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Abstract

We present a technique to automatically distill a motion-motif graph from an arbitrary collection of motion capture

data. Motion motifs represent clusters of similar motions and together with their encompassing motion graph they

lend understandable structure to the contents and connectivity of large motion datasets. They can be used in

support of motion compression, the removal of redundant motions, and the creation of blend spaces. This paper

develops a string-based motif-finding algorithm which allows for a user-controlled compromise between motif

length and the number of motions in a motif. It allows for time warps within motifs and assigns the majority of

the input data to relevant motifs. Results are demonstrated for large datasets (more than 100,000 frames) with

computation times of tens of minutes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation

1. Introduction

Data-driven character animation requires structured motion
capture data in order to succeed. Motion graphs allow orig-
inal sequences of motion data to be resequenced by identi-
fying similar pairs of frames and are therefore one straight-
forward way to provide structure. Deeper analysis of motion
data can be used to build more abstract models of how a
motion can evolve over time, such as hidden Markov mod-
els (HMMs), switched linear dynamical systems (SLDSs),
and Gaussian process dynamical models (GPDMs). How-
ever, these techniques still have significant limitations when
it comes to motion synthesis. The development of paramet-

ric [HG07] or fat [SO06] motion graphs, provides a more
recently developed middle ground in terms of abstraction.
These techniques develop motion graphs that model the con-
nectivity of groups of similar motions as opposed to indi-
vidual motions sequences. In comparison to statistical mod-
els, these models are more transparent to end users because
they are more consistent with current methodologies for
games and interactive simulations. Their resequence-and-
blend based approach for generating motions is also well
known to produce high quality results.

We propose algorithms for automatically identifying
groups of similar motion subsequences, which we call mo-

tion motifs, and building a motion graph on top of these mo-
tifs. We call the final structure a motion-motif graph in def-

erence to the common use of the word motif in the context of
data mining for describing approximately repeating patterns.

A number of desired features of motion-motif graph al-
gorithms are as follows: (a) The algorithms should be auto-
matic, efficient, and scalable to large datasets; (b) Extracted
structure should be stable in the face of added noise; (c)
Motifs should be meaningful in terms of their semantics,
their perceptual nature, or their functionality when used for
motion synthesis; (d) Similar motions of different durations
should still be able to exist within the same motif; (e) Mo-
tifs themselves should be able to exist across different time
scales if this is supported by the data; (f) Most of the motion
data should be incorporated into motifs, i.e., the problem is
not just to extract a few of the most identifiable motifs; and
(g) There should be some control over the desired type of
partitioning, i.e., motifs should not be biased exclusively to-
wards choosing either long motifs or common motifs. The
algorithms developed in this paper strives to meet these cri-
teria.

The paper is organized as follows. Section 2 discusses re-
lated work. Section 3 details the algorithm for motif discov-
ery. Section 4 shows how the motion motifs can be used to
produce a graph structure. Section 5 presents and analyzes
experimental results for motion motif extraction and their
use for motion synthesis. Section 6 provides concluding re-
marks.
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2. Related Work

The past decade has spawned a growing body of work that
examines the analysis, synthesis, compression, and retrieval
of human motion data. We structure our survey of related
work according to the primary goal of the proposed tech-
niques, but note that there are frequently deep and sometimes
undocumented connections between the various techniques.

Automatic segmentation of motions into distinctive
smaller fragments has been investigated in support of a num-
ber of applications, including motion compression [LM06],
motion classification [BSP∗04, SB05, FMJ02], and mo-
tion retrieval [LZWM05, SB05]. Approaches used for seg-
mentation include angular-velocity zero-crossing detection
[FMJ02], entropy metrics [SB05], and temporally local
models based on probabilistic principal component analysis
(PCA) [BSP∗04, LM06].

