
RRT-blossom: RRT with a local flood-fill behavior
Maciej Kalisiak

Dept. of Computer Science, University of Toronto
mac@dgp.toronto.edu

Michiel van de Panne
Dept. of Computer Science, University of British Columbia

van@cs.ubc.ca

To appear in: proceedings of International Conference on Robotics & Automation 2006, Orlando, Florida

Abstract— This paper proposes a new variation of the RRT
planner which demonstrates good performance on both loosely-
constrained and highly-constrained environments. The key to the
planner is an implicit flood-fill-like mechanism, a technique that
is well suited to escaping local minima in highly constrained
problems. We show sample results for a variety of problems and
environments, and discuss future improvements.

I. I NTRODUCTION

Path and motion planning has been a much studied prob-
lem over the past two decades, whose appeal stems from
its applicability to many diverse areas, spanning industrial
robot locomotion, object manipulation, autonomous actors in
computer animation, and even protein folding and drug design.
In the past decade two approaches have become eminently
popular: Probabilistic Roadmaps (PRMs) [1] and Rapidly-
expanding Random Trees (RRTs) [2], both of which are based
on stochastic search strategies.

Despite their robustness, these methods can perform poorly
in environments which have narrow passages or are otherwise
highly constrained, such as the problem shown in Figure 7(c).
This is an incidental characteristic since highly constrained
environments should in practice present a simpler problem,
given how adding constraints generally reduces the search-
space. The most difficult motion planning problems should be
the ones that are neither highly-constrained, nor highly under-
constrained, but rather somewhere in the middle of these two
extremes. A loose parallel can be drawn with observations
about the satisfiability (SAT) problem and other NP-hard
problems, where many such problems can be summarized by
at least one order parameter and that the hard problems occur
at a critical value of such a parameter [3], [4], resulting in an
“easy-hard-easy” difficulty curve.

This paper presents a planner that performs well in highly
constrained environments, while retaining RRT’s robust per-
formance in highly under-constrained problems. The proposed
modifications to the RRT algorithm give rise to a local, “on
demand” flood-fill behavior. Only the key, bottleneck areas
of free-space are explored exhaustively, rather than all of the
free-space, from the starting point outwards, as would be the
case in a naive flood-fill method.

The remainder of the paper is organized as follows. Sec-
tion II discusses prior work in RRTs. The bulk of the pa-
per, section III frames RRTs as potential field planners, and
presents our algorithm. The remaining sections lay out our
results (§IV), discuss them (§V), and identify future directions
(§VI).

II. PREVIOUS WORK

The seminal form [5] of RRT grows a single tree from the
initial configuration,xinit, until one of its branches encounters
xgoal, the goal state. Due to the method of its construction,
this tree possesses a very useful property which accounts for
its “rapidly-exploring” trait: as the tree grows, newly added
edges never regress into already explored space. Algorithm 1
presents pseudocode for this most basic variant. Because
“stumbling” onto xgoal is not a very efficient way to solve
the query, a common extension is to bias RRT’s growth. That
is, a certain portion of iterations (5%–10% is common), use
xgoal as the target towards which the tree is grown, rather than
xrand, the usual randomly-chosen point. This produces better
results because a tree branch can quickly close the distance
to goal anytime the immediate, direct path to it is locally
unobstructed.

A further extension is given by RRT-Connect [6]. Here, once
the most target-bearing direction is selected for the iteration,
it is applied for as many time steps as possible, stopping only
on a collision, or when the target is reached. This greedy
approach frequently performs better since any relatively open
and unobstructed regions are traversed in a single iteration.

Another important idea, as explored in [2], [6], [7], is to
use two trees, rooted atxinit and xgoal. The most common
subvariant, outlined in Algorithm 2, grows one tree toward
a random state, as before, while the other tree is grown
towards any such new growth of its counterpart, with the
trees switching roles between iterations. Thexgoal tree needs
to be grown using reverse-time simulation in systems where
direction of time matters (e.g., kinodynamic systems). As
with the single-tree RRT algorithm, edges are created using
either the Extend (single time step) or the Connect (maximal
time steps) operation. With two trees there are 4 possible
growth combinations: ExtExt, ExtCon, ConExt, and ConCon.
In practice ExtCon is often favored, especially in mildly
constrained terrains, due to its greedy nature in searching for
a tree connection (and hence a solution), but frugal approach
while exploring, resulting in a conservative escape mechanism
for local minima, as we will see later.

