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Abstract— We present a method for computing controllers
for stable planar-biped walking gaits that follow a particular
style. The desired style is specified with a kinematic target
trajectory that may or may not be physically realizable. A
nearest-neighbor controller representation is used and its free
parameters are optimized using a local parameter search tech-
nique. The optimization function is constructed by integrating
a mass-distance metric over fixed time intervals, which serves
to measure the deviation of a simulated motion from a desired
target motion. We demonstrate simulated bipedal walks having
user-specified styles, walks for bipeds of varying dimensions,
walks over terrain of known slopes, and walks that are robust
with respect to unobserved terrain variations and modeling
errors.

Index Terms— biped locomotion, policy search, reward
shaping

I. INTRODUCTION

Walking bipeds are high-dimensional non-linear systems,
and as such they are challenging to control. There are
nevertheless a large variety of published control algorithms,
whose diversity stems in part from the many ways in which
one can pose walking as a control problem. For exam-
ple, one can seek to minimize control energy, maximize
robustness and stability, mimic a particular theory of gait
generation or motor learning, or develop a controller that
tackles some combination of these goals.

For many applications, however, it is not sufficient to
merely achieve a stable walking motion or one that is
energy-optimal. Also needed is the ability to provide a
designer with control over the particular style of walking
motion. This is particularly the case for entertainment
robotics, which is currently one of the most important
applications for walking control algorithms. In this paper
we present a novel method for controlling walks having a
desired style and we demonstrate our method for multiple
styles of walk, multiple types of biped, and variable terrain.
We also show that our method is robust with respect to
significant modeling errors.

A. Related Work

Many proposed methods use the zero moment point
(ZMP) to define a motion trajectory that is guaranteed to be
dynamically stable [1]–[4]. A walking pattern or reference

trajectory is typically computed offline that satisfies the
necessary ZMP constraints and online tracking is then used
to robustly realize the desired trajectory. The reference
trajectory may be generated using motion capture along
with a dynamic filter [5] that ensures a physically feasible
motion. ZMP controllers are popular because they can
ensure robot stability in a controlled environment. However,
these controllers require accurate models of both the robot
and the environment. More significantly, in order to avoid
inverse-kinematic singularities, they result in ‘bent-knee’
motions that do not look natural and that place significant
limits on the types of walking styles that can be produced.

The virtual model control method [6] introduces a num-
ber of virtual components to construct a controller and is
appealing for its simplicity. This strategy has been shown to
successfully control a bipedal model walking blindly over
variable terrain [7]. However, the method involves many
manually-tuned control parameters and does not allow for
the direct specification of a desired motion style.

Recent work has seen an increasing use of the reinforce-
ment learning (RL) framework [8] to learn control strategies
for bipedal walking from delayed rewards. Unfortunately,
many model-based RL methods suffer from the curse of
dimensionality: the algorithms’ time and memory require-
ments grow exponentially with the dimensionality of the
state. Nevertheless, RL has been used to learn walking
motions for simple, low dimensional, bipeds [9]–[12]. The
approaches are typically shown to work for one model and
result in one walking style. Another approach to RL is to
apply policy search directly without learning a model of
the system. A policy or controller can be represented and
parameterized in a variety of ways [13], [14] and local
or global parameter optimization is then used to search
for “good” controllers. The primary difficulty is that the
parameter spaces to be searched are typically inordinately
large because of their multidimensional nature and they are
usually replete with undesirable local minima.

Using prior knowledge about the desired motion can
greatly simplify controller synthesis. Imitation-based learn-
ing or learning from demonstration allow for policy search
to focus only on the areas of the search space that pertain to
the task at hand. Imitation based learning for a 5-link planar



biped locomotion is demonstrated in [15], which uses a
central-pattern generator (CPG) approach to reproduce one
walking style for a specific biped model over flat terrain.
In [16], the authors present an imitation-based method for
controlling whole body dance motions. The lower body
control is ZMP-based and thus shares the general limitations
of ZMP-based walking methods.