Motion query techniques extract structure in order to
be able to efficiently identify motions that are similar to a
query motion. This has recently been an active area of re-
search. One common approach is to develop and apply a
segmentation rule and then cluster the resulting fragments
[BSC05, LZWM05]. Motion queries are then performed by
looking for a given cluster transition signature. An alternate
model is to look for patterns in binary-valued relational fea-
tures [MRC05,MR06] or extracted keyframes [SB05], and to
construct efficient searches based on these. Search strategies
can also be informed by user-weighted notions of important
features [FF05] and can be made to efficiently support time
warps [KPZ∗04, SB06]. Another approach builds a precom-
puted ‘match web’ from a pairwise comparison of all frames
in the motion corpus, which can then be used to quickly re-
trieve motions that are similar to query motions also selected
from the corpus [KG04].

Statistical models of motion are intended to be general
and can in theory be used for both analysis and synthesis.
In parametric statistical models, the original motion data is
discarded and thus original motion retrieval is not an option.
Hidden Markov models [BH00, TH00] and switched linear
dynamical systems [PRM00, LWS02] have been applied to
motion synthesis. Stochastic models have also been used to
construct natural-motion classification oracles [RPE∗05].

Motion graphs aim to address the motion resequencing
problem by automatically identifying points where motions
are sufficiently similar that they support transitions between
motions, and hence allow resequencing. They have been
introduced in various forms in recent years [TH00, AF02,
KGP02, LCR∗02, LWS02] and resemble the move trees that
have long been a staple for game-based character motion.

Fat or parametric motion graphs [SO06, HG07] sup-
port both motion resequencing and motion blending. This is
achieved by building a motion graph from sets of parameter-
ized motions, where motions within a set can be blended.
Sets of parameterized motions can be constructed manu-

ally [PSKS04] or with the help of a motion query algorithm
that can retrieve similar motions given an example query mo-
tion [KG04, KS05]. The parametric motions in [HG07] are
constructed using the techniques developed in [KG04] to ef-
ficiently find and resample sets of motions that are similar
to a given query motion. A user-specified distance threshold
value determines how large the returned set of similar mo-
tions will be. Where the similar motions are considered to
start and end is implicit in the start and end of the query mo-
tion chosen by the user. As a result, the nature and duration
of each parameterized motion set is in effect user-specified.
The parametric motions in [KS05] are identified with the
help of string matching, where the alphabet denotes the vari-
ous support phases (right leg, left leg, double support, flight)
for walking and running.

Motif discovery techniques have the general goal of ex-
tracting approximately repeating patterns in data, including
sequential data such as time series. Finding motifs in uni-
variate sequential data has applications to finding common
structural patterns in biological applications [BE94,CKL03]
and has the longest history, although advances continue to
be made, e.g., [LKLC03]. This last technique has been used
to discover motifs from low-dimensional representations of
motion capture data [AAT∗06]. Extending motif discovery
techniques to real-valued multivariate time series is currently
a highly active topic of research [Oat02, TIU05, YKM∗07,
MSEI07, MIES07b, MIES07a]. Recent work applies motif
mining to motion capture data [MYHW08]. It produces a
fixed partitioning that favors long motifs. It does not model
connectivity between motion motifs and it mentions build-
ing motion graphs around motifs for complex motion data
sets as future work.

Our work is inspired by many of the recent develop-
ments in motif discovery algorithms, and seeks to develop
algorithms that meet the desired features listed in the in-
troduction. Current motif-discovery algorithms often forego
(d), (f), and (g) from the feature list and provide a limited
evaluation with respect to (b), (c), and (f). To the best of
our knowledge, the algorithms and results presented in this
paper are also novel with respect to: (1) allowing for and
demonstrating partitioning control using a single parameter
to specify the desired length-vs-cardinality tradeoff that nat-
urally exists for motifs in many datasets; (2) demonstrating
the effectiveness of using vector quantization to represent
the multivariate motif discovery problem in terms of strings;
(3) demonstrating results for motion capture datasets having
more than 100,000 frames of data; (4) development and il-
lustration of the embedding motion-motif graphs and related
demonstrations of motion synthesis using this graph; (5) the
use of coverage percentage and average frame error to eval-
uate motion motif graphs; (6) demonstrating the ability to
exploit the coherency of motions in motion motifs for the
purposes of compression.

A number of evaluation metrics have been suggested for
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Figure 1: Motion live in a constrained and continuous

space, represented here in an abstract form by the gray sur-

face. Motion graphs approximate this space using a number

of discrete paths that can branch into one another. Motion-

motif graphs represent it using a patchwork of continuous

subregions.

motion motifs in the context of motion analysis for activ-
ity classification [MWS∗06]. Our evaluations aim to demon-
strate that the desired features listed in the introduction are
satisfied in the context of motion synthesis.