A useful extension proposed in [8], which we will refer to
asRRT-CT(RRT with Collision Tendency), advocates keeping
track of unsuccessful edge expansions and then exploiting this
information. First, this is used to prevent further (redundant)
expansion attempts of failed edges, a significant weakness
of the original RRT algorithms. Second, this information is

Algorithm 1 single-tree RRT (without biasing)
1: function QUERY(xinit,xgoal)
2: τ ← tree(xinit)
3: while time elapsed() < MAXTIME do
4: xrand ← random state()
5: xnew ← grow tree(τ, xrand)
6: if xnew ∧ ρ(xnew, xgoal) < ε then
7: return extract soln(xnew)
8: return failure

9: function GROW TREE(τ ,xtarget)
10: xnear ← nearest neighbor(τ, xtarget)
11: ubest ← pick ctrl(xnear, xtarget)
12: if ubest then
13: τ ← τ + new edge(xnear, ubest)
14: return xnew

15: function PICK CTRL(x,xtarget)
16: dmin, ubest ← ρ(x, xtarget), ∅
17: for u ∈ U do
18: xnew ← sim(x, u)
19: if failure(x, u, xnew) then
20: next u
21: d← ρ(xnew, xtarget)
22: if d < dmin then
23: dmin, ubest ← d, u

24: return ubest

where
• ρ(x1, x2) : distance metric
• extract soln(...) : constructs solution by travelling up the tree,

from given node(s) to corresponding root.
• new edge(x, u) : create new edge from statex using control inputu

for a single (Extend) or maximal (Connect) number of time steps
• failure(x1, u, x2) : test whether the transition fromx1 to x2, using

control inputu, incurs a collision or violates other global constraints
• sim(x, u) : compute state of agent after application of control inputu

from starting statex (paper assumes a constant time step)

further leveraged to bias the selection of the next node to
expand, favoring nodes with lower “collision tendency”, the
approximate probability of failure1 in the progeny of the node.
For details of RRT-CT please refer to Algorithm 3.

More recently, Strandberg [9] addressed the constrained
environment problem by proposing the addition of “local
trees” to the primal ones of the base RRT algorithm. With
this approach, anytime the planner encounters a target state
towards which extant trees cannot be grown, it uses the state
to seed a new,local tree, one which then takes equal part
in the usual process of growth toward random targets and
neighboring trees. Whenever two branches meet, their trees are
merged, while a connection between the primal trees signals
discovery of a solution. The ideas presented in our work are
orthogonal to the idea of using local trees; it is likely that they
could be combined for maximum benefit.

Other variations of RRT have also been explored. Carpin
& Pagello [10] show how the typically high variance of RRT
query times can be exploited through parallel execution on

1We will often use the termsfailure andcollision interchangeably to mean
the violation of global constraints; the avoidance of collision with the terrain
is the canonical global constraint, but often there may be others, such as the
subject remaining upright and controllable.

Algorithm 2 dual-tree RRT (RRTExtExt, etc.)
1: function QUERY(xinit,xgoal)
2: τa, τb ← tree(xinit) , tree(xgoal)
3: while time elapsed() < MAXTIME do
4: xrand ← random state()
5: xa ← grow tree(τa, xrand)
6: if xa then
7: xb ← grow tree(τb, xa)
8: if xb then
9: if ρ(xa, xb) < ε then

10: return extract soln(xa, xb)
11: τb, τa ← τa, τb

12: return failure

(inheritsgrow tree() & pick ctrl() from single-tree RRT)

multiple processors. Urmson & Simmons [11] look at heuris-
tically biasing RRT growth to obtain better quality solutions,
or less costly ones in variable cost domains. Lindemann &
LaValle [12] look at biasing tree growth by favoring expan-
sions that reduce its dispersion. Finally, Yershova, Jaillet,et
al. [13], [14] address the equally important RRT problem of
handling environments with hard-to-find gaps and openings.

III. RRT-BLOSSOM

The ideas behind RRT-blossom are best exposed by first
framing RRT as a potential field planner. The central mech-
anism of such planners is the use of gradient descent over a
“potential field”, typically an approximation of the distance to
goal that has been in some way modulated by the presence of
obstacles. Unfortunately such methods are frequently suscepti-
ble to getting trapped in local minima, thus requiring inclusion
of some form of an escape mechanism. A typical example of
this approach is RPP [15]. Its potential field is computed by
performing a discrete, obstacle-aware flood-fill fromxgoal, in
which the potential value of a discrete location is the iteration
number on which it was reached, while a simple random-walk
serves as the escape mechanism.