II. OVERVIEW OF OUR APPROACH

The starting point of our method is the specification
of a desired motion style. We require one cycle of the
desired gait, which can be specified using keyframes and
interpolation or could also come from motion capture data.
In this work, the target motion is defined using a set of
keyframes and transitions times. The degrees of freedom
(DOFs) for the model are then linearly interpolated over
time between the keyframes to produce the target motion.

The primary purpose of the target motion is to guide an
offline search process to produce a controller that generates
balanced, robust motions that are similar to the given
motion. It is important to note that the target motion does
not serve the role of a traditional reference trajectory, i.e.,
for online use in making corrections to the walking motion.
Our target motion may in fact be physically infeasible
and thus it does not have any of the typical constraints
demanded of reference trajectories that are used for ZMP-
based methods or other local linearization methods.

Our controllers operate using partial-state feedback. As
input, they take the current pose of the biped, where we de-
fine the pose to be the biped’s global orientation and its joint
angles. As output, the controller produces a target pose that
defines a set of target joint angles for proportional-derivative
(PD) controllers. Our controllers employ a simple nearest-
neighbor internal representation, the details of which we
present in Section III.

Controllers have a number of free parameters that govern
their input-output mapping. These need to be set so as to
produce stable walking gaits of the desired style. This is
done using an offline parameter-search optimization process
(i.e., direct policy search) the details of which are described
in Section IV. As with many large optimization problems,
the choice of optimization function and the starting point
for the optimization can have a significant influence on the
quality of the resulting solutions. We discuss these issues
in Section V.

We extensively test our control scheme using several
walking styles, a variety of biped models, and on variable
terrain. These experiments are documented in Section VI.
In Section VII we summarize our contributions and discuss
future work.

III. NEAREST-NEIGHBOR CONTROLLER
REPRESENTATION

Our controller consists of a collection of nodes, ω1:n, that
are used to implement a nearest-neighbor control scheme.

Each node ωi has a location, ζi ∈ Im, and an associated
output, µi ∈ Op, where Im and Op define the controller’s
input-space and output-space, respectively. The location
parameters locate each node in the input space and are used
to determine which node is active. The active node, ωa, is
defined as the nearest-neighbor to the current known state
of the dynamically simulated character and is computed as

a = argmini(||wT (ζt−ζi)||2). (1)

where a is the index of the active node, ζi is the location
or center pose of the ith node, ζt is the current simulated
character pose, and w ∈ Rm is a vector of weights for the
various elements in ζ . Once the active node is found, its
output (a target pose) defines the controller’s output, µa,
which is used to drive the individual biped joints.
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Fig. 1. Abstraction of Controller Representation and Operation

Figure 1 shows an abstraction of our controller repre-
sentation in operation. The solid loop is a projection of a
motion trajectory that we want our character to follow. The
solid circles are the node locations in the input space, ζ1:n,
and the arrows are an abstraction of the node outputs, µ1:n,
which are sets of target joint angles in our case. The node
locations serve to partition the input-space into a set of high-
dimensional Voronoi cells. The dashed line represents a
simulated trajectory as guided by our controller. The biped’s
position and velocity are initialized using a point on the
target trajectory. The illustrated simulation begins with the
character in pose ζ0 and continues on to pose ζt , the current
state of the simulation. A nearest neighbor search reveals
that the lower left node is active (i.e., closest to ζt). This
node’s target pose is thus used at the current simulation
time step.

We note that the control representation can also be
thought of as a type of hybrid controller because of the
way it partitions the input space into discrete regions. Our
particular usage of the control representation also resembles
that of a cyclic finite state machine where the finite-state
transitions are triggered by crossing the hyperplanes sepa-
rating the Voronoi cells. The optimization process can be



thought of as adjusting the positioning of these hyperplanes
as well as the outputs assigned to the cells.

IV. CONTROLLER OPTIMIZATION

The node locations and node outputs are free parameters
of the representation and are thus not known in advance.
The values of these parameters are determined through an
optimization that minimizes a cost function1 C(Θ), where
Θ denotes the vector of all the free parameters of the
controller, [ζ1:n,µ1:n]. The cost function reflects how well
a given controller follows the desired trajectory over a
given time interval. If designed with care, it can lead to a
well-shaped optimization landscape with meaningful local
minima. We defer the details of the cost function and the
general notion of shaping to Section V, but the important
implication is that local (greedy) hill-climbing techniques
can be used instead of needing to consider global search.

