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Abstract— We present a semi-parametric control policy
representation and use it to solve a series of nonholonomic
control problems with input state spaces of up to 7 dimensions.
A nearest-neighbor control policy is represented by a set of
nodes that induce a Voronoi partitioning of the input space.
The Voronoi cells then define local control actions. Direct
policy search is applied to optimize the node locations and
actions. The selective addition of nodes allows for progressive
refinement of the control representation. We demonstrate this
approach on the challenging problem of learning to steer
cars and trucks-with-trailers around winding tracks with
sharp corners. We consider the steering of both forwards and
backwards-moving vehicles with only local sensory informa-
tion. The steering behaviors for these nonholonomic systems
are shown to generalize well to tracks not seen in training.

Index Terms— nonholonomic systems, reinforcement learn-
ing, policy search, hybrid control, vehicle steering

I. INTRODUCTION

Learning control policies for dynamic systems that oper-
ate in continuous state and action spaces is a challenging
problem. Methods that work for systems with two to four-
dimensional state spaces often do not scale well to systems
of higher dimension. Delayed rewards also make it difficult
to appropriately assign credit or blame to a sequence of
control actions.

Reinforcement learning (RL) and direct policy search
methods have been applied to continuous control problems
with some success. Producing a workable solution generally
requires defining an appropriate set of input state variables,
choosing an appropriate control policy representation, and
shaping the problem with a suitable reward function.

In this context, the principle contributions of our paper
are as follows. First, we introduce a compact control policy
representation that is semi-parametric, meaning that the
representation grows with and adapts to the complexity
of the problem being solved. Second, we demonstrate the
effectiveness of this representation and our policy search
algorithm in solving a series of challenging nonholonomic
control problems.

Reinforcement learning applied to continuous state
spaces continues to be an active area of research. A common
approach is to manually discretize the input state space
using grids [1]. This approach, however, scales poorly to
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Fig. 1. (a) Trajectory of a backwards-driving one-trailer truck; (b) Backing
up a two-trailer truck.

higher-dimensional problems and it is difficult to choose the
granularity of the grid without having intimate knowledge
about the problem. Adaptive discretizations have been in-
troduced more recently [2], [3], although it is not clear that
the grid-based axis-aligned structures employed by these
methods can be made to work effectively for non-holonomic
control problems that have hard constraints on the allowable
directions of movement in their state space.

Recently, RL methods have been proposed that compute
value functions and control policies directly in the contin-
uous domain without requiring discretization of the state
space [4], [5]. These techniques are promising, although
open questions remain regarding scalability, convergence,
and their successful application to nonholonomic control
problems.

A novel trajectory-based nonparametric approach is pre-
sented in [6] and is applied to the control of a two-link
planar robot. The trajectory-based representation for value
functions and policies is useful for overcoming interference



in learning and the “curse of dimensionality”.
Nonholonomic systems, such as the truck-and-trailer con-

figurations with which we experiment, have been the focus
of much research over the past 15 years. One common class
of approach is to use a trajectory-planning stage followed by
the use of a trajectory-tracking scheme [7]–[9]. Trajectory-
planning requires a world model, which is something we
wish to avoid in our reactive, sensor-based approach to
steering.

A second class of approach involves learning a control
policy, or simply policy1, which maps input states to actions.
Such an approach is used to solve variations of the “truck
backer-upper” problem presented in [10]–[13]. In general,
the goal is to backup a one or two-trailer truck such that
the end of the last trailer approaches a goal position, which
represents a loading dock. Most versions of this problem
assume knowledge of the global state of the truck [10],
[11], or at least the angle with respect to the goal state
[12], [13]. In contrast, our steering problem is defined
in terms of steering performance around a sharply-curved
track rather than that of reaching a single well-defined
goal state. Furthermore, we require our controller to work
with only local sensory information instead of global state
information.

The problem of car steering has been examined in the
context of RARS, the Robot Auto Racing Simulator [5],
[14]. Optimal actions are learned based upon information
about the car’s position and velocity relative to local track
features. In [5], the car’s curvilinear distance from the start
line of the track is also available to the policy. Both of these
methods assume knowledge of the local track curvature
and learned policies are only tested on the same tracks
that were used for training. We develop solutions based on
simpler sensory information provided by a set of distance
sensors. Also, we demonstrate that a learned steering policy
is capable of generalizing to new tracks that are similar
variations of the training track. Moreover, we apply our
steering method to significantly more challenging models,
such as backwards-moving tractor-trailers.

Two examples of the type of steering problem we solve
are illustrated in Figure 1. This shows a single and double-
trailer truck being controlled to drive backwards on previ-
ously unseen tracks. In general, the vehicles are equipped
with four distance sensors with which to observe the local
track. The goal is to drive the vehicle, quickly and without
collisions, either backwards or forwards (depending on the
problem instance) around a track chosen from a specified
class.

