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Abstract

Occlusion contours are a natural feature to draw when tracing an object in an image or when drawing an object.
We investigate the development of 3D models from multi-stroke contour drawings with the help of a 3D template
model that serves as a shape prior. The template is aligned and then deformed by our method to match the drawn
contours. At the heart of this process is the need to provide good correspondences between points on the contours
and vertices on the model, which we pose as an optimisation problem using a hidden Markov model. An alternating
correspond-and-deform process then progressively deforms the 3D template to match the image contours. We
demonstrate the method on a wide range of examples.

1. Introduction

Creating 3D models from 2D input is a central problem in
computer graphics. Two-dimensional input is ubiquitous and
includes drawings, images, and mouse input, while 3D data
is much harder to acquire. In this paper we present a new
technique for using multi-stroke contour drawings to help
define novel 3D geometry. We show that with the use of 3D
template models and modern deformation methods, this is a
tractable problem for a wide range of drawings. The knowl-
edge for defining the new shape comes from both the draw-
ing and the template: the drawing contains general shape,
scale, and pose information that is not in the template and
the template contains 3D shape information not found in the
drawing, as well as shape details that may be missing in it.

Recently, several techniques have been proposed that allow
users to edit 3D geometry by drawing a stroke nearby the
model which then represents the desired occlusion contour
for that portion of the model [KG05, NSACO05, ZNA07].
These stroke-based deformation techniques are close in
spirit to our work, but are tailored for sequentially-applied,
local deformations. We explore the alternative option of di-
rectly interpreting a multi-stroke contour drawing. This pro-
vides a workflow that is complementary to that of sequential
stroke-based methods and mimics the sketch-then-model ap-
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proach that is common practice in applications such as early
stage automotive design [KS08].

Figure 1 showcases an example result produced with the pro-
posed method. The user input consists of a number of drawn
contours, traced on top of an image, that represent the de-
sired shape of the object. Given an initial user alignment be-
tween the drawing and the template, our system then inter-
prets the drawing by deforming the template model to fit the
contours. The deformation is driven by establishing corre-
spondences between points on the drawn contours and ver-
tices on the model. We observe that neighboring points on
a contour should generally map to nearby vertices on the
model. Using this as one of the objectives in solving the
correspondence problem provides a significant improvement

Figure 1: A contour drawing, (a), is traced on top of an
image, (b). Our algorithm corresponds and deforms the 3D
template, (c), to produce the final model, (d).
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as compared to using independently-computed correspon-
dences. An example of this is provided in the supplemen-
tal material. Given correspondences, the model is deformed
in a way that moves vertices, or rather their 2D projections,
towards their corresponding contour points. The deforma-
tion is driven in an iterative correspond-and-deform fashion.
This is key to the process because it minimizes the effects of
less-than-ideal correspondences. In general we can initially
expect to see outliers among the estimated correspondences,
which are removed as the deformation proceeds. The same
iterative process is also important for enabling good com-
promises to be made between preserving the shape of the
template and matching the drawn contours.

Contributions First, we introduce the use of a hidden
Markov model (HMM) [Rab89] as a representation for find-
ing optimal correspondences between a sequence of 2D con-
tour stroke points and a sequence of 3D template vertices.
This combines local match and global continuity criteria
in a principled manner. Second, we develop an iterative
correspond-and-deform framework that is key to making this
type of contour-based modeling work. The last contribution
is that of the system itself, where we demonstrate that non-
trivial contour drawings can be used as an effective geomet-
ric modeling tool.

2. Related Work

A large body of related work exists in sketch-based model-
ing, anchor-and-sketch driven deformation, model-based vi-
sion, and image-based modeling. For conciseness, we focus
our discussion on the closest related work and representative
samples of work in other areas.

The sketch-based modeling tools [IMT99, KH06, NISA07]
provide some of the inspiration for our work. These tech-
niques use underlying assumptions of smoothness in order
to cope with the inherently ambiguous nature of drawings,
but which also then restricts the class of objects that can be
easily modeled using these methods.