We employ a simple deterministic search (SDS) algo-
rithm, also known as coordinate search, to find the optimal
controller parameters. A formal analysis of the convergence
properties of this class of algorithms can be found in [17].
The core SDS algorithm is summarized in Figure 2. In the
absence of known derivative or gradient information we
explore the corresponding parameter space by making sys-
tematic evaluations of C(Θ±∆Θi) for each free parameter i
in Θ. SDS uses a (local) hill climbing approach by updating
Θopt if it yields a better cost function value.

We iteratively reduce the size of parameter perturbations,
α . Using this coarse-to-fine method allows us to first
explore larger neighborhoods in the parameter space and
then refine our search once we get closer to our local
minimum.

V. SHAPING THE OPTIMIZATION

The success of direct search techniques such as ours is
largely dependent on the existence of meaningful and well-
defined local optima in the search space. The choice of
controller representation and of the cost function can both
significantly affect the structure of the local optima.

We use shaping to refer to all factors that impact upon the
ability of local hill climbing to find meaningful solutions.
This includes, but is not limited to, reward shaping [18].
Below we summarize three general forms of shaping that
play an important role in our work.

A. Initialization

In local search algorithms such as ours, a successful
optimization may largely depend on the parameter ini-
tialization. We initialize controller nodes to appropriately-
spaced positions along the cyclical target motion, as shown
in Figure 3(a). The number of nodes is chosen based on
experience and generally depends on the complexity of the
motion trajectory we wish to mimic. Both center poses, ζi,
and target poses, µi, lie directly on the trajectory. We assign

1We use the terms cost function and reward function interchangeably.

�

�

�



Input:

starting point Θ
perturbation step size α
decay factor β
ebest ←C(Θ)

Algorithm:

repeat
for each element i in Θ do

∆Θ← αE {E , the Kronecker delta, δi}
enew←C(Θ+∆Θ)
if enew < ebest then

Θ←Θ+∆Θ
ebest ← enew

else
enew←C(Θ−∆Θ)
ifenew < ebest then

Θ←Θ−∆Θ
ebest ← enew

end if
end if

end for
α ← βα

until converged

Output:

Θopt ←Θ

Fig. 2. Simple Deterministic Search algorithm (SDS)

µi = ζi+1, i.e., each node’s target pose will, in the absence
of external forces, drive the character towards the center
pose of the next node. Such an initialization is intuitive and
it helps shape the controller optimization by focusing on
those areas of the pose-space that are of interest, namely,
those surrounding the desired trajectory. The dashed line in
Figure 3(a) is an abstraction of a simulated trajectory and
indicates that the initial guess at the values of the controller
parameters is suboptimal.

(a) (b)
Fig. 3. (a) Controller parameters are initialized to points along the target
trajectory. (b) Optimized controller parameters.

Figure 3(b) illustrates an abstraction of the same con-
troller after optimization, showing a change in the node
locations and the node actions. The dashed line represents
a trajectory as guided by the controller and it approximately
follows the desired trajectory over the entire cycle.

B. Style-Based Cost Function

The choice of an appropriate cost function is important
and challenging. Our controller has two potentially conflict-
ing goals, that of following a desired motion trajectory and



that of maintaining a balanced walk. This second goal can
be implicitly taken into account by measuring the ability
to mimic the target trajectory over longer time intervals.
Actions that result in falling motions will naturally cause
larger deviations from the desired motion.

Our cost function, C(Θ), integrates the deviation, δ (t), of
a physics-based walk simulation from the target walk cycle.
The starting state of the dynamic simulation is initialized to
coincide with a starting point on the kinematic target mo-
tion. At any time t, the error, δ (t), between the dynamically
simulated character and the kinematic target walk cycle is
defined using a mass-distance metric integrated over each
link of the biped model:

δ (t) =
M

∑
i=1

∫
L

ρi(xi(t)− x′i(t))
2dx, (2)

where M is the number of character links, L is the length
of a link, xi(t) is a point on the ith link at time t for the
dynamically-simulated biped, x′i(t) is the location of the
same point at the same time instant for the target walk cycle,
and ρi is the associated density for the ith link.