The final result of our algorithm is a motion-motif graph,
which reveals a more abstract, higher-level structure as com-
pared to motion graphs. This is illustrated in Figure 1.

3. Motion Motif Extraction

3.1. Overview

We begin our description of the system, shown in block-
diagram form in Figure 2, by explaining a toy example. Fig-
ure 3 shows how motion motifs are extracted for a set of
motions in a simple two dimensional space. The goal of the
algorithm is to produce motion-motif partitions. As shown in
Figure 3 (f) and (g), there exists more than one way to nat-
urally partition the motions into motion motifs. A parameter
ρ ∈ [0.2,5] controls the preferred type of partitioning; ρ > 1
gives preference to longer motion motifs, at the possible ex-
pense of having fewer motions in any given motif.

Figure 2: System Overview.

The first step in the process is to reduce the dimensional-
ity of all poses through the application of PCA. This is fol-
lowed by vector quantization, illustrated in Figure 3(a), for
all poses. Vector quantization is performed using K-means

clustering. Individual poses are assigned labels, here shown
as letters, according to their assigned cluster. The motions
can now be converted into motion strings using the letters
associated with each pose. Sequential repetitions of letters
are removed. All the motion sequences in the motion corpus
can be represented as strings and then further concatenated
into a single long string representing all motions. Figure 3(b)
shows a portion of this long string for the toy example. The
collection of motions that runs horizontally is represented
by the substring GOACEN, and thus multiple occurrences of
this substring can be observed. An additional partition flag,
p( j), is used to flag points where adjacent motion sequences
have been concatenated. Later, p( j) will also be used to flag
subsequences that have already been incorporated into mo-
tion motifs and that are therefore ineligible for use in new
motion motifs.

The construction of motion motifs requires knowing
which letters are ‘nearby’ other letters. This can be captured
using an adjacency matrix A, as illustrated in Figure 3(c).
This will be used to help identify non-identical substrings
that nevertheless represent similar motions. For example,
the motions represented by GOACEN and GOACHCEN are
very similar and should be eligible to be clustered together.

The clustering algorithm works by randomly generating a
number of seed substrings ranging in size from a minimum
to a maximum length. For each of these seed substrings, a
fast string matching algorithm is applied in order to build a
temporary string motif. A particular instance of the substring
HCEN is chosen in our example, as shown in Figure 3(d).
The complete details of this process will be described in
shortly (§3.2). Once the largest string motif is found, all the
substrings that it encompasses are marked as ‘partitioned’,
as shown in Figure 3(e), and the process is then repeated
with a new set of seed substrings.

3.2. Pose Preprocessing

In this section, we give a more detailed description of the
pose preprocessing and introduce the notation that is used
when describing subsequent steps of the algorithm. Each
pose in the dataset is expressed using a vector containing
the joint angles, the root height, the root pitch and roll an-
gles, the root horizontal speed, and the root angular speed
with respect to the vertical Y axis. This makes the pose rep-
resentation independent of the facing direction and the loca-
tion on the plane, as is commonly desired. The dataset can
be expressed as an ordered list of n vectors Θ(i), 1 ≤ i ≤ n.
A submotion Θ(i),Θ(i + 1), ...,Θ(i′) is denoted by a pair of
indices (i, i′).

All test sequences we use to build the dataset share
the same bone hierarchy, leading to a 62-dimensional pose
space. We perform a global PCA where all Θ(i) are pro-
jected into a subspace of fewer dimensions to yield Θ̂(i).
We perform projections that keep 97% of the total variance,
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Figure 3: The various steps of the motion-motif algorithm on a 2D toy example. The frames for this toy example are marked in

red in (a). The motion sequences from which they come are the curves traced in (f) and (g).

corresponding to keeping 12–18 principal components, de-
pending on the dataset. Global PCA helps speed up the pose
clustering process.