Modern mesh deformation tools allow geometry to be
smoothly reshaped through the manipulation of 3D handle
vertices [BS08]. These tools provide an effective way to
generate different poses of animal models without the use
of a skeleton. However, they are less suitable for edits that
require changes of shape or proportion. The wires frame-
work [SF98] provides notable early examples of deforming a
mesh to conform to drawn and projected space curves using
correspondences based on known curve paramterizations.

Several recent papers introduce sketch-based deformation
interfaces [KG05, NSACO05, KS06a, ZNA07], where indi-
vidual drawn strokes can be used to deform models. The
stroke provides a sequence of handle vertex targets that are
then put into correspondence with vertices on the mesh.
With this set of correspondences in place, mesh deforma-
tion techniques can enact the desired deformation. Kho and

Garland [KG05] have the user sketch both a reference curve
and a target curve and use normalized arc length to define a
correspondence between them. The sketched curves serve as
a type of proxy skeleton and are shown to be an effective
mechanism for posing models. Nealen et al. [NSACO05]
deform models using a stroke representing an occlusion
contour. They also define correspondences using normal-
ized arc length. To create the reference curve, the user de-
fines a region of interest on the surface and then selects
and trims one of its occlusion contours. Kara et al. [KS06a]
use a similar approach to match strokes to a pre-segmented
3D wireframe template and further demonstrate a power-
ful set of tools in support of the shape design of automo-
biles [KDS06, KS06a, KS08] .

Most recently, Zimmermann et. al [ZNA07,ZNA08] demon-
strate several further improvements, including the ability to
infer a reference curve (path) on the model for a sketched
stroke drawn near the undeformed model. The region of the
mesh that is to be deformed is automatically estimated using
the correspondence information and an effective heuristic.

We seek to move from working with individual strokes that
define local deformations to processing a multi-stroke draw-
ing that apply global deformations. The workflow changes
from one of repeated ‘edit and observe’ to one of draw-
ing followed by model-based drawing interpretation. The
notion of a region of influence disappears and a number
of other challenges are exposed. Achieving error-free cor-
respondences between the drawn strokes and paths on the
model becomes less likely given the larger scale and the lack
of a user in the loop. Obtaining good 2D occlusion contours
from the model for use in a 2D-to-2D matching scheme can
be a significant challenge in itself [ZNA07], as is finding an
unambiguous and smooth mapping back to the 3D model
(see the supplemental material for an example).

Sketch-based modeling has connections with both image-
based modeling and model-based vision, where a priori
knowledge about object classes plays a significant role.
Yang et al. [YSvdP05] use known 2D object templates to
aid in drawing recognition, which is then coupled to hand-
tailored methods for generating the corresponding 3D mod-
els. Prasad et al. [PZF07] demonstrate the modeling of
smooth surfaces from image-apparent contours. Balan et
al. [BSB∗07] use a sophisticated database-driven model of
human shape and pose in order to infer the specific human
shape and pose from multi-view image silhouettes.

Lastly, hidden Markov models have been proposed for 2D
shape classification using exterior silhouettes, e.g., [BM04]
and others. The work of [CYES00] and [Fel05] is closest in
spirit to our HMM/dynamic-programming-based correspon-
dence determination. However, their focus is on detecting
2D-deformable shapes in images; the results do not extend
in an obvious way to the mixed 2D-and-3D nature of our
deformation problem.
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3. Algorithm Overview

Our contour-based modeling process is comprised of a num-
ber of steps, as illustrated in Figure 2. The first step is the
creation of the input drawing (§4.1). Each drawing stroke is
represented by a sequence of points with associated outward
pointing normals. The strokes need not include all the oc-
clusion contours of the desired model; most of our examples
have only partial contour information. Given the input con-
tours and a 3D template, an initial alignment is established
(§4.2), setting a common view direction and scale for the
contours and template.

The challenge is then to use the contours to deform the
template model. This is accomplished using a repeated
correspond-and-deform process in a fashion reminiscent of
iterative-closest-point methods (ICP). Like ICP methods, the
iterative nature of this process tolerates some correspon-
dence errors being made early on in the process, while later
taking advantage of increasingly accurate correspondences.
Additionally, our setting allows for compromises between
two distinct goals, that of conforming to the drawn con-
tours and that of maintaining the original shape of the tem-
plate model. The supplementary materials provide an exam-
ple that shows the degraded results of a deformation obtained
using a non-iterative deformation, i.e., one that uses only the
initial correspondences.