RRT shares some basic ideas with potential field planners
when its operation is viewed on a macro scale. Thexgoal-
biased iterations effect a descent down a potential field, viz.
ρ(x, xgoal), while the tree growth towards random points in
state-space acts as a local minima escape mechanism.

The dual-tree variant of RRT can be likewise analyzed by
viewing it in terms of a simple finite state machine, as shown
in Figure 1. In Algorithm 2, lines 4–5 make up the EXPLORE
mode, which behaves like an escape mechanism, while line 7
constitutes the SEEK mode, which corresponds to gradient
descent. The overall potential field planner parallel here is
similar to the single-tree case, with the difference that the

local min.
escape

gradient
descent

RRT Ext Con
EXPLORE SEEK

progress?
YESNO

Fig. 1. dual-tree RRT as a simple finite state machine (FSM)

Algorithm 3 RRT w/“Collision Tendency” (RRT-CT)

(inheritsquery() & grow tree() from single- or dual-tree RRT)

1: function NEAREST NEIGHBOR(τ, x)
2: dmin, nbest ←∞, ∅
3: for n ∈ τ do
4: if ∃ unexpanded input out of noden then
5: r ← random() | r ∈ [0, 1]
6: if r > σ(n) then
7: d← ρ(n, x)
8: if d < dmin then
9: dmin, nbest ← d, n

10: return nbest

11: function PICK CTRL(x,xtarget)
12: dmin ←∞
13: for u ∈ U do
14: if u has not been expanded forx then
15: xnew ← sim(x, u)
16: if failure(x, xnew) then
17: mark u as expanded
18: update treeinfo(x, τ)
19: else
20: d← ρ(x, xnew)
21: if d < dmin then
22: dmin, ubest ← d, u

23: mark ubest as expanded
24: return ubest

25: function UPDATE TREEINFO(x,τ)
26: p← 1
27: while x do
28: p← p/| U |
29: σ(x)← σ(x) + p
30: x← parent(x)

where
• σ(n): collision tendency of noden

potential fields encourages the trees to grow towards each other
rather than growing towards a fixed goal state.

Finally, we can think of RRT-CT in the potential-field
planner context, where it introduces changes that result in a
behavior akin to a flood-fill of a local minimum. A significant
part of RRT-CT’s power comes from a modification to the
control input picking mechanism, viz. initializing2 dmin to
∞, rather thanρ(nparent, xgoal). The main consequence of
this change is that it allows the creation of edges which
recede from their appointed target. At first this may seem
undesirable, as many such edges will regress into space already
explored by the tree, but this is not always the case (e.g.,
Figure 2). Receding edges which do not regress are highly
beneficial since they provide tree growth in iterations which
would otherwise be wasted, thus generating a more sustained
rate of node creation, an important characteristic for a flood-
fill. Unfortunately RRT-CT has no mechanism to separate
out the non-regressing edges, and accepts them all equally,
leading to poor performance in regression-prone cases (e.g.,
kinematic systems). RRT-CT’s other, more explicit changes,
namely the tracking of failed edge expansions and use of

2cf. line 12 in Algorithm 3 vs. line 16 in Algorithm 1

collision tendency, do not address this problem, although they
do improve the planner’s node generation efficiency, which too
is a required trait of a successful flood-fill mechanism.

A. RRT-blossom & regression avoidance

The main contribution of RRT-blossom is to introduce a
robust, local, non-regressing flood-fill mechanism into RRT.
This is done without systematically visiting the entire search
space around the originating state, as might be the case with
a typical level-set method. Algorithm 4 gives the pseudocode
for RRT-blossom. It too allows for tree expansions that recede
from the target, but these expansions are subject to a constraint
that prevents regression. A secondary improvement we add
is the instantiation ofall eligible edges when expanding a
node3 (subject to collision and regression constraints), not just
the single best one. Although RRT-CT handles unsuccessful
expansions efficiently, by ensuring they are never re-attempted,
it is wasteful with regards to the others. Specifically, after
it surveys the expansions out of a node and instantiates
one of them, it then discards useful information for the
remainingcollision-free expansions, such as their end-states
and collision-free status. Instantiating all eligible expansions
mitigates this, and has little negative cost: in constrained
regions these expansions would eventually be instantiated
anyhow, while expansive spaces are traversed quickly with few
node expansions, thus generating only negligible overhead.
Also, such blossoming is consistent with RRT’s “rapidly-
exploring” spirit.