The remainder of this paper is organized as follows.
In Section II, we define our policy representation. We
describe our policy search method in Section III, including
a description of the adaptive refinement that is a key feature

1We consider the terms controller. control policy, and policy to be
synonyms, but we mostly use policy in this paper.

supported by our policy representation. Section IV demon-
strates the application of this representation and our policy
search method to several nonholonomic vehicle steering
problems. We give a detailed description of the problem and
present results. Section V provides conclusions and future
work.

II. NEAREST-NEIGHBOR CONTROL POLICY

The design of a policy begins with a choice of the
representation to be used. The requirements of the control
representation for our steering problem are as follows.
The policy should allow for compact descriptions of the
required control actions as a function of state. Particularly,
it should scale well to working with continuous state
spaces of medium dimension (i.e., 4 to 7 dimensions). The
policy should allow for the addition of local detail in the
representation where this is required or in order to support
coarse-to-fine policy learning.
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Fig. 2. An example nearest-neighbor policy of 3 nodes with a 2-
dimensional input state space and 1-dimensional action space.

Our nearest-neighbour policy representation consists of
a set of nodes, Ω, that are used to model the policy, π :
S→ A, where S and A are the input state space2 and action
space, respectively. Each node i has a location, ζi ∈ S, and
an output, µi ∈ A, as illustrated by the example policy in
figure 2. A specific policy is defined by Θ, a vector of all
the policy parameters, [ζ1, . . . ,ζn,µ1, . . . ,µn], where n = |Ω|
is the number of nodes. The value of ζi locates node i in
the continuous state space S, inducing a tesselation of S
into Voronoi cells with the use of a nearest-neighbor metric.
The policy is then defined as π(x) = µc(x), where c(x) is
determined by the Voronoi cell containing the system state,
x, i.e., c(x) = argmini(||x−ζi||).

III. POLICY EVALUATION AND POLICY SEARCH

The representation of the task to be accomplished is
an important choice for designing a policy. The policy
evaluation function, or simply evaluation function, E(Θ),
measures how well a given policy accomplishes the desired
task. In specifying the evaluation function, there should be
an ability to establish an appropriate compromise between
the size of the domain over which the policy is capable of

2We use the term input state to refer to the aspects of system state which
are input to the policy. This is synonymous with observable state.



operating successfully and the performance of the policy.
Thus, a steering policy that yields higher performance in
terms of its ability to drive quickly around a winding track
may have a smaller domain of states from which it can
successfully recover without crashing. Our specific choice
of E(Θ) for vehicle steering is discussed in Section IV-B.

We optimize our policy using direct policy search. The
goal is to find the best policy given a particular evaluation
function, E(Θ):

Θ∗ = argmaxΘE(Θ),

where Θ∗ is the optimal policy parameter vector. The
success of policy search techniques is largely dependent on
the existence of meaningful and well-defined local optima
in the search space. The choice of policy representation
and of the evaluation function, E(Θ), can both significantly
affect the structure of the local optima. We use the term
shaping to refer to all factors that impact upon the shape
of the optimization landscape.

Shaping using progressive refinement of a policy can be
achieved by treating the policy search as a series of opti-
mization problems, O1, . . . ,Om, where the policy parameters
resulting from Oi are used to bootstrap the the next episode
of optimization, Oi+1. With our policy representation, this is
supported through the incremental allocation of new nodes
to a policy with each optimization episode, as shown in
Algorithm 1, our policy search routine. Thus, degrees-of-
freedom are progressively added to the policy as it becomes
more refined. This yields a semi-parametric approach as
opposed to the parametric approach that would result from
using a fixed number of nodes3.

Algorithm 1 Policy Search with Adaptive Refinement
input π {policy}
Ebest ← E(π .Θ)
repeat

πnew← add node(π)
πnew← optimize(πnew)
Enew← E(πnew.Θ)
if Enew > Ebest then

π ← πnew
Ebest ← Enew

end if
until convergence
output π

It is important to add a node at a location in the input
space where refinement may be needed, as well as to ini-
tialize its action to a sensible value. In the add node routine
of Algorithm 1, the location, ζnew, of a newly added node
is drawn uniformly from the distribution of observations

3Note that a semi-parametric policy representation can be distinguished
from a nonparametric representation, which typically stores experience data
directly rather than consolidating it.

encountered during the evaluation of the previous policy.
This simple heuristic biases the refinement to regions of
the input state space S that are encountered frequently.
The location of the first-added node is sampled from the
observations of a policy that always steers straight. The
action, µnew, is initialized to be the same as that of the
closest node, or in other words the action that would
be taken by the previous policy at the state ζnew. This
bootstraps the action to be a reasonable value, which is
then further refined by optimization. The action of the first-
added node is sampled from a uniform distribution on the
range [-1.0,1.0] radians.