Vector quantization is performed using a fast K-means
clustering algorithm. The total number κ of clusters needs
to be specified by the user and the impact of this parameter
is explored in detail later (§5.2). Each cluster can be assigned
a letter from a κ-letter alphabet. All motions can therefore be
represented as a n-letter string by associating each pose Θ̂(i)
with the nearest cluster. This string can be further simplified
by removing consecutive repetitions of the same letter, lead-
ing to a m-letter string s( j) with 1 ≤ j ≤ m. Moreover, for
each letter s( j) we can store the set of consecutive frames
F( j) that map to this letter. The mean of this set is noted
F̄( j). A substring s( j),s( j+1), ...,s( j′) is denoted by a pair
( j, j′).

The quantization process makes it possible for two poses
close to one another to be assigned to different clusters. To
overcome this problem, we build an adjacency matrix A that
lets us identify neighboring clusters. To build this matrix we
first attach an hypersphere to each cluster center. The radius
of an hypersphere is computed using the distance of the fur-
thest data point that was assigned to it. Two clusters are then
deemed adjacent if their corresponding hyperspheres inter-
sect.

3.3. String Motif Discovery

The motion-motif creation process works by first building
motifs from the string-based representation of motions, fol-
lowed by a second step that maps the result back to the orig-
inal motions. We postpone the discussion of this second step
until Section 3.5. String-motif creation works by iteratively
partitioning the motion string. To track the algorithm as it
progresses, a binary partition value is associated with each
transition between two consecutive letters of the string. This
value is noted p( j) with 1 ≤ j ≤ m − 1 so that p( j) cor-
responds to the interval between s( j) and s( j + 1). By de-
fault, all values of p( j) are initialized to 0, indicating that
the whole string is unpartitioned. It is possible to initialize
some values of p( j) to 1 to indicate that two consecutive
letters belong to different motion sequences. This way, the
algorithm will never include that interval into a string motif.

The values of p( j) separate the string into partitioned let-
ters and unpartitioned letters. We say that letter s( j) is parti-

tioned if and only if p( j−1) = p( j) = 1, and that it is other-
wise unpartitioned. In the same way, substring ( j, j′) is par-
titioned if and only if p( j) = p( j +1) = ... = p( j′−1) = 1,
and unpartitioned if and only if p( j) = p( j + 1) = ... =
p( j′−1) = 0. It is possible for a substring to be neither par-
titioned nor unpartitioned.

The creation of every string motif first requires us to gen-
erate a random set of seed substrings. The selected sub-
strings must be unpartitioned and their length must fall
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within the user-defined range [λ−
,λ+]. In practice, we gen-

erate this set by randomly selecting frequently occuring let-
ters and producing all unpartitioned substrings that contain
these letters and whose length fall in the given range.

For each of these seed substrings, we look through the full
motion string for all similar and unpartitioned substrings.
Identifying good motion motifs requires a definition of ‘sim-
ilar’ that is broader than simply identifying copies of the sub-
string in question. Details of this process are given in Sec-
tion 3.4. The end product of the overall search is a distinct
set of matching substrings for each possible choice of seed
substring.

Each of these sets of substrings can be regarded as defin-
ing a different potential motion motif, and we thus need to
choose which one will give the largest motion motif. We de-
fine a motif volume V related to the motif dimensions as fol-
lows:

V = (Bh −1)(Bw)ρ (1)

where Bh is the motif height (the number of substrings in
the motif) and Bw is the motif width (the average number
of frames in the motions corresponding to the included sub-
strings). ρ is the parameter that is used to influence the pre-
ferred lengths of motifs.

The string motif having the largest volume V is identi-
fied and kept. If all potential motifs contain a single sub-
string, then a two-letter substring in randomly selected from
the seed substrings and segmented out, making sure the al-
gorithm eventually terminates. Following that, the values of
p( j) are updated so that all substrings in the chosen motif are
now marked as being partitioned. The algorithm then repeats
using a newly chosen seed point.

3.4. Identifying Similar Substrings

The process of identifying substrings similar to a seed
substring is inspired by the search algorithm proposed by
[KG04], although we compare pose clusters rather than
poses. For a given substring, we need to identify all other
substrings with which we can build a cluster-to-cluster reg-
istration curve that satisfies some constraints. We begin by
defining the binary relation M(ss1,ss2) that is true if and
only if substring ss1 matches substring ss2.