Implementing a robust regression constraint is challenging
and is an another contribution of this paper. Computing an
explicit model of the portion of state-space that is considered
already explored is unwieldy because of issues of dimension-
ality, and it is furthermore difficult to define the volume of
state-space that is “occupied” by a branch of a search tree. We
sidestep these difficulties by using an implicit approximation
that captures the desired spirit of the term, an approximation
which we have found to be highly effective: a “leaf” edge
(nparent, nleaf) is considered to be regressing if a nodeother
thannparent is closest tonleaf :

regression: ∃n ∈ τ | ρ(n, nleaf) < ρ(nparent, nleaf)

Figure 3 further illustrates the concept.

3Hence the “blossom” moniker.

target

Fig. 2. An example of a receding-yet-useful expansion. The blue arrow
indicates the useful expansion, while the pink half-disc shows the receding-
from-target directions for the corresponding node.

Algorithm 4 RRT-blossom

(inheritsquery() from dual-tree RRT)

1: function GROW TREE(τ ,xtarget)
2: xnear ← nearest neighbor(τ, xtarget)
3: xnew ← node blossom(xnear, xtarget, τ)
4: return xnew

5: function NODE BLOSSOM(x,xtarget,τ)
6: for u ∈ U do
7: xnew ← sim(x, u)
8: if failure(x, u, xnew) then
9: next u

10: if regression(x, xnew, τ) then
11: next u
12: τ ← τ + new edge(x, u)
13: return the new node closest toxtarget

14: function REGRESSION(xparent, xnew, τ)
15: for noden ∈ τ do
16: if ρ(n, xnew) < ρ(xparent, xnew) then
17: return True
18: return False

B. Interplay of viability & regression constraint

The above definition works well for simple kinematic
systems, but it becomes problematic for nonholonomic or
kinodynamic systems. Figure 4 illustrates one such case. Here,
the leftward path of the car is expanded first, but all its follow-
on paths lead to collisions. The ‘straight forward’, middle path,
on the other hand, would be feasible, but unfortunately it is
disallowed because instantiating it would form a “regression”
into space already explore by the leftward path.

The problem, and the solution, are best framed in terms
of viability [16], [17], although in the planning context it
is necessary to first widen the concept. Specifically, aviable
state is taken to mean one from which the system can evolve
indefinitely, or one that can reachxgoal prior to failure. In
this framework then, the problem is that it is possible for a
nonviable edge, one that by definition cannot be part of any
solution trajectory, to block a neighboring, viable expansion.
This is particularly detrimental when the blocked expansion
lies on the critical path, as this then eliminates all chance of
finding a solution, as shown in Figure 4.

The solution then is to disregard nonviable nodes and edges

Fig. 3. “Regression”; The left subfigure shows the possible expansions for a
particular node; all the red expansions (dashed) areregressingsince a foreign
node is closer than the parent (indicated with loops). Only the single edge in
green is suitable for instantiation. The right subfigure shows all the expansions
in the tree that donot regress for the depicted tree state.

regression
car

Fig. 4. Interplay of viability and the regression constraint: the green (dashed)
expansion is blocked by an extant nonviable edge, since instantiating it would
constitute a regression. As the green edge is essential to any solution, it is
now impossible for the planner to succeed.

in the regression test. The definition is thus extended as
follows:

regression: ∃n ∈ τ | ρ(n, nnew) < ρ(nparent, nnew)
∧ n /∈ NonViable

whereNonViable is the set of nodes found to be nonviable.
Unfortunately the viability of edges is not known ahead

of time, and thus must be incorporated retroactively as it is
discovered. This is achieved through a method reminiscent
of reinforcement learning or dynamic programming. Each
edge, instantiated or potential, carries a viability status, one
of: untried , live , dormant , or dead . Edges that have
not yet been considered for expansion are markeduntried .
Upon instantiation they becomelive . If the expansion is
disallowed due to regression, it is markeddormant . Finally,
dead edges are ones that have been found to have left viable
space. Figure 5 gives a fuller description of the transitions.

Since changing the status of an edgemayprecipitate a status
change in the parent, status changes must be propagated. This
is done by traveling up the parent hierarchy towards the root
node, re-evaluating the status of each edge passed. The process
stops when root node is reached, or when a re-evaluation
results in no change of status.