Within an optimization episode, i.e., in the optimize
routine, we employ a stochastic greedy ascent algorithm to
search for a local maxima, Θ∗. Our current implementation
applies a stochastic perturbation δΘ to Θ, assigning Θ←
Θ+δΘ when E(Θ+δΘ)>E(Θ). This optimization routine
is decribed further in [15].

IV. APPLICATION TO VEHICLE STEERING

We apply our policy representation to the problem of
steering cars, single-trailer trucks, and double-trailer trucks
both forwards and backwards on serpentine tracks, as shown
in Figures 1, 5, 6, 7, and 84. Our goal is to develop general
driving behaviors that can drive well on new, unseen tracks
of the same class as the training track.

A. Problem Description

We consider nonholonomic systems in the form of cars,
single-trailer trucks, and double-trailer trucks. The control
input to the system is the steering angle of the front wheels
of the truck, α , as shown in Figure 3. In our simula-
tion, α is controlled indirectly by using a PD controller,
α̈ = kp(α − α̂)− kdα̇ , where kp and kd are the spring
and damper constants5, respectively, and α̂ is the desired
steering angle. This acts as a low-pass filter that prevents
unrealistic instantaneous changes in the steering direction.
The policy action provides the desired steering angle, α̂ .
We assume a constant driving speed in our model.

The track is perceived using 4 distance sensors, d1–d4, as
illustrated in Figure 3, each of which has a 22.5◦ angular
sweep. Each sensor returns the distance to the closest object,
i.e., point on the track edge, seen within its angular range.
The sensors serve the dual purposes of locating the vehicle
on the track as well as providing information about up-
coming turns on the track. The distance sensors are located
in the center of the vehicle segment that is leading the
motion, i.e., in the last trailer for a backward-driving truck
or the cab for a forward-driving truck. The sensors face
in the direction of motion. These four measurements are
the only representation of the environment that is available,

4Animations of the resulting motions are available at
www.cs.ubc.ca/∼kalton/icra.html.

5The values of these constants were chosen to be kp = 10.0 and ks =
3.5 for most steering problems and they remained fixed during the policy
search.



and are combined with the current steering angle, α , and
the current hitch angles (e.g., β for the one-trailer truck) in
order to produce a combined system-and-environment state
descriptor. Currently, we do not consider error in the sensor
values.

β
α

d1

d2

d3

d4

Fig. 3. Truck sensory information.

As an example, the single-trailer truck shown in Figure 3
operates in a 6-dimensional continuous input state space.
An input state to the policy is given by [α ,β ,d1,d2,d3,d4].
Each policy node i thus has 7 associated parameters: one
for the control action, µi, which is the target steering angle,
α̂ , and the 6 parameters for the location of the node in the
input state space, ζi ∈ S.

We enforce left-right symmetry on our control policy by
introducing a symmetric copy of each node. This allows
any progress made in learning left turns to immediately be
applied to right turns, and vice-versa.

The tracks are produced using a randomized track-
generator. This allows us to generate new test tracks that
are similar, but not identical to tracks used for training.
A family of tracks is specified according to their width
and inter-turn distances. In our experiments, all training
tracks have 90 degree turns6, which have equal probability
of turning left or right. The length of the straight track
segments placed between turns is drawn uniformly from
[dmin,dmax], where dmin and dmax are given as part of the
track family specification. The details of how a track is
generated to be a complete circuit without self-intersections
are beyond the scope of this paper.

B. Policy Evaluation Function

Our general goal is to create policies that steer the
vehicles around the tracks in minimal time without crashing
and without jack-knifing7. To this end, we compute a policy
evaluation function that measures distance travelled along
the track center-line during a fixed simulation duration,
Teval . Figure 4 shows how this distance between an initial
state s and an final state s′ is computed.

6However, testing has been applied on more general tracks with varying
turn angles as shown in Figure 1(a).

7Trucks are considered to be jack-knifed when a trailer hitch angle
exceeds 90 degrees.
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Fig. 4. Distance measured along the center of the track.

Teval defines the time horizon of the evaluation, which
determines its short-sightedness. We choose Teval to be of
sufficient duration for the vehicle to navigate around at least
two corners. This discourages the policy from making bad
short-sighted choices. We do not use a discounting scheme,
as is often done in reinforcement learning.

