all other joints are zero.

5 Results

This section is best read in conjunction with viewing the anima-
tion results presented in the accompanying video. An executable
demonstration of the heading-and-speed task in a physics-based
game-like setting is also included with the supplementary material.

Implementation: We use the Open Dynamics Engine physics en-
gine [ODE] on a 2.4 GHz Intel Core 2 Duo with a simulation time
step of 0.0005 s. All of our results run faster than real time, mean-
ing that in one wall-clock second we can advance the simulation
time by more than one second: 2.5× for the bird character, 1.5×
for the humanoid and 1.1× for the raptor. The humanoid character
has a total mass of 70.4 kg and has 34 degrees of freedom. The
bird character has a total mass of 64.1 kg and a total of 24 degrees
of freedom. The raptor character has a total mass of 77.8 kg and
42 degrees of freedom, many of which are in the tail. The balls
thrown at the characters have a mass of 7—15 kg. The weights for
the character-specific distance metric are listed in Table 1 and are
set with the help of knowing the mass distribution of the character.
For example, the big bird has a heavy head relative to the rest of
its body and light-weight legs, so the weights used for the related
joints reflect this. The head of the humanoid is small and unlikely
to have much of an influence on the overall dynamics of the char-
acter and thus we set the weights on the related joints to zero in this
case.

Controller design: The individual controllers used as abstract ac-
tions are based on an adapted version of the controllers proposed
in [Yin et al. 2007]. They have two underlying states, left-stance
and right-stance. Within each state, the target trajectories are repre-
sented using Catmull-Rom splines, which we manually edit using
a graphical interface (Figure 5) to obtain the variety of controllers
necessary for each task. We do not provide the full specification
of the exact spline curves here because of the large number of con-
trollers that we use in the various tasks and because the resulting
motions are also dependent on other parameters such as the exact
geometry and mass distribution used for the characters.

Designing basic low-level controllers is not hard given the right
tools and a basic in-place stepping or walking controller to use as
a starting point. We have had new users design good running con-
trollers in less than an hour in this way. However, it takes more
time to design very natural looking motions and these are often less
robust. The final control policy will in the end only be as natural
as the underlying controllers. In designing the controllers, the gen-
eral goal is to span the range of desired gaits needed for the task
while also testing to ensure that a variety of reasonable transitions
are possible between the controllers. The control policy synthesis
method is demonstrably forgiving to limited-robustness controllers
that only support transitions in limited situations (§6).

Trusted states: The trusted states are chosen to represent the
steady-state operation of the basic actions, as well as to encompass
natural-looking states obtained when transitioning between differ-

Figure 5: Graphical user interface used to author the low-level
locomotion controllers.

εT εN |T | |s| FVI time
Bird GLT 3.75 0.15 7 2494 100 s
Humanoid GLT 2.0 0.3 24 2253 104 s
Bird HT 1.5 0.3 16 1915 92 s
Raptor HT 2.0 0.2 60 2177 86 s
Bird GPT 1.5 0.4 50 4375 5 h
Bird GPHT 1.5 0.3 21 1963 9.5 h
Humanoid VRW 6.0 1.5 30 1710 10 s

Table 2: Constants and numerical results for the various tasks.
Here, |s| indicates the number of states sampled during the state
exploration stage using the specified values for εT and εN and a
total of |T | trusted states. The last column indicates the total time
required for fitted value iteration.

ent locomotion modes. The set of trusted states is initialized by
sampling the limit-cycle states for several of the actions, i.e., for-
ward run, forward walk, in-place walk, backwards walk. Further
trusted states are identified with the help of a small number of
manually-generated action sequences that are simulated and then
observed to see if they yield subjectively ‘good’ motions, i.e., no
falls or other undesirable artifacts. We typically use five sequences
of five actions each, which provides a coarse sampling of the kinds
of motions that can be generated without needing to run long or ex-
haustive exploration. For each state s in a good sequence, we test
to ensure that trusted(s) evaluates to true; if this is not the case, we
add s to the set of trusted states.