In practice, we approximate the continuous mass-distance
integral by representing each link using two point masses,
one placed at each end of the link. Each point mass is
assigned half the weight of the link. Integrating this error
over time gives us the cost function:

C(Θ) =
∫ Tsim

0
δ (t)dt (3)

where Tsim is the duration of the simulation.

C. Bootstrapping

We optimize over a sequence of optimization episodes,
where each episode has a progressively longer simulation
time, Tsim. Typically we begin with Tsim = 0.2s and finish
with Tsim = 2s. The optimized controller resulting from each
episode is used as the initial guess for the next episode.
When a target trajectory is physically infeasible, the con-
troller will adapt to deviate from the target trajectory in the
short term in order to better follow the target trajectory over
a longer time interval.

VI. RESULTS

We test our control method using multiple biped models,
multiple walk styles, several terrain slopes, and several
different types of modeling errors. The animations shown
will continue to walk indefinitely, as defined by a 70s
test simulation. The equations of motion are derived using
a reduced-coordinate Newton-Euler formulation. Anima-
tions of our results can be found at www.cs.ubc.ca/
˜dsharon/icra05.html.

A. Character Variety

We apply our control strategy to three planar biped mod-
els as shown in Figure 4. The human character in Figure
4(a) and the robot (mechbot) in Figure 4(c) both have 7
links and 6 pin-joints. The more complex human model in
Figure 4(b) has 16 links and 15 joints. A torso-servo acts on
the hip of the current stance leg in order to drive the torso
to follow the global orientation as given by the kinematic
target motion. We implement joint angle limits for all our
controllers using exponential springs. We employ stiff linear
springs-and-dampers as our ground contact model. Table I
gives mass and link parameters for the 7-link biped model.
Torque limits for the hip, knee, and ankle joints are set
to 370Nm. Refer to [19] for joint stiffnesses and for the
specifications of the other two models.

αPg
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Fig. 4. Biped Models: (a) 7-link human. (b) 16-link human. (c) 7-link
mechbot.

segment mass (kg) length (m) inertia (kgm2/s2)
torso 40 0.2 0.1333
thigh 7 0.46 0.1234
shin 4 0.44 0.0645
foot 2 0.22 0.00807

TABLE I
LINK PARAMETERS FOR THE 7-LINK HUMAN

Figures 5(a), 5(c), and 5(e) show user-specified keyframes
that define target motion trajectories for each biped model.
Figures 5(b), 5(d), and 5(f) show simulation results using
our optimized controllers. The controllers have 12 nodes
each. All the walks are left-right symmetric, both in terms
of the keyframes defining the target motion, as well as the
controller nodes. Thus, only 6 nodes require optimization.
For the 16-link character, only the hip, knee, and ankle
motions were optimized. This is because we assume that
the lower body can react appropriately to the predictable
upper body movements. We thus have a total of 6 nodes ×
12 parameters per node = 72 free parameters for each of
our biped models.

B. Style

Figure 6 demonstrates our method’s ability to produce
walks with significantly different styles and stride durations.
Figures 6(a) and 6(c) show the keyframes defining two
desired walking styles that are both significantly different
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Fig. 5. Character Controllers: keyframes (a,c,e) and controller driven
simulations (b, d, f) for each character.

from the basic walk given in Figure 5(a). The first style
has a prolonged double stance period and an exaggerated
lift of the knee in the fourth keyframe. The second novel
style is very unconventional in that it has an extra backward
swing in the third keyframe and thus has an alternating
forward-backward-forward swing of the swing leg before
footstrike. In this case there is a potential ambiguity in using
the pose alone to determine the current active node, given
that similar poses are reached at multiple points in the walk
cycle. We deal with this issue by introducing a restriction on
the sequence in which nodes can be activated. Figures 6(b)
and 6(d) show the walks that result from our controllers.
Note that the style is mimicked closely. Both of these
controllers were defined using 24 nodes. With left-right
symmetry enforced, only 12 nodes require optimization.
Each node has 12 free parameters, resulting in a total of
144 free parameters.