C. dormant deadlock

Despite these measures it is still possible for the planner
to become unduly stuck. This occurs when all paths towards
the goal, usually narrow chokepoints, have been cut off by
older, lengthier branches, ones which cannot explore into the
passages even though they pass the closest to them. Figure 6
shows an example.

dead

dormant live

untried

children all dead

insta
ntiation

collision

or child woke up

blocking node died

all children dormant

regression

Start

Fig. 5. Progression of the viability status of an edge

1 2

Fig. 6. Dormant deadlock: a viable branch may cutoff access to a critical
passage without being able to explore it itself. This limits the planner’s
exploration to the “fenced off” area, and once this is exhausted, the remaining
non-dead branches are locked in a cycle, mutually blocking each other’s way.

Fortunately these occasions are easily identified and mit-
igated. When the remaining accessible free-space has been
exhausted, thedormant condition starts “backing up” the
tree towards the root node, eventually reaching it once all
other lines of exploration have been exhausted. This signals
the deadlock to the planner, which then allows the very
next expansion attempt to disregard the regression constraint,
thereby breaking the deadlock. In practice this works well, and
more importantly, it has no impact on queries unaffected by
this issue. Nonetheless there is room for improvement, since in
particularly unfavourable cases, where the cycle or blockade
occurs early on while much unexplored free-space remains,
the planner will spend much time unnecessarily exhausting
the free-space before invoking the special countermeasures.

IV. RESULTS

Figures 7 & 9 illustrate some of the problem environments
in which queries were executed using a holonomic point
agent. These environments were also used in queries for a
nonholonomic car and a kinodynamic bike, although with
slight alterations. In particular the “door jambs” were removed
from the gaps in “rooms”, while “tunnel” was widened and
scaled up to accommodate the turning radii of the subjects.
In the diagrams, the points labelled “1” and “2” markxinit

andxgoal, respectively; for car and bike queries the vehicle’s
orientation at both endpoints is “facing right”. The bike, which
is the most complex agent we have used, has a 5D state
vector:(x, y, θ, ψ, ψ′), whereθ is the bike’s bearing, andψ is
the bike’s lateral lean. Its control input is the steering angle
(forward velocity is fixed); steering is simultaneously used to
maintain balance as well as effect progress.

1 2

(a) “T”

1

2

(b) “rooms”

1 2

(c) “tunnel”

Fig. 7. Some of the problem environments used

Fig. 8. Algorithm runtimes, in seconds:(a) holonomic point (|U| = 8);
(b) nonholonomic car (|U|=3); (c) kinodynamic bike (|U|=5). Samples per
boxplot: point & car = 100, bike = 40.

The boxplots in Figure 8 illustrate the timing results for
various agents and terrains. To further ground the comparisons
made, Tables I, II and III give average runtimes, number
of collision checks, nearest neighbor checks, and number
of nodes created; last column gives the number of (time-
limitted) runs which failed to find a solution. Each datum
is the average over the indicated number of runs performed.
It should be noted that the data in “NN” columns doesnot
include evaluations of the regression constraint, since the latter
is computed using a cheaper method. Rows shown initalics
indicate test cases for which a significant portion of the runs
did not find a solution within the specified time limit (these
samples were wholy excluded from the averages); thus those
averages represent significant underestimates of the true costs.

Figure 9, on the other hand, shows sample evolved tree
structures for the three algorithms. Of particular note is how
RRT-blossom’s structure is strikingly regular in the kinematic
case, and how RRT-CT tends to spend a lot of time filling the
minimums with many redundant edges. As discussed later,
RRT is unable to make any progress with a bike.

All algorithms were written in Python 2.3, running on
Linux (Debian “sid”, kernel 2.6), using Psyco (a JIT-like
optimization for Python), on a Pentium IV 2.4 GHz machine.
In the following “RRT” refers to RRTExtCon, while “RRT-
CT” refers to RRTExtExt w/CT. All implementations share
the same component functions where feasible.

RRT RRT-CT RRT-blossom

Fig. 9. Comparison of evolved tree structure in “complex” environment;
top: holonomic point;middle: nonholonomic car;bottom: kinodynamic bike.