Policy computation: Details pertaining to the various tasks are pre-
sented in Table 2. For all our experiments, the state exploration
stage takes between 2.5 and 4 hours, and the FVI converges in 50–
70 iterations. The control policies require 0.5—2.5 Mb to store.

5.1 Go-to-line task (GLT)

The goal is to reach a designated line by walking forwards, running
forwards, or walking backwards towards it. The task state is one-
dimensional and represents the position of the line relative to the
character. To compute the control policy, we use a total of 35 task
state sample points, −2.5m ≤ tj ≤ 6m, sampled more densely
around the origin where extra precision is required for stopping at
the right point. The change in task state, ∆w as shown in Figure 4,
is given by the change in root position between s and s′, projected
onto the sagittal-plane.

The reward function for this task is simple. A reward of 1 is given
when the character is within 10cm of the goal and has a near-zero
forward velocity. A reward of −1 is given when the character is in
a non-trusted state. In all other cases, the reward is 0. For the bird
character, a set of 10 actions is used: backwards run, inplace walk,
forward walk and forward run, as well as 6 intermediate actions
obtained through interpolation. For the humanoid, we use a similar

set of actions to which we add three actions that help improve the
visual quality of the transitions between walks and run.

5.2 Heading task (HT)

For this task, the character’s goal is to be walking forward in a
specified direction. The task state is one dimesional, consisting of
the desired heading direction, θ, as measured relative to the current
character heading. We compute the control policy over −π < θ ≤
π, and sample at 25 points in this range, sampled more densely
around zero. The difference in heading directions between s and s′

defines ∆w.

The reward function is again very simple. If the character is walking
forward at steady state within 5 degrees of the specified direction,
the reward is 1. If the character state is outside the trust region the
reward is −1, and otherwise it is 0. A set of 32 actions is used by
the bird character. To develop these, we designed an in-place walk,
a forward walk and two clock-wise turning controllers. The turn-
ing controllers are mirrored to achieve counter-clockwise turning.
The rest of the actions represent various intermediate controllers.
A similar set of actions was used for the raptor controllers. How-
ever, we use fewer intermediate controllers resulting in a total of 15
actions.

5.3 Go-to-point task (GPT)

A more complex task involves the bird character moving to a spec-
ified goal location anywhere on the ground plane. A 2-dimensional
task state, (x, z), is used to represent the location of the target rela-
tive to the character’s frame of reference. We use a total of 729 task
states sampled along a 6m × 6m axis-aligned grid with spatially
varying density to allow for denser sampling near the goal location,
(0, 0). ∆w is set to the ground-projected difference in root posi-
tions between s and s′.

We augment the set of actions for the heading task with a back-
wards walk, a side-stepping motion (mirrored left and right) and
one additional interpolated action. This yields a total of 36 actions.
Similar to the go-to-line task, the reward function returns 1 when
the character is walking in place within 10 cm of the goal,−1 when
the character’s state is too far from the trusted states and 0 oth-
erwise. As demonstrated in the video, this simple reward scheme
reveals an unexpected behavior: the bird character sometimes turns
and sidesteps in order to quickly stop at the target. To eliminate
this behavior, we add a term to the reward function that penalizes
large changes in orientation when within 1.5m of the target. This
demonstrates a simple use of the reward function to help shape the
solutions produced by the control policy.

5.4 Go-to-point-with-heading task (GPHT)

This task combines the go-to-point and heading tasks. Here, the
goal is to be walking at steady-state through a target position while
facing a specified orientation. This makes it particularly useful for
navigation in environments, as smooth motion paths can be spec-
ified using a sparse number of such goals that act as way-points.
Specifying a desired heading can also be used to eliminate the un-
expected behavior experienced in the go-to-point task. Figure 6
shows a resulting motion.