The task of computing correspondences requires finding a
best-matching sequence of 3D model vertices for each and
every drawn 2D stroke. The criteria for matching any model
vertex to a stroke point include proximity and normal simi-
larity. The normal similarity is computed in 3D, while prox-
imity is measured in image space. Importantly, we look for
the best matching sequence and not just the set of individ-
ual best matches, with the expectation that continuous input
contours should generally map to a continuous vertex path
on the model. This is captured using a transition cost which
is minimized when the distances traveled along the drawn
contour and between 3D vertices are equal. This discourages
jumps in depth for the path of model vertices. The local-
match costs and transition costs are used to define a Hidden
Markov Model, for which the optimal solution is computed
using dynamic programming.

Modern mesh deformation tools allow for effective solutions
to the competing goals of meeting the vertex-and-normal
constraints coming from the matching contour points, and
of shape preservation. This can be viewed as a problem of
matching the given contours subject to a type of shape reg-
ularization, or, alternatively, as informing a shape inference
problem with prior shape knowledge. As illustrated in Fig-
ure 2(e), the final model shape does not completely conform
to the input contours.

4. Pre-Processing

4.1. Input Drawing

The input to the modeling process consists of a set of open
stroke lines. These can be created directly by free-hand
drawing, hand-tracing contour lines over an image, or edge
detection. The strokes are represented as polylines. We shall
refer to the polyline vertices as points, thereby reserving the
use of vertices for referring to the 3D template mesh model.

A required property of the strokes is that an outward-
pointing normal can be defined for each stroke point, pi. If
the strokes form a closed or nearly closed polyline, the poly-
line interior is detected automatically and the stroke normal
at each point is assigned to point outwards. If the interior is
not well-defined, the inside/outside designation is provided
directly by the user. Given a specified orientation, the normal
np

i at pi is defined as np
i = ((pi − pi−1)+(pi+1 − pi))⊥, i.e.

the perpendicular to the tangent at pi where pi−1 and pi+1
are the previous and next points on the stroke.

As a last step, the stroke polylines are resampled to approx-
imately match the sampling density of the model in screen
space. The latter is estimated using the mean edge length of
the 3D model, scaled to screen coordinates, which we found
to be a simple and effective heuristic. This will allow for a
similar spacing between stroke points and their correspond-
ing template mesh vertices, whcih is helpful for establishing
the most meaningful correspondences. The examples used in
our paper exhibit some natural variation in sampling density,
but this has not been problematic.

4.2. Initial Alignment

Given the input drawing, the template model needs to be
coarsely aligned with it. This establishes a common scale
as well as a viewing direction for the template in which
the template’s occlusion contours best match the drawn con-
tours. We use a semi-manual alignment where the centroid
and global scale are automatically approximated, leaving the
user to establish the required orientation, done with an ar-
cball interface, and make minor refinements to scaling and
translation. Minor differences in the alignment generally
produced no visible difference in the final results. We use
a weak-perspective camera projection for all our results.

We allow users the option of manually specifying 2D-point
to 3D-vertex correspondences to facilitate interpretation in
cases such as Figure 5(i), where the template and contours
have very different shapes. They are also useful when an
interpretation of ambiguous depth information is required
(Figure 2). A good number of our examples work without
any correspondences, e.g., the bodybuilder in Figure 1. For
others (lion and two dogs), one or two point-to-vertex corre-
spondences are sufficient to correctly identify matching parts
as shown in Figure 5. The correspondences are used only for
matching and do not affect the deformation itself.
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(a) (b) (c) (d) (e)

Figure 2: Algorithm Overview: (a) Drawn contours; (b) Template; (c) Initial contour and template alignment. The correspon-
dence constraint (green) is added to prevent the left-right mismatch of the hind legs; (d) Initial correspondences (e) Final
deformed model in two views.