Suppose we have two substrings ss1 and ss2 identified re-
spectively by ( j1, j′1) and ( j2, j′2). We can build a substring-
to-substring binary accessibility matrix SSA as

SSA[a− j1,b− j2] = A[s(a),s(b)] (2)

with j1 ≤ a ≤ j′1 and j2 ≤ b ≤ j′2. For M(ss1,ss2) to
be true there must exist, within SSA, a valid path of 1’s
starting from cell SSA[0,0] and ending at SSA[ j′1− j1, j′2− j2].
Suppose we have such a candidate path going through
cells [a1,b1], [a2,b2], ..., [al ,bl ], with a1 = b1 = 0,al = j′1 −
j1,bl = j′2− j2, and where SSA[ai,bi] = 1 for all i. This path is

valid if and only if ai ≤ ai+1 ≤ ai +1 and bi ≤ bi+1 ≤ bi +1
for 0 ≤ i < l.

The existence of a path through matrix SSA implies the
existence of a valid time alignment curve between the mo-
tions corresponding to ss1 and ss2, up to the granularity in-
duced by the vector quantization. To make sure this time-
alignment does not introduce too much distortion, we require
the user to provide a slope limit γ and use the criterion intro-
duced by Kovar and Gleicher [KG04]. To better evaluate the
slope of the time alignment curve, we use the frames defined
by F̄ rather than simple indices into the string.

Provided we have a seed substring ss0 = ( j0, j′0), we can
build the set of all substrings for which M(ss0,ssa) holds
true. To do this efficiently, we first identify a short list of
substrings over which the relationship should be tested. We
do this by identifying letters that are good start and end can-
didates. A letter is a start candidate (respectively, an end can-
didate) if it matches s( j0) (respectively s( j′0)) and if its clus-
ter is closer to s( j0) (respectively s( j′0)) than the clusters of
the two letters directly beside it. Iterating over the start and
end candidates let us quickly generate a limited number of
candidate subtrings to use for matching.

3.5. From String Motifs to Motion Motifs

String motifs need to be mapped back to particular frame se-
quences of the original motions. While this step is largely
trivial, there remains a small-but-non-negligible issue. Mul-
tiple successive frames of a motion sequence will often map
to the same letter in a substring. Arbitrarily choosing one of
these frames for the first or last letter of a substring may lead
to motions that are not as well aligned as they could be. It
is thus advantageous to further optimize, at the frame level,
where a given motion enters and exits a motion motif.

To do so, we first identify the indices of all letters of the
dataset appearing at the beginning or the end of a substring.
The set containing these indices is noted J . Mapping back
from string to motion is then simply a matter of finding a
frame f ( j) for each j ∈ J .

Given such a mapping, we can evaluate the quality of the
motion alignment within a motif. To do so we define the
alignment score for motion motif B as

∑
i

|Θ(i)− Θ̄−|+∑
i′
|Θ(i′)− Θ̄+| (3)

where i and i′ respectively indicate all the starting frames and
all the ending frames of motions in B, while Θ̄− and Θ̄+

respectively refer to the average starting and ending poses.
The total alignment score for a given assignment of the f ( j)
is the sum of the alignment scores over all the motion motifs.

We look for an assignment that minimizes the total align-
ment score. To do so, we rely on the following stochastic
search algorithm. First, we use the initial guess f ( j) = F̄( j)
for all j ∈ J . Then an index j′ ∈ J is randomly selected
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and a direct search is performed within F( j′) to find the
assignment f ( j′) that minimizes the total alignment score.
The algorithm is repeated with a newly selected random in-
dex until the total alignment score cannot be improved or for
a predefined number of iterations.

The final step of the conversion to motion motifs con-
sists of computing a precise time-alignment for the motions
within a motif. We do this by first identifying, within the mo-
tif, the motion closest to the average. Each other motion is
then time-aligned with this one through a registration curve
computed using dynamic time-warping.