For this task, we use a three-dimensional task state, (x, z, θ). The
positions are sampled using a 16 × 16 grid spanning a 6m × 6m
area, and 8 samples are used to sample the orientation dimension,
for a total of 2048 task state sample points. The sampling is denser
around the goal position and orientation. The value of ∆w is ob-
tained by combining the analogous components described for the

Figure 6: Smoothly walking around lamp posts by walking to goal
points with headings.

two previous tasks. We use a total of 36 actions, which include
those of the heading task, augmented by a backwards walk, left-
and-right side-stepping motions, and one additional interpolated ac-
tion. The reward function is 1 when the goal is satisfied, −1 when
the state is non-trusted, and 0 otherwise.

5.5 Heading with Speed Task (HST)

We build a control policy for following a given heading at a given
speed by building on the results of the state exploration for the head-
ing task. The task space is sampled using 5× 25 = 125 states, cor-
responding to the speed and heading directions, respectively. States
that approximately satisfy the desired speed in the heading task are
rewarded. The supplemental material includes an interactive game-
like demonstration where the player can steer a character through
a dynamic, obstacle-filled environment by controlling the character
using the desired heading and speed.

5.6 Very Robust Walk Task (VRWT)

We generate a particularly robust steady-state walking gait for the
humanoid by adding a set of trusted states that correspond to the
state at the next foot contact after being hit by 10kg and 15kg balls.
The task is simply to walk at steady state, and so there is no task
sampling. The reward is 1 for being at (or near to) the steady state,
and 0 otherwise. For actions, we use the in-place walk, forward
walk, backwards walk, two modified inplace walks (one leaning
slightly forwards and another leaning slightly backwards), and sev-
eral other interpolated controllers, for a total of 13 actions.

We compare the resulting task control policy to the forward walk
controller. For 5kg balls thrown at the character at different points
in the walk cycle and from random directions, the failure rate with
the computed policy drops from approximately 30% to 0%. For
10kg and 15kg balls, the change in failure rate is similarly 70%→
10% and 100%→ 10%, respectively.

6 Discussion

Computed vs hand-designed policies: It is informative to com-
pare the computed policies to carefully hand-crafted policies. For
tasks such as the three-dimensional GPH task, hand-designing a
good control policy is impractical because of the complexity. Thus,
a first benefit of the computed policies is their ease of design us-
ing a simple reward function. Even for simpler tasks, optimized
policies are not easy to approximate by hand, as shown in the
video. Figure 7 visualizes a computed control policy for some of
the states from the humanoid go-to-line task. The best actions are
both character-state dependent and task dependent. Another diffi-
culty of hand-crafting policies is that the outcome of an action is
dependent on the initial state. For comparison, we also develop
a carefully hand-tuned controller for the bird heading-with-speed

Figure 7: Partial visualization of the humanoid go-to-line control
policy. The rows correspond to a random selection of character
states. The columns correspond to different distances of the char-
acter to the line. Actions are assigned an arbitrary color.

Figure 8: Physics-based interaction with the environment can hap-
pen at any time during the task.

task and quantitatively compare its mean performance to that of
the optimized policy. Both situations are evaluated from a regu-
larly sampled set of initial task states. The optimized control pol-
icy outperforms the hand-designed policy by up to 32% for some
states and a mean difference of 17 % in terms of time-to-goal. This
is computed over 96 initial states and ignores the cases where the
hand-tuned controller fails outright. Optimized control policies also
avoid failure-prone transitions between controllers, as we discuss
next.

Robustness: A primary motivation for physics-based character an-
imation is that the motions can respond in meaningful ways to a
variety of physical interactions with the environment. We perturb
the character’s motions with heavy balls and a variety of objects that
can be stepped on or tripped over, examples of which are shown in
Figure 8. We are not aware of other demonstrations of simulated
bipedal characters or humanoid robots that have this type of robust-
ness during task execution.

While the underlying controllers are already robust to a certain ex-
tent, the task control policy adds robustness in two respects. First,
task policies anticipate and avoid the application of actions that lead
into unviable areas of the character state space, i.e., where failure is
inevitable. The controllers themselves provide no safeguards with
respect to being invoked in an inappropriate state. Examples of con-
troller sequences that lead to failure are shown in the accompanying
video. A simple prototypical case is that of the turning controllers
used for the raptor heading task which are quite sensitive to the
initial character state and can result in an awkward side-stepping
behaviour leading to an eventual fall.