5. Determining Optimal Correspondences

We now describe the algorithm used to find optimal corre-
spondences between drawing strokes and paths of vertices
on the template model, based on a combination of orienta-
tion, proximity, and continuity considerations.

5.1. Local match criteria

We first describe the criteria that will be useful in defining
a metric for the cost of matching template model vertex v to
stroke point p. We consider two simple components: prox-
imity and normal difference.

• Proximity is measured in the image plane as dP = (px −
vx)2 +(py − vy)2.

• Normal Difference is measured as the 3D dot product
dN = np · nv, where np is the normal to the stroke at p
(lifted to 3D using z = 0) and nv the mesh normal at v.
The metric is optimal when the dot product is equal to
one. By considering normal difference the matching im-
plicitly prefers to match stroke points to occlusion contour
vertices on the mesh, as in this case both normals lie in the
xy-plane.

We experimented with including local surface features such
as normal curvature in the image plane as a match criteria,
but we found that this did not lead to a consistent improve-
ment in the matching quality.

To enforce the general expectation that continuous contour
strokes should map to continuous paths on the 3D model, we
add a measure that encourages such continuity. Since each
stroke is a directed one-dimensional polyline, the points on it
can be ordered as p1, p2, . . . , pn. A simple-but-effective met-
ric of Continuity is the ratio dC = ‖vi−vi−1‖2/‖pi− pi−1‖2

where vi and vi−1 are the matching vertices of pi and pi−1
respectively, with distances between the mesh vertices mea-
sured in 3D and distances between stroke points measured in
2D. The optimal ratio is one, which captures the notion that
traveling a given distance along the contour stroke should
correspond to traveling a similar distance on the model
mesh. This metric implicitly penalizes depthwise jumps on
the template model.

5.2. HMM model

Given costs established by the above metrics, we wish to find
correspondences that minimize a sum of these costs. Unfor-
tunately, the costs of correspondences are coupled because
of the continuity term. Our solution uses a form of dynamic
programming, which implicitly considers all possible cor-
respondence assignments without needing to explicitly enu-
merate them. Intuitively, this is done by breaking the prob-
lem into successive stages, where each stage is only depen-
dent on the immediately preceeding stage.

More formally, the problem is naturally described by a Hid-
den Markov Model (HMM) [Rab89]. In an HMM, the input
is a sequential series of observed states and the goal is to in-
fer the corresponding sequence of hidden states that is most
likely to have generated these observations. In our case, the
contour stroke points are treated as observations and mesh
vertices are treated as hidden states, as shown in Figure 3(c).
solutions are given by a left-to-right path through the trellis,
where there known costs associated with nodes and transi-
tions. An example solution is illustrated on the trellis, and
the induced correspondences are shown in Figure 3(d).

The HMM requires emission probabilities, i.e., the likeli-
hood that a given hidden state will produce a given output,
and transition probabilities, i.e., the likelihood of a transition
from one hidden state to another. The proximity and normal
metrics are used to compute the emission probabilities as
follows:

P(p j|vi) ∝ e−
1
2 ( dP

σP
)2

e−
1
2 ( dN−1

σN
)2

. (1)

The continuity metric is used to compute the transition prob-
ability:

P(vi|vi−1) ∝ e−
1
2 ( dC−1

σC
)2

. (2)

We use values of σP = 0.25D, σN = 1, and σC = 0.05 for
all our examples, where D is the maximum dimension of an
input image. The initial state probabilities are given by the
emission probabilities for the first point, i.e., states in the first
column.

The HMM problem is solved using the well-known Viterbi
algorithm. The Viterbi algorithm is based on dynamic
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Figure 3: Establishment of Correspondences. (a) Contours
and template mesh. (b) Each contour point needs to find a
best-match vertex. (c) The problem as an HMM trellis, with
a solution path. (d) Best matches found by the solution path.
(e) Elimination of many-to-one matches (dashed lines).

programming and computes the optimal path through the
trellis. For conciseness, we refer the interested reader
to the classical introduction to the Viterbi algorithm
found in [Rab89]. User-specified point-to-vertex correspon-
dences(§4.2), if any, force the HMM solution to pass through
a given point in the trellis. Lastly, the HMM solution
may result in several contour points corresponding to the
same mesh vertex. A post-processing pass remedies this by
uniquely assigning them to the most likely contour point,
determined by the emission probability as illustrated in Fig-
ure 3(e).