4. Embedding Motion Motifs into Graphs

Motion motifs can be seen as a way of folding the motion
dataset so that different submotions overlap. This naturally
creates a directed graph structure where each node is a mo-
tion motif and each edge is a valid transition from one mo-
tion motif to another one. For convenience, we call this a
motion-motif graph. Parameterized motion graphs [HG07]
use a similar graph structure. It has some advantages over
the motions-as-edges, nodes-as-transitions structure used in
traditional motion graphs [KGP02] and fat graphs [SO06].
Specifically, in a nodes-as-transitions motion graph, any mo-
tion coming into a node must be able to transition into any
motion leaving from that node. This makes it difficult to cre-
ate good hub nodes with rich connections and also neces-
sitates short-duration blends from incoming onto outgoing
motions. In contrast, the nodes-as-motions model supports
both long blend intervals during transitions, as well as rich
parameterizations of motions using multi-way blends.

Building a motion-motif graph from the motion-motif
structure is straightforward. First, a node B is created for
each motif B. Then, an edge B1 → B2 is added if there exist
poses i1, i2, i3, i4 such that sequence (i1, i2) ∈ B1, sequence
(i3, i4) ∈ B2 and either i2 = i3 or sequence (i2, i3) is not part
of any motif. In our graphical representation, nodes are rep-
resented as boxes with an height proportional to Bh and a
width proportional to Bw. Graph layout is performed auto-
matically using the publicly available GraphViz tool.

It is possible to produce an animation that follows any
valid path through this graph. To do so, we exploit the sim-
ilarity of motions within a motif and blend from the entry
motion to the exit motion. More precisely, assume a desired
path B1 → B2 → B3. Then B1 → B2 guarantees that we can
find i1, i2, i3, i4 such that (i1, i2) ∈ B1 and (i3, i4) ∈ B2. Sim-
ilarly, B2 → B3 guarantees that we can find i′3, i

′

4, i
′

5, i
′

6 such
that (i′3, i

′

4) ∈ B2 and (i′5, i
′

6) ∈ B3. To play the motion corre-
sponding to B2, we simply blend smoothly from submotion
(i3, i4) to submotion (i′3, i

′

4).

Even though the blended animations are similar and well-
aligned, it is possible that their contact constraints differ.
Various strategies could be used to solve this problem, such
as inverse-kinematics-based corrections. Such techniques

are already well studied and thus we do not address them
further in this paper. The animations presented in the ac-
companying video do not use such strategies and moderate
foot-skate and other minor motion artifacts can sometimes
be observed.

5. Results

5.1. Extracting Motion Motifs

We tested the motion-motif algorithm on various collections
of motions, ranging in size up to a 111,848 frame dataset
composed of 37 different motion capture session for a to-
tal of about 16 minutes of motion. Our test datasets do
not currently mix data from multiple individuals. Some of
the collections we use for testing contain a single activity:
an actor shadow boxing, performing various exercises, or
walking around in an erratic fashion. Other collections con-
tained sequences representing different kinds of motions. All
the animations were taken from the CMU Motion Capture
Database [CMU] and use a sample rate of 120 Hz. Some
motions contain pose errors or pose noise that is typical of
uncleaned motion capture data, and this is noticeable at some
points during our graph walks shown in the video for this
paper. The system is implemented in MATLAB. The given
timings are for an Intel Pentium D 3.0 GHz machine with 1
Gb of memory.

Running vector quantization requires 17.7 seconds on a
14,654 sample dataset (200 clusters) up to 486 seconds on
the largest dataset (2000 clusters). For these two examples,
string motif extraction requires 95.6 seconds and 358 sec-
onds, respectively. Finally, converting to motion motifs re-
quires 16.3 seconds and 59.7 seconds, respectively, most of
this being spent performing dynamic time-warping. The to-
tal time required to extract a motion-motif graph is therefore
around 15 minutes for the 16 minute dataset.

The final motion-motif structure needs very little space,
requiring only pointers to the starting and ending frames for
each motion subsequence in a motion motif. The total size of
the motion motifs for the largest dataset uses about 100 KB
of disk space in an uncompressed text format.