The computed control policies are also more robust to external per-
turbations than the individual controllers. For example, a walking
controller can receive a perturbation, which, if the walking con-
troller remained active for the subsequent steps would lead to fail-
ure. With the use of a task-based conrol policy, a similar state may

have been seen during the state exploration phase and as a result, the
control policy is well adapted to recover from this state if this can
be achieved through the application of another action. Put simply,
the task policy combines the strengths of the individual controllers.
We refer the reader to the VRW task and examples shown in the
video. We note that while the control policies act on a step-by-step
basis, the recovery from a perturbtation does not need to happen in
a single step. The key is that the character state at any point should
never stray too far from example states that have been observed
during the state exploration phase.

Graph-based models of motion: Control policies can be simpler
to develop if the dynamics of the motion can be modeled using a
motion graph, wherein there are a discrete set of character states
connected by particular available motions. With such a motion
model, the character state is assumed to evolve in a predictable and
highly constrained way, as given by the discrete choice of paths
through the graph. A graph abstraction is used by recent develop-
ments that build kinematic control policies based on step-based mo-
tion clips [Treuille et al. 2007; Lo and Zwicker 2008]. A blending
model is used to allow for transitions between all pairs of motion
clips in any given step. In effect, this acts as a funnel that always
achieves the end-state of the applied action in one step, irrespec-
tive of the starting state. The number of actions and the number of
possible character states are equal to the number of motion clips.
A related dynamics model is also developed for the Honda ASIMO
robot in [Chestnutt et al. 2005], where the history of the last two
actions is used as a proxy for the dynamic state of the robot. When
used with a set of 7 discrete actions, this yields a motion graph with
49 unique states and 49× 7 edges. The actions thus act as a funnel
that achieves a fully predictable end-state after two steps.

The state exploration phase of our method can also be thought of
as forming a type of motion graph if we consider state-exploration
process as reconnecting to existing motions whenever it passes suf-
ficiently close. The novelState function as used in Algorithm 1 ef-
fectively models this condition when it is used to help prevent revis-
iting explored areas of state space. However, this graph has signif-
icantly different properties from the graphs described above. The
humanoid go-to-line task uses 16 controllers and the exploration
yields a total of 4806 unique states, which is significantly larger
than for the graph-based methods described above. The number of
viable actions per state ranges from 0—14, with a mean of 8 viable
actions. This stands in contrast to previous graph-based methods,
which generally assume that all actions are viable in all states. The
humanoid go-to-line task requires a mean of 6 successive actions
to begin at a trusted state and then either fail the trusted-state con-
dition or to approximately reach a repeating state. This contrasts
sharply with previous graph-based models of motion which assume
that the state history can be fully forgotten after only one or two
successive actions. In summary, the actions used in our framework
do not behave in the same way that is assumed in prior work on
kinematic control policies.

A last notable difference between our work and that of graph-based
dynamical models is that our policy and underlying value function
are defined over a continuous character state-space, which is not
true of graph-based models. The control actions at each step are
computed exclusively as a function of the actual current character
state. In this respect the method differs from classical tracking ap-
proaches; there is no notion of a continuous target trajectory that is
always being tracked. A trajectory tracking model needs to know
when to stop tracking a given trajectory and jump to a new tra-
jectory, an idea that is explored in part in [Sok et al. 2007]. In
this sense, the step-by-step decisions of the task control policy can
be seen as jumping to a new trajectory or controller at every step.
We speculate that less-robust low-level controllers could be used in
our framework, but at the expense of having the high-level control

policy do more of the work. As noted earlier, both the high-level
control policy and the low-level controllers contribute to the final
robustness of our controllers.

Dimensionality: A core challenge in applying reinforcement learn-
ing techniques to physics-based characters is the high-dimensional
nature of the value function, which needs to span the cross-product
of the character state and the task state. We currently rely on
two important pieces of a priori knowledge to deal with the high-
dimension of the state space. Some knowledge of the expected mo-
tions is used to seed the state space with a set of trusted states, and
thereby help focus the use of resources on modeling the dynamics
and control in task-relevant regions of the state space. We also de-
fine a character-state distance metric that is used at several points in
our pipeline. Good distance metrics can provide meaningful inter-
polation behavior while avoiding some of the complications that are
associated with explicitly modeling low-dimensional embeddings.
In future work it would be interesting to automatically learn the best
distance metric to use.