Considering all vertices on the mesh for each contour point
would yield a problem unwieldy in size. We restrict the set
of candidate vertices to those having an emission probabil-
ity greater than a fixed threshold, such that a typical match-
ing set size lies in the range of 25–100 vertices per contour
stroke point. The filtering thus removes from consideration
vertices that are very poor matches in terms of proximity
or normal. Stroke points that are left with no matching ver-
tices are treated as outliers and removed from consideration.
We note that the HMM solution will not establish correspon-
dences with vertices on the model that have no good matches
with the drawn contours. As a result, the system preserves
model features that have no matching drawing features.

6. Deformation

Given the computed correspondences, each iteration of our
algorithm deforms the template by attracting the matched
vertices to their contour-stroke counterparts. Since the
matched vertices are expected to become occlusion contour
vertices on the deformed model, it is necessary not only to
pull the vertices towards their corresponding stroke points,
but also to attract the normals at these vertices towards the
corresponding stroke point normals. Both requirements are
implemented as soft constraints in order to maintain the
desired compromise between shape preservation and con-
tour matching, and to allow for some tolerance of any re-
maining correspondence errors. We use mean-value encod-
ing [KS06b] as our deformation method, although alterna-
tives such as linear variational models could also be adapted
for use with our method.

The mean-value encoding describes each vertex vi as a func-
tion of its neighbor vertices v j, and an estimated vertex nor-
mal ni(v j), vi = Fi(v j,ni(v j)). The estimated normal ni(v j)
at vi is computed as a function of the neighbor vertices v j .
To compute the deformed mesh the method minimizes the
following functional

1
2 ∑

vi∈V
(vi −Fi(v j,ni(v j)))2. (3)

Our formulation has no hard constraints and the computed
correspondences are used to specify soft positional and nor-
mal constraints. To introduce soft positional constraints we
add a term ρ((vx

i − px
i )

2 + (vy
i − py

i )
2) for each constraint

to the functional in Equation 3, where (px
i , py

i ) is the op-
timal 2D position for the vertex and ρ is the weight as-
signed to all soft positional constraints. To enforce soft nor-
mal constraints we add a term θ‖nv

i − np
i ‖

2 for each con-
straint, where np

i is the normal to the contour at pi, nv
i is the

estimated normal at vi, and θ is the weight assigned to soft
normal constraints.

To enhance the power of the human and animal templates,
we use a spatially-varying deformation behavior, depending
on local material stiffness, as proposed by several recent de-
formation frameworks [BPGK06, HZS∗06]. The degree of
stiffness at each vertex is defined using a weight coefficient
for each entry in the sum in Equation 3. The stiffness for the
lion model was derived from deformation examples [PJS06]
while for other models we painted the main joints as being
less stiff than the rest of the body.

6.1. Deformation Schedule

Our match-and-deform schedule exploits the improved cor-
respondences that are achieved as the iterative process pro-
ceeds. The weights ρ and θ (§6) are initially small and are
increased throughout the iterative matching and deformation
process, as the accuracy of both the contour fit and the com-
puted correspondences increases. We use values of ρ = 0.01
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and θ = 0.001 and increase them by 10% at each subsequent
iteration. These values apply to all our models. The weight θ

for normals is set to be much lower than ρ as changing nor-
mals has a more global impact than changing positions. The
energy minimization problem is solved using Gauss-Newton
optimization to obtain a deformed mesh. To speed up the
process, the first few match-and-deform iterations are per-
formed on a simplified model with about 10% of the faces.

The HMM computation takes less than a second on a simpli-
fied mesh and up to two seconds on a typical full resolution
template with about 20K faces. The bottleneck of the com-
putation is the actual deformation. It typically requires one
or two interior Gauss-Newton iterations to converge for each
set of constraints and weights, with one iteration on a simpli-
fied template taking two to three seconds and an iteration on
a full resolution one taking up to ten seconds. The method
typically requires a total of ten to twenty outer iterations of
matching and deformation to obtain the final result. Thus the
entire process takes two to ten minutes depending on the size
of the template mesh and the deformation complexity.