V. D ISCUSSION

The problem environments were chosen to present deep
local minima (“T”), to be highly constrained (“tunnel”), or to
offer mixes of these qualities (“complex” and “rooms”). RRT-
blossom outperforms both RRT and RRT-CT in all of these
scenarios, often by an order of magnitude. In the holonomic
case RRT-CT’s poor performance stems from the ease with
which self-negating expansions are made (U often contains
complementary pairs of control inputs, where one undoes
the displacement of the other). Without regression-prevention
RRT-CT succumbs to a back-and-forth chase around local
minima, and only a lucky but rarexrand can pull it out. In the
nonholonomic case the deep local minima of “T” prove again
to be a problem for RRT-CT for similar reasons, but otherwise
it outperforms RRT as expected. “Tunnel” proves particularly
difficult for both RRT and RRT-CT, as their EXPLORE modes
are hampered by random-target distributions that are often
directionally-biased4. The bike queries are nigh impossible
for RRT, since it tends to quickly evolve the trees such that
the most prominent nodes, the ones most often chosen for
expansion, are already nonviable, and the usualL2 distance
metric tends to only pull tree growth towards other such
nodes. Since not a single RRT query ever made any significant
progress, let alone complete, we have not included it in
the kinodynamic table and plot. RRT-CT fares better, but it
still carries an exorbitant cost in time and number of nodes
required. RRT-blossom, on the other hand, performs well in
all cases, and appears to follow the hypothesized ascending-

4xrand is chosen uniformly from the state-space, but for off-center nodes,
especially ones close to the edges of the terrain, this translates to a skewed
distribution of growth directions, from the node’s point of view.

HOLONOMIC POINT : |U| = 8, averages over 100 runs,max time = 20s

terrain algorithm time failure() NN nodes time-outs

RRT 3.45 21,100 2628 410 —
T RRT-CT 19.06 13,250 2870 2870 97

RRT-blossom 0.90 2246 280 316 —

RRT 2.75 10,048 1247 281 —
complex RRT-CT 10.90 8858 1889 1889 6

RRT-blossom 0.85 1767 221 266 —

RRT 13.10 39,398 4911 621 48
rooms RRT-CT N/A N/A N/A N/A 100

RRT-blossom 2.25 3276 409 499 —

RRT 3.68 22,080 2754 122 1
tunnel RRT-CT N/A N/A N/A N/A 100

RRT-blossom 0.21 944 118 118 —

TABLE I

NONHOLONOMIC CAR : |U| = 3, averages over 100 runs,max time = 60s

terrain algorithm time failure() NN nodes time-outs

RRT 9.39 13,317 4407 486 —
T RRT-CT 35.13 8890 3848 3585 8

RRT-blossom 1.36 1343 451 448 —

RRT 23.62 13,656 4542 294 9
complex RRT-CT 11.42 4049 1677 1465 —

RRT-blossom 1.39 811 295 267 —

RRT 32.62 27,119 9018 724 42
rooms RRT-CT 9.59 4071 1717 1507 —

RRT-blossom 3.53 1967 644 649 —

RRT 51.27 24,917 8281 408 77
tunnel RRT-CT N/A N/A N/A N/A 100

RRT-blossom 1.43 806 277 266 —

TABLE II

KINODYNAMIC BIKE : |U| = 5, averages over 40 runs,max time = 3600s

terrain algorithm time failure() NN nodes time-outs

T RRT-CT 2359.45 163,632 43,440 29,963 7
RRT-blossom 103.02 34,054 8538 5808 —

complex RRT-CT 1310.84 129,546 34,140 22,604 1
RRT-blossom 67.49 27,368 7088 4675 —

rooms RRT-CT 609.06 83,549 22,094 14,949 —
RRT-blossom 154.90 43,822 11,049 7461 —

tunnel RRT-CT 1957.93 194,767 51,322 31,952 —
RRT-blossom 62.65 28,744 7476 4903 —

TABLE III

then-descending difficulty curve. It is interesting to note that it
also generally tends to have a much smaller runtime variance,
which is desirable [18].

Although not shown for lack of space, we have found RRT-
blossom to perform well in easier, less constrained environ-
ments, on par with whichever of RRT or RRT-CT is faster in
a given case.

In the current implementation of RRT-blossom performance
starts to suffer as the number of nodes in the tree gets
large, as may happen with more expansive yet still difficult
environments. This is due to the naive implementation of
regression() , which is O(n) in the number of nodes.
We expect significant improvement from re-implementing it
using [19]. An even cheaper approximation we are consid-
ering is to exploit the already collected information in the
nearest neighbor() call in grow tree() : one could
collect the k nearest neighbors ofxtarget, and then assess
regression by checking only against this set; aside from
nparent, the set will also contain most of its closest neighbor
nodes, meaning that in case of a regression there is a good
chance the offending node will be detected.