Multiple levels of abstraction also contribute towards tackling the
high-dimensional nature of the control policies. For example, four
levels of abstraction are used in the bird-mania game: (1) the player
commands a desired heading-and-speed; (2) the heading-and-speed
task policy commands an individual controller; (3) an individual
controller commands a set of joint target angles; and (4) joint PD-
controllers command joint torques. When seen as a whole, these
layers of control implement a mapping from desired heading-and-
speed to joint torques. However, directly learning such a mapping is
much more difficult than learning level 2 alone, i.e., the task policy.

Scalability: A number of factors affect the run-time complexity
and storage costs of the method: the dimensionality and sampling
of the task space, the size of the action vocabulary, the maximum
trusted state distance (εT), and the minimum novel state distance
(εN). The dimensionality of the task space is perhaps the most im-
portant – the 2D and 3D tasks (GPT, HST, GPHT) require hours
to compute the final policy, as compared to the minutes required
for the 1D tasks. This is because the number of task-space sample
states grows exponentially with the task space dimension. We spec-
ulate that many tasks which are nominally high dimensional can of-
ten still be tackled using lower-dimensional policies. For example,
a thrown ball may have a 6D state (3D position and velocity) rela-
tive to a character, but can be caught by running quickly to a good
intercept point. In this way, additional task and action abstraction
may mitigate the complexity of apparently high-dimensional tasks.

The complexity of the character state dynamics does not vary sig-
nificantly across our examples. All use an action vocabulary con-
sisting of 10–36 controllers and the resulting state dynamics is mod-
eled using 1700–4800 sampled states. This is partly by design – if
the set of trusted states and choice of εT allow for an expansive ex-
ploration of irrelevant regions of the state space, then modeling the
state dynamics can become prohibitively expensive.

Parameter settings: In order to better understand the sensitivity
of the computed task policies to the character state sampling and
the task state sampling, we look at how the task policy changes as
a function of the sampling for the humanoid go-to-line task. The
results are given in Table 3. The quality of the solution generally
worsens as we decrease the state sampling and the task state sam-
pling. We have also evaluated the quality by measuring the percent-
age of actions that remain the same as the optimal choice of action
(assumed to be given by the highest sampling) as the sampling is
decreased. This decreases monotonically as we decrease either the
state sampling or the task state sampling. Sparse sampling may also
result in discrepancies between the modeled value function and the
rewards encountered during actual policy execution.

|s| |w|
81 57 32 25 17

4806 0 0.22 0.22 0.23 0.34
4000 0.18 0.35 0.28 0.25 0.35
3000 0.45 0.58 0.54 0.42 0.40
2000 0.69 0.86 0.80 0.65 0.50
1000 0.79 0.99 0.87 0.75 0.60

Table 3: Effect of character state sampling and task state sam-
pling for the humanoid go-to-line task. The table gives the mean
value function error and uses the most densely sampled case as a
baseline.

As another test, we varied the number of actions used for the same
task. We use the same baseline case, i.e., |s| = 4806, |w| = 81
and which uses 13 actions. For {10, 7, 4} actions, the average in-
crease in the value function error across all sampled states is given
by {1.58, 3.31, 5.46}. Thus, a richer action vocabulary clearly does
help in better achieving the task.

Limitations: The current method has a number of limitations. For
any given task, the discrete set of abstract control actions is restric-
tive as compared to the more arbitrary actions that are afforded
by the low-level dynamics. The control actions also remain step-
based, which precludes making task-based adaptations to a motion
halfway through a step. As a result of such issues, the motions are
still not as agile as we would like them to be. It is not always obvi-
ous what set of controllers should be made available to the control
policy as abstract actions for a given task. The time required for
the state exploration stage currently prohibits the iterative design of
low-level controllers and reward functions. While we currently use
grid-based sampling for the task state, other adaptive approaches
may scale better for complex tasks. We have investigated a variety
of tasks, but we do not investigate tasks which demand precise foot
placement.