7. Results

We illustrate our method on a wide variety of models, which
are also shown in the supplementary video. Most of the input
drawings were created by tracing contours on images, while
one was created using automatic edge-detection on an image
(creamer cup). We test the method on both side and three-
quarter views.

Figure 1 shows a muscle-bound bodybuilder recreated from
a contour drawing. The model in the drawing is shown in a
three-quarter view, which is challenging to interpret. The ini-
tial alignment for this model does not include any correspon-
dence constraints. The elbows of the template model have
been painted with ’soft’ stiffness weights. The final model
is significantly different from the template in both pose and
proportions. In particular, it has large muscle-bound arms
and chest. The scale-invariant deformation technique en-
sures that the model’s arms scale appropriately in all direc-
tions and not only in the image plane defined by the con-
tours. This property is further illustrated in the supplemental
material, where we illustrate a sphere being deformed using
the contour from a football. Any apparent muscle bulges on
the final 3D model come from the combination of the drawn
contours and the original template model. As seen in this ex-
ample, contour drawing provide an effective way for creating
models with different proportions and body shape.

Animals: We tested our method on several animal draw-
ings. Contour-based modeling provides an effective way to
model the shape of many animals due to the difficulties in
using other techniques such as 3D scanning, which require
the subject to remain still in order to obtain a quality scan.
The geometric modeling of animals has commonly relied on
either artists or scans of figurines. The combined contour-

(a) Input drawing (b) Initial alignment

(c) 3D model

Figure 4: Panther

plus-template approach provides an effective tool to create a
large variety of animal shapes and breeds from a small set
of canonical templates. Our first example is that of the cari-
cature lion shown in Figures 2. This example illustrates the
ability of the technique to infer good estimates of pose and
local proportions from the contour information. The panther
in Figure 4 is constructed using the same template model
as the lion. No correspondence constraints were used in the
initial alignment. A comparison of the shapes of the final
lion and panther models illustrates the significant variations
in shape that can be inferred from contours. The panther is
the only example we present where the 2D contour directly
corresponds to the outer silhouette of the model.

The dogs in Figure 5 are another example demonstrating the
effect of contours in changing proportions and pose. The
head, tail, and torsos of the sketched hound and pug differ
significantly from those of the template. Figure 5(i) demon-
strates the need for the user-specified correspondences for
the pug model, where the tail differs drastically from that
of the template, as without them the method adopts a sub-
optimal interpretation of the input strokes.

Man made object: The creamer shown in Figure 6 pro-
vides an example of a man-made object modeled with our
technique. This is a challenging example in several respects.
The contours are automatically derived from an edge de-
tection algorithm and thus there are a number of contour
lines that come from the surface texture rather than occlu-
sion contours. Additionally, the template and target contours
are significantly different in shape. We note that even though
the algorithm nicely preserves the ribbing on the creamer, in
general our method, like other local coordinate deformation
techniques, does not perform best on CAD-like models with
sharp corners.

Modeling occluded symmetric parts: The horse model in
Figure 7 demonstrates an extension of our method which
uses symmetry to better complete occluded parts. Given a
contour drawing, the shape of occluded parts can be esti-

c© The Eurographics Association 2009.



Kraevoy et al. / Contour Drawings

(a) Template (b) Hound contours (c) Initial alignment (d) 3D model

(e) Pug contours (f) Initial alignment (g) Final fit (h) 3D model (i) Markerless

Figure 5: Hound (d) and pug (h) modeled using the same template (a). Green dots (c,f) indicate user-specified correspondences.
(i) The pug modeled with no markers on the tail.

Figure 6: Creamer: (top) drawing and template; (bottom)
initial alignment (left), final fit (center) and 3D view (right).

mated using prior knowledge of the likely shapes. Specif-
ically, the local body shape is likely to be left-right sym-
metric, even though globally the pose of the left and right
halfs may differ. We take advantage of this observation, in
cases where the input templates have global reflective sym-
metry, maintaining symmetric local shape between visible
and fully- or partially-occluded parts. Due to space consid-
erations, the details of the symmetry preservation are pre-
sented in the supplementary material.