The content of a motion motif is difficult to illustrate in
printed form, and the reader is encouraged to view the video
associated with this paper, where we display results for two
different datasets. Figure 4 visualizes two of the motion mo-
tifs extracted for the largest dataset by showing the middle
frame for all the motions contained in the motifs. The motion
motif on the left contains 8 jumping jack motions ranging in
size from 106 to 147 frames, the motion motif on the right
contains 14 motions ranging in size from 65 to 127 frames.
The original 16 minute dataset corresponds to all the mo-
tion capture sessions of subject 14 in the CMU Motion Cap-
ture Database [CMU]. It portrays a wide array of activities,
including shadow boxing moves, exercising, sweeping the
floor, and various other everyday activities.
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Figure 4: Content of two discovered motion motifs. The mid-

dle frame is shown for 8 motions of a jumping jack motif and

14 motions of a right-punch motif.

The entire dataset was partitioned in 138 motifs, including
the two displayed in Figure 4. The average number of mo-
tion per motif is 3.86 while the average number of frame per
motion is 139.5. In total, 71230 frames are included within
motifs, representing 64% of the entire dataset. We believe
that this last number, which we call the percentage of cov-
erage, clearly highlights our goal of partitioning the entire
dataset rather than identifying only the longest or most fre-
quently occuring motifs.

Another important aspect relates to the similarity of the
motions within a motif. To evaluate this we calculate the av-
erage frame error, which we define as the mean euclidean
distance between the frames in the motif and the correspond-
ing frame in the averaged motion. For the 16 minutes dataset,
the average error is 6.1. As a comparison point, the mean dis-
tance between a pose and the average pose of the dataset is
27.0. The error computation is performed in the 18 dimen-
sional pose space resulting from PCA projection.

5.2. Parameter Selection

For all the results presented in this paper we use ρ = 1,
γ = 1.5, λ− = 5, λ+ = 30. The number of clusters used dur-
ing vector quantization, on the other hand, has to be adjusted
based on the size and the complexity of the dataset. For the
16 minutes dataset we use κ = 2000. We use κ = 200 for two
smaller datasets, the first one a 2.5 minutes dataset contain-
ing 58 different sequences of a character walking, running

Figure 5: Effect of κ, the number of pose clusters, on the av-

erage frame error (⋄, left scale) and the percentage of cov-

erage (◦, right scale). Data is for ρ = 1.

Figure 6: Effect of ρ on the total number of motifs (⋄, left

scale) and average number of motions per motif (◦, right

scale). Data is for κ = 200.

and jumping; the second a 2 minute dataset containing vari-
ous exercising motions.

We studied the effect of the two most important parame-
ters, κ and ρ, on the exercising dataset. The results are pre-
sented in Figures 5 and 6. The algorithm was run once for
every point shown in the graphs. The inherent noise appar-
ent in these plots is partly due to the randomness during K-
means initialization and seed substring selection.

Figure 5 shows that, as κ increases, the average frame er-
ror drops rapidly, up to a point where it levels. On the other
hand, the percentage of coverage also decreases. We should
therefore select κ as low as possible in order to partition a
large a portion of the dataset while maitaining a reasonable
error. In practice, we obtained very good results with κ rang-
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ing from 150 to 300. Values of κ slightly above or below this
range still generate acceptable results.

Parameter ρ seems to have a limited impact on the per-
centage of coverage and the average frame error. For values
of ρ between 0.2 and 5, the percentage of coverage varies
from 61% to 65% and the average error oscillates between
3.2 and 3.9. Although ρ has little impact on the quality of
the segmentation, as measured by these values, it does af-
fect the structure of the resulting graph. Figure 6 shows that,
as ρ increases, the average number of motions per motif de-
creases. However, motifs associated with a large number of
motions usually correspond to nodes of the graph that have a
large branching factor, and would therefore seem desirable.
However, small values of ρ also tend to generate many mo-
tifs, resulting in a larger graph that can fail to capture longer,
semantically meaningful motions. In practice, we have ob-
served that values of ρ in the neighborhood of 1 tend to pro-
duce rich graphs that capture most of the important longer
structured motions.

In practice the randomness involved in the algorithm did
not seem to affect the results negatively. Similar results were
consistently obtained when running the algorithm multiple
times with different random seeds.