7 Conclusions

We introduce a method for synthesizing task-based control policies
for physics-based animated characters and which can interact with
the environment in significant ways. A novel state exploration algo-
rithm provides a structured, constrained exploration of the character
state space. We show that with the help of an appropriate distance
metric, it is feasible to develop control policies that span the high-
dimensional cross product of the character state and the task state
for physics-based characters. The task control policies are shown
to be more robust than the individual underlying controllers. Our
method is tested on six tasks and three characters. We demonstrate
one of our control policies in a physics-based game that is included
as supplementary material. Our work further opens the door to ro-
bust and agile motion for real-time physics-based characters.

Acknowledgements

We gratefully acknowledge the financial support of NSERC and
FQRNT.

References

ABE, Y., DA SILVA, M., AND POPOVIĆ, J. 2007. Multiobjective
control with frictional contacts. In Proc. ACM SIGGRAPH/EG
Symposium on Computer Animation, 249–258.

ATKESON, C. G., AND MORIMOTO, J. 2003. Nonparametric rep-
resentation of policies and value functions: A trajectory-based

approach. In Advances in Neural Information Processing Sys-
tems 15, 1611–1618.

ATKESON, C. G., AND STEPHENS, B. 2007. Random sampling
of states in dynamic programming. In Proc. Neural Information
Processing Systems Conf.

BYL, K., AND TEDRAKE, R. 2008. Approximate optimal control
of the compass gait on rough terrain. In Proc. IEEE Int’l Conf.
on Robotics and Automation.

CHESTNUTT, J., LAU, M., CHEUNG, K. M., KUFFNER, J., HOD-
GINS, J. K., AND KANADE, T. 2005. Footstep planning for the
Honda ASIMO humanoid. In Proc. IEEE Int’l Conf. on Robotics
and Automation.

CHESTNUTT, J. 2007. Navigation Planning for Legged Robots.
PhD thesis, Carnegie Mellon University.

CHOI, M., LEE, J., AND SHIN, S. 2003. Planning biped locomo-
tion using motion capture data and probabilistic roadmaps. ACM
Transactions on Graphics 22, 2, 182–203.

COROS, S., BEAUDOIN, P., YIN, K., AND VAN DE PANNE, M.
2008. Synthesis of constrained walking skills. ACM Trans. on
Graphics (Proc. SIGGRAPH ASIA) 27, 5, Article 113.

DA SILVA, M., ABE, Y., AND POPOVIĆ, J. 2008. Interactive
simulation of stylized human locomotion. ACM Transactions on
Graphics (Proc. SIGGRAPH) 27, 3, Article 82.

DA SILVA, M., DURAND, F., AND POPOVIC, J. 2009. Linear
Bellman combination for control of character animation. ACM
Trans. on Graphics (Proc. SIGGRAPH) 28, 3, Article 82.

ERNST, D., GEURTS, P., AND WEHENKEL, L. 2005. Tree-based
batch mode reinforcement learning. Journal of Machine Learn-
ing Research 6, 503–556.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. In Proc. ACM SIGGRAPH, 251–260.

HODGINS, J., WOOTEN, W., BROGAN, D., AND O’BRIEN, J.
1995. Animating human athletics. In Proc. ACM SIGGRAPH,
71–78.

IKEMOTO, L., ARIKAN, O., AND FORSYTH, D. A. 2005. Learn-
ing to move autonomously in a hostile world. Tech. Rep.
UCB/CSD-05-1395, EECS Department, University of Califor-
nia, Berkeley, Jun.

KAJITA, S., KANEHIRO, F., KANEKO, K., FUJIWARA, K.,
HARADA, K., YOKOI, K., AND HIRUKAWA, H. 2003. Biped
walking pattern generation by using preview control of zero-
moment point. In Proc. IEEE Int’l Conf. on Robotics and Au-
tomation.