Multiple views: In the supplemental material, we further
provide an example that illustrates the use of two views to
reconstruct a teddy bear model.

8. Discussion

Modeling with multi-stroke contour drawings uses a differ-
ent workflow than single deformation strokes to interactively
deform a 3D model. We envisage an ideal system as hav-
ing access to both. The first phase of conceptual design and
artwork remains firmly rooted in creating drawings, where
strokes can be freely drawn without any commitment to their

(a) Input contours (b) Template (c) Fit (no symmetry)

(d) Final result

Figure 7: Horse model illustrating use of symmetry to model
occluded regions.

interpretation. In contrast, single-stroke based deformation
systems are a natural fit with the sequential construction ap-
proach of current 3D modeling systems.

One of the key novelties of our method is the use of an HMM
to find optimal correspondences sequences instead of work-
ing with more local point correspondences. We explicitly al-
low for non-silhouette vertices to participate in this match,
as compared to the alternative of only using silhouette ver-
tics. This is particularly helpful achieving good correspon-
dences for situations such as the flat back of the horse model
shown in Figure 7, where the silhouette vertices as com-
puted from the mesh are scattered across the back of the
horse rather than lying on a smooth line. While such arti-
facts can be cleaned up algorithmically, commiting to one
or more designated silhouette paths on the 3D geometry can
be tricky, particularly in areas of the model where there are
joining silhouette edges. The HMM-based approach in effect
avoids computing silhouette edges as an intermediate repre-
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sentation for solving the correspondence problem. Instead, it
directly provides an optimal solution to the sequence corre-
spondence problem that is needed to drive the deformations.

The current system has a number of limitations. It is slower
than single deformation stroke methods, although advances
in parallel sparse linear system solvers and multiscale ap-
proaches are a promising avenue for achieving a sizeable
speedup. A correct interpretation requires good initial align-
ment and sometimes benefits from extra user constraints,
e.g., Figure2(c). It may be difficult to predict in advance
when manual correspondences are needed. The approach re-
quires that a good library of 3D templates be available, and
it is still currently a manual process to select an appropri-
ate template and to perform the initial registration. In some
situations, a small number of user constraints may be nec-
essary to help enforce desired correspondences between the
template and drawing, e.g., Figure 5(i).

The iteractive correspond-and-deform process is ultimately
a gradient-based technique and so it may converge to local
minima. The method does not yet exploit clues such as T-
junctions [KH06]. Thus our method can provide an interpre-
tation that is inconsistent with such cues.

9. Conclusions

We have presented a framework for developing tailored 3D
models from contour drawings and 3D templates. This repre-
sents a complementary alternative to deformation techniques
based upon using single strokes. The novel HMM repre-
sentation of the correspondence problem provides the reli-
able correspondences that are at the heart of our method.
Our iterative correspond-and-deform mechanism is tolerant
of early correspondence errors and helps achieve the desired
compromise between matching drawn contours and shape
preservation.

There are a number of exciting avenues to expore in future
work. One direction is to extract more information from the
drawing, specifically using sketch structure to infer relative
depth and occlusion relationships from the drawing [KH06].
Developing techniques for modeling more directly from im-
ages instead of drawings is also a tantalizing prospect. An-
other future direction is to incorporate more information into
the template. Known skeletal structure for humans and ani-
mals could be used to index into a pose-likelihood model,
which would help with the process of disambiguating con-
tours or finding sets of likely solutions.
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Supplemental Material
Illustrations of several sub-optimal algorithm variations

The proposed method uses non-local matches and an itera-
tive process. In Figure 1 we show the results of using only
local matches with iteration, or using non-local matches but
with no iteration. In either case, the results are inferior to that
of the full non-local, iterative algorithm, whose final result
is illustrated in Figure 2(e) of the paper.

Illustrations of several sub-optimal algorithm variations

Figure 2 illustrates what happens to the depth of an object
as it is deformed to match image contours. A sphere is de-
formed to fit the contour of a football, which preserves it
circular cross-section.