VI. CONCLUSION

In this paper we presented a novel variation of the RRT algo-
rithm, one that performs well in constrained environments. Its
core ideas are to allow creation of receding edges, the addition
of a regression-prevention mechanism, and the instantiation of
all allowable control actions out of the active node.

In the future we plan to replace the naive implementation
of the regression check in order to enhance the algorithm’s
performance for large trees. Performance in higher dimen-
sional problems also deserves further investigation, although
it is expected that this will merely result in larger trees, in
proportion to the attendant increase of free-space volume.
The filling of deep local minima could likely be improved by
further borrowing the “collision tendency” concept from RRT-
CT. Finally, it would be interesting to gauge the combined
performance of RRT-blossom with local trees.

REFERENCES

[1] L. Kavraki, P. Švestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration space,” in
IEEE Trans. on Robotics & Automation, vol. 12(4), 1996, pp. 566–580.

[2] S. M. LaValle and J. J. Kuffner, Jr., “Rapidly-exploring random trees:
Progress and prospects,” inWorkshop on Algorithmic Foundations of
Robotics, 2000.

[3] P. Cheeseman, B. Kanefsky, and W. M. Taylor, “Where the really
hard problems are,” inProc. of the 12th Int. Joint Conf. on Artificial
Intelligence, 1991, pp. 331–337.

[4] B. Selman, D. G. Mitchell, and H. J. Levesque, “Generating hard
satisfiability problems,”Artificial Intelligence, vol. 81, no. 1–2, pp. 17–
29, 1996.

[5] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State University, technical
report TR 98-11, 1998.

[6] J. J. Kuffner, Jr. and S. M. LaValle, “RRT-Connect: An efficient approach
to single-query path planning,” inIEEE Int. Conf. on Robotics &
Automation, 2000.

[7] S. M. LaValle and J. J. Kuffner, Jr., “Randomized kinodynamic plan-
ning,” in IEEE Int. Conf. on Robotics & Automation, 1999.

[8] P. Cheng and S. M. LaValle, “Reducing metric sensitivity in randomized
trajectory design,” inIEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2001.

[9] M. Strandberg, “Augmenting RRT-planners with local trees,” inIEEE
Int. Conf. on Robotics & Automation, 2004, pp. 3258–3262.

[10] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,”
Proc. 8th Conf. Italian Association for Artificial Intelligence, pp. 834–
841, 2002.

[11] C. Urmson and R. Simmons, “Approaches for heuristically biasing RRT
growth,” Proc. IEEE Intl. Conf. on Intelligent Robots and Systems, pp.
1178–1183, 2003.

[12] S. R. Lindemann and S. M. LaValle, “Incrementally reducing dispersion
by increasing Voronoi bias in RRTs,”Proc. of IEEE Intl. Conf. on
Robotics & Automation, pp. 3251–3257, 2004.

[13] A. Yershova, L. Jaillet, T. Siḿeon, and S. M. LaValle, “Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domain,”Proc.
IEEE Intl. Conf. on Robotics & Automation, 2005.

[14] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon, “Adaptive tuning
of the sampling domain for dynamic-domain RRTs,”Proc. of the IEEE
Int. Conf. on Robots and Systems, 2005.

[15] J. Barraquand and J.-C. Latombe, “Robot motion planning: A distributed
representation approach,”The International Journal of Robotics Re-
search, vol. 10(6), pp. 628–649, 1991.

[16] J.-P. Aubin,Viability Theory, ser. Systems & Control: Foundations &
Applications, C. I. Byrnes, Ed. Birkḧauser, 1991.

[17] M. Kalisiak and M. van de Panne, “Approximate safety enforcement
using computed viability envelopes,” inIEEE Int. Conf. on Robotics &
Automation, vol. 5, 2004, pp. 4289–4294.

[18] P. Isto, M. M̈antyl̈a, and J. Tuominen, “On addressing the run-cost
variance in randomized motion planners,”Proc. IEEE Int. Conf. on
Robotics & Automation, 2003.

[19] A. Atramentov and S. M. LaValle, “Efficient nearest neighbor searching
for motion planning,”Proc. IEEE Int. Conf. on Robotics & Automation,
2002.