C. Terrain

We test our method on the 7-link human biped walking
uphill. This controller is created and optimized specifi-
cally for the slope presented to it. Figure 7(a) shows the
keyframes used to define a desired walk up a hill. The hill
has a slope of 10 degrees. As before, the controller has
12 nodes and a total of 72 parameters to be optimized.
Figure 7(b) shows a dynamic simulation of our controller.
Only one leg is drawn for clarity.

D. Robustness

We test our controller for robustness with respect to errors
in character model parameters and disturbances from the
environment. All the walks shown in Figure 8 were pro-
duced using the controller illustrated in Figure 5(a) and (b).

(a)

0.1 0.25 0.35 0.35

(b)

(c)

0.4 0.2 0.2 0.3

(d)

Fig. 6. (a) Keyframes and (b) resulting simulation of a stylized walk with
a high leg lift. (c) Keyframes and (d) resulting simulation of a stylized walk
with an extra back-swing of the swing leg.

(a)

0.3

0.2

(b)

Fig. 7. Walk up a hill with 10 degree slope.

Figure 8(a) shows a walk result for a biped model having
a significantly reduced torso mass. Figure 8(b) and 8(c)
show remarkable robustness with respect to significant link
length changes. Figure 8(d) shows a walk over unanticipated
bumpy terrain. The character is walking blindly in that it
continuously expects flat ground and must recover at each
step. Note that the controller is not re-optimized for these
new situations, but rather it is robust to the applied changes.

(a)

(b)

(c)

(d)

Fig. 8. (a) Torso mass reduced from 40kg to 28kg. (b) Shin length
changed from 0.44m to 0.25m and thigh length changed from 0.46m to
0.6m. (c) Shin length changed from 0.44m to 0.8m. (d) Bumpy terrain with
gradients of up to 11 degrees. (See Fig. 5(a),(b) for the original controller).

Figure 9 shows a typical example of the performance of



the learned controller as the SDS search proceeds. Because
we shape the problem by performing staged increases of
the simulation durations, Tsim, there are step-wise disconti-
nuities at points where a new optimization episode begins.
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Fig. 9. Optimization evaluation as a function of the number of iterations.
The optimization proceeds using multiple episodes of increasing simulation
duration.

The search process requires approximately 450–23,000
cost function evaluations to produce useful controllers for
our walking problems. At present, this requires from 1.5
minutes up to 2.5 hours on a 1 GHz Pentium 3 PC.

VII. CONCLUSIONS

A. Contributions

We have presented a method for learning to control
planar bipedal walking gaits of a given style. The resulting
controllers are tested for robustness with respect to a variety
of terrain changes and to significant biped modeling errors.
We also demonstrate our method on a variety of biped
models. We address the potential problems of overly large
search spaces and undesired local minima through several
shaping techniques, including progressive changes of the
cost function, suitable initialization, and the use of a mass-
distance metric.

B. Future Work

Our method is not fully automated in that it does not
succeed in producing stable walk controllers for all possible
kinematic target motions. One issue is that the current cost
function is based upon dynamic simulations from a single
initial state extracted from the first keyframe of the target
motion. The optimization has problems if this initial state is
far away from any physically-realizable limit cycle. Instead
of evaluating the cost function from one initial state, it
could be more useful to evaluate it from multiple states that
are distributed along the desired trajectory. Additionally,
there are situations where the optimization makes sacrifices
in terms of robustness in order to more precisely track
the target motion. The addition of disturbances during the
controller evaluation may encourage robustness by forcing
the evaluated motions through areas of the state-space that
are further removed from the achievable limit cycle.

Representations for motor control should ideally provide
support for parameterization. It is natural to consider param-
eterizing a walking gait according to walking speed, stride

length, and other such parameters. Synthesizing motions
with a focus on both style and energy-efficiency would
be desirable. Lastly, we wish to develop the equivalent
capability to produce robust controllers for highly stylized
3D walks.
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