Challenges in directly computing occlusion contours

Figure 3 illustrates the noisy nature of unprocessed occlu-
sion contours as computed from a geometric mesh, and the
potentially complex ways that occlusion contours can split
and join. The HMM algorithm avoids having to explicitly
compute such contours for the model.

Illustration of the iterative deformation

Figure 4 shows the iterative correspond-and-deform process.

Teddy bear model reconstruction from multiple views

Multiple views can be used simultaneously or in sequence,
as shown in Figure 5. To use the views simultaneously we
would need to register them accurately with respect to one
another. Misalignments can lead to artifacts when working
simultaneously with two views, and thus we adopt a sequen-
tial strategy instead. In the given example, we deform the
template using the contours from view A, then view B, and
once again for view A. The image teddy differs from the
template teddy in pose as well as the shape of the nose, ears,
and feet. These differences are successfully recovered from
the contour information with the help of a few user-specified
correspondences. These are necessary mostly to correctly
position occluded parts in the side view. Since the template
is not symmetric, we cannot use symmetry for correct mod-
eling of occluded parts in this case.

Details of symmetry preservation

A symmetry plane is first precomputed on the template us-
ing any of the recently developed symmetry detection meth-
ods for geometric models. When the template deforms, the
global symmetry is no longer preserved. However, we ex-
pect symmetry to be locally preserved, e.g., both hands of a
human have equal finger length, even if the two arms are po-
sitioned differently. Using the symmetry plane we compute
a mapping for any vertex of the undeformed template mesh
to its corresponding symmetric position.

Our method first deforms the model using the iterative
correspond-and-deform procedure, disregarding symmetry.

Users are then asked to specify the occluded regions they
want repaired. Given this input, the method computes new
local shape descriptors, in our case mean-value coordinates,
for each vertex. First for vertices outside the specified re-
gions it computes a new descriptor using the deformed mesh.
For vertices inside these regions it computes the symmetric
descriptor by first mapping the vertex and its neighboring
vertices to their associated symmetric locations on the de-
formed model and then computing the descriptor based on
those. The algorithm then reapplies the deformation using
the precomputed matches with vertices in the selected re-
gions using their symmetric descriptors and vertices every-
where else using the newly deformed ones.

Another example of using symmetry constraints

In the absence of symmetry constraints, the lion in Figure 6
the algorithm arbitrarily selects one of the front legs to match
to the front-leg contour, and similarly for the back legs. This
highlights the importance of consistency enforcement in the
matching stage and showcasing the method’s ability to pre-
serve unmatched template geometry. With the additional en-
forcement of symmetry, both left and right legs are effec-
tively matched to the singly drawn leg contours.

Figure 1: Sub-optimal algorithm variations applied to the
cartoon lion (Figure 2) Top: Iterative deformation using
only local matches, showing the first-iteration correspon-
dences (left) and the resulting final deformation (right). Mid-
dle: Non-iterative deformation using only initial correspon-
dences (Figure 2(d)). Bottom: Unconstrained initial align-
ment produces a solution with a left-right mismatch for the
hind legs.
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(a) Traced image
contour

(b) Initial regis-
tration and corre-
spondences

(c) Final shape

(d) Side view (e) Another view

Figure 2: Football

Figure 3: Occlusion contours for the caricature lion in side
view (left) rotated to visualize contour structure (right).

(a) (b)

(c) (d)

(e) (f)

Figure 4: The iterative correspond-and-deform process. The
matches are shown in semi-transparent 3/4 view in order
to showcase the impact of continuity. (a) initial correspon-
dences; (b) deformed model after 5 iterations; (c) correspon-
dences after 5 iterations; (d) deformed model after 10 itera-
tions; (e) correspondences after 10 iterations; (f) final fit to
contours after 15 iterations.

Initial alignment A fit A Initial alignment B fit B

Initial re-alignment A 3D model

Figure 5: Teddy bear model illustrating modeling from
multi-view sketches.
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(a) Input contour (b) Fit (no symme-
try)

(c) Final result

Figure 6: Modeling a lion from a side view (two legs) con-
tour. Symmetry is used to achieve the final result.

c© The Eurographics Association 2009.