5.3. Motion-Motif Graphs

Figure 7 presents the graph resulting from the 2 minute ex-
ercising dataset. The layout has been performed automati-
cally by GraphViz. The nodes are displayed as rectangles
with height proportional to the number of motion in the
motif and width proportional to the number of frames per
motion. Nodes containing semantically meaningful motions
have been manually labeled. The content of a number of
nodes is shown in the accompanying video. The graph em-
beds all the motions from the source motion capture dataset.
The majority of the motion is incorporated into motion-motif
nodes, as indicated by the percentage of coverage. Frames
that are not part of a motion motif correspond to transition
motions and appear as edges in the graph.

The motion-motif graph for the 16 minutes dataset is pre-
sented in Figure 8. The graph layout has been performed au-
tomatically by GraphViz. The large number of nodes in this
graph illustrates the wide variety of motions present in the
dataset. Exploring this graph allows us to observe that neigh-
boring nodes and strongly connected regions usually contain
motions from a similar activity. Edges leaving these strongly
connected regions correspond to transitions between differ-
ent types of motions. These transitions arise either from be-
ing explicitly observed in the dataset, or else from the simi-
larity between two motions belonging to different activities.
Various disconnected components are also visible, illustrat-
ing the fact that no transitions between the corresponding ac-
tivities have been observed in the dataset. For example, this
dataset does not include a transition from drinking to boxing.

Figure 7: Motion-motif graph extracted from a 14,654 frame

exercising dataset.

Some nodes of this graph are displayed in the accompanying
video.

Lastly, we tested the extracted graphs for resequencing by
observing the output for various directed walks through the
graphs. The results are shown in the accompanying video.
Some minor motion artifacts remain because we do not cor-
rect for effects such as foot skate during blending.

Since the edges of motion-motif graphs only correspond
to transitions that have actually been observed in the data,
they are often too sparsely connected for resequencing ap-
plications that require fast response times. In such cases the
graph connectivity could easily be enriched by automatically
detecting good transition points that occur within a motif, in
the vein of standard motion graph techniques. The motion-
motif graph still serves a variety of other purposes, not the
least of which is providing an understandable view into the
structure of the motion dataset.

5.4. Additional Results

We have verified that the extracted motion-motif graphs are
relatively stable when band-limited Gaussian noise is added

c© The Eurographics Association 2008.



P. Beaudoin & S. Coros & M. van de Panne & P. Poulin / Motion-Motif Graphs

Figure 8: Motion-motif graph extracted from a 111k frame

dataset.

to the joint angles. We have also demonstrated that the dis-
covered motion motifs can be effectively compressed using
a PCA-like scheme that directly uses motion instances to de-
fine compact non-orthogonal motion bases. This allows good
reconstruction of the original motion instances that comprise
a bundle while obviating the need to additionally store large
PCA reconstruction matrices. This format also directly sup-
ports linearly weighted blending and interpolation. In the in-
terest of space, we point the reader to [Bea07] for noise ro-
bustness tests, the details of the motion motif compression
scheme, and motion-motif graphs of additional datasets.

6. Conclusion

We have presented a technique that can distill a highly struc-
tured representation from large unstructured motion capture
datasets. The resulting motion-motif graph provides a visu-
alization of the motion data, its repetitive variations, and its
connectivity. The user can specify a preference for the de-
sired shape of the extracted motion motifs. The processed
result is multi-purpose, potentially usable for motion rese-
quencing, creating blend spaces, motion compression, mo-
tion segmentation, and motion annotation. A key insight of
the method is to tackle segmentation and clustering in a cou-
pled fashion with a preference given to large-volume motion
motifs. We note that there is no guarantee that motion motifs
will always be semantically meaningful, nor can they nec-
essarily make the fine distinctions that might be needed to
discriminate between two very similar classes of motion.

Finding rich and complex structure in multivariate time
series data usable for both analysis and synthesis of charac-
ter animation is an open ended problem. Aside from tran-
sition blending and compression, we have not yet explored
other applications that the continuous parameterizations of
the motions within a motifs would afford. With some opti-
mizations, an online version of the algorithm could be used

to support interactive graph construction. We wish to de-
velop data structures that will enable the technique to scale
to hundreds of hours of motion capture data instead of the
current tens of minutes.
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