KHATIB, O., SENTIS, L., PARK, J., AND WARREN, J. 2004.
Whole body dynamic behavior and control of human-like robots.
International Journal of Humanoid Robotics 1, 1, 29–43.

LASZLO, J. F., VAN DE PANNE, M., AND FIUME, E. 1996. Limit
cycle control and its application to the animation of balancing
and walking. In Proc. ACM SIGGRAPH, 155–162.

LAU, M., AND KUFFNER, J. J. 2005. Behavior planning for char-
acter animation. In ACM SIGGRAPH/EG Symposium on Com-
puter Animation.

LAU, M., AND KUFFNER, J. 2006. Precomputed search trees:
Planning for interactive goal-driven animation. In ACM SIG-
GRAPH/EG Symposium on Computer Animation, 299–308.

LEE, J., AND LEE, K. H. 2004. Precomputing avatar behavior
from human motion data. ACM SIGGRAPH/EG Symposium on
Computer Animation, 79–87.

LO, W., AND ZWICKER, M. 2008. Real-time planning for param-
eterized human motion. In ACM SIGGRAPH/EG Symposium on
Computer Animation.

MCCANN, J., AND POLLARD, N. 2007. Responsive characters
from motion fragments. ACM Transactions on Graphics (Proc.
SIGGRAPH) 26, 3, Article 6.

MORIMOTO, J., AND ATKESON, C. G. 2007. Learning biped
locomotion: Application of poincare-map-based reinforcement
leraning. IEEE Robotics & Automation Magazine 14, 2, 41–51.

MORIMOTO, J., ATKESON, C. G., ENDO, G., AND CHENG, G.
2007. Improving humanoid locomotive performance with learnt
approximated dynamics via guassian processes for regression. In
Proc. IEEE Int’l Conf. on Robotics and Automation.

MUICO, U., LEE, Y., POPOVIC’, J., AND POPOVIC’, Z. 2009.
Contact-aware nonlinear control of dynamic characters. ACM
Transactions on Graphics (Proc. SIGGRAPH) 28, 3, Article 81.

ODE. Open dynamics engine, http://www.ode.org/.

RAIBERT, M. H., AND HODGINS, J. K. 1991. Animation of dy-
namic legged locomotion. In Proc. ACM SIGGRAPH, 349–358.

SHARON, D., AND VAN DE PANNE, M. 2005. Synthesis of con-
trollers for stylized planar bipedal walking. In Proc. IEEE Int’l
Conf. on Robotics and Automation.

SOK, K. W., KIM, M., AND LEE, J. 2007. Simulating biped
behaviors from human motion data. ACM Trans. on Graphics
(Proc. SIGGRAPH) 26, 3, Article 107.

SUTTON, R., AND BARTO, A. 1998. Reinforcement Learning: An
Introduction. MIT Press.

TEDRAKE, R., ZHANG, T., AND SEUNG, H. 2004. Stochastic
policy gradient reinforcement learning on a simple 3D biped. In
Proc. Int’l Conf. on Intelligent Robots and Systems, vol. 3.

TREUILLE, A., LEE, Y., AND POPOVIĆ, Z. 2007. Near-optimal
character animation with continuous control. ACM Transactions
on Graphics (Proc. SIGGRAPH) 26, 3, Article 7.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. SIMBI-
CON: Simple biped locomotion control. ACM Transactions on
Graphics (Proc. SIGGRAPH) 26, 3, Article 105.

YOSHIDA, E., BELOUSOV, I., ESTEVES, C., AND LAUMOND, J.
2005. Humanoid motion planning for dynamic tasks. In Hu-
manoid Robots.

ZHAO, L., AND SAFONOVA, A. 2008. Achieving good connec-
tivity in motion graphs. In ACM SIGGRAPH/EG Symposium on
Computer Animation.

ZORDAN, V., MAJKOWSKA, A., CHIU, B., AND FAST, M. 2005.
Dynamic response for motion capture animation. ACM Transac-
tions on Graphics (Proc. SIGGRAPH) 24, 3, 697–701.