An evaluation function that measures the policy per-
formance from a single initial state is inadequate in that
the solutions may become overly tuned to the situations
encountered from that initial state. To overcome this, we
evaluate the policy from multiple samples of an initial state
distribution, D. We then construct a more comprehensive
evaluation function that sums the evaluations from each
sampled initial state:

E(Θ) =
N

∑
i=1

d(si,s′i) + P(s′i),

where si is the ith initial state, s′i is the ith final state, and
P(s′i) is crash penalty function that is kcrash if a collision or
jack-knifing occurs and is otherwise zero8. The initial states
si are sampled once and then held constant throughout the
optimization process in order to fix the evaluation function
for convergence. A more formal analysis of this type of
sample-based reward function can be found in [16].

The specific choice of the initial state distribution can
strongly influence the end result. It can be used to manip-
ulate the tradeoff between providing control over a large
domain versus providing higher-performance control over a
smaller domain. In the former case, a learned policy may
be able to guide not-often-seen but difficult initial states
towards successful track navigation. In the latter case, a
higher-performance solution could be achieved, one that
perhaps does faster, more refined turns around corners at the
expense of having to start the vehicle in a familiar situation,
i.e., located near to the track center.

8In our experiments, we use a value of kcrash =−10 for the crash penalty.
For reference, Teval is typically between 5 and 10 s and the fixed vehicle
speed is 1 unit/s.



C. Experimental Results

1) Forwards Driving: The task of forwards-driving
around the track is simpler than the equivalent backwards-
driving task because of the stability provided by having
the steered wheels lead the motion. Because the goal is to
travel around the track in minimal time, we would expect
to see behaviors such as steering close to inside corners and
steering directly (diagonally) between corners. A critical
issue to be addressed is that of avoiding collisions with
corners, which is especially interesting in the case of the
trucks-with-trailers given that the trailers do not directly
follow the path of the cab. For this reason, the cab must
swing wide in a turn in order to provide sufficient corner
clearance for the trailer. Steering close enough to the corner
so that near-maximum progress around the track is made,
while not approaching so close that a collision is risked is a
compromise that is defined by the evaluation function and
learned during the policy search process.

Fig. 5. Car driving forwards on wide and narrow tracks.

Fig. 6. Truck with single-trailer driving forwards.

In Figure 5, we see the resulting steering behavior of

policies developed for forward car-driving on wide and
narrow tracks. For the wide track, the path of the car cuts
to the inside on corners to progress more quickly around
the track. This policy uses 15 nodes and is computed using
1342 function evaluations (i.e., computations of E(Θ)). For
the narrow track, the turns must be executed with precision
in order to avoid collisions with the sides of the track.
This policy uses 21 nodes and required 3158 function
evaluations.

Finally, Figure 6 shows a forwards-driving single-trailer
truck. Note the necessity of the truck cab to swing wide on
turns in order to avoid the trailer clipping the corner. The
policy has 20 nodes and required 2801 function evaluations.

All the results shown are for tracks that are novel, but that
belong to the same family of tracks used during training.
To test for robustness with respect to modeling errors, we
made alterations to the wheel-base of the car of up to 20%
and found that the policy still steered well.

2) Backwards Driving: Backwards-driving around wind-
ing tracks is a task of significant difficulty. This is particu-
larily true of trucks-with-trailers, as the policy needs to cope
with steering an unstable system in addition to following the
winding track. We note that this problem is significantly
different from the “truck backer-upper” problem in that
there is no useful global representation of the state and that
the problem cannot be represented in terms of a goal state
or goal trajectory.

Fig. 7. Car driving backwards.

Figures 1, 7, and 8 show steering of policies produced for
the car, one-trailer, and two-trailer trucks. The policy search
required 3665 function evaluations for the car, 13476 for the
single-trailer truck, and 15482 for the double-trailer truck.
The resulting policies use 22, 14, and 30 nodes, respectively.

The backwards-driving car policy shown in Figure 7 is
particularly robust to changes in the track width, turn angles,
and obstacles on the track. This policy was trained on a



Fig. 8. Single-trailer truck driving backwards.

track of the same class as that illustrated in Figure 7(top).
However, the policy was able to generalize well to steering
on tracks with obstacles and a modified width, such as that
shown in the Figure 7(bottom). This car policy can also
successfully navigate a “Y” or “T” branch in the track.

As Figure 1(a) shows, the one-trailer truck policy is
reasonably robust to changes in track width and various
turn angles. Also, the truck policy is capable of avoiding
objects on the track, as shown in Figure 8, although it was
never trained for these conditions. This policy was trained
on an obstacle-free track with a fixed width and 90 degree
turns. In order to test robustness with regard to errors in the
truck model, we applied the computed policy to one-trailer
trucks with the position of the rear trailer wheels varied.
The truck policy still steers well when this wheel position
is changed by as much as 10% measured from the middle
of the trailer.

Figure 9 shows the improvement of the policy evaluation,
E(Θ), as the policy search for the single-trailer truck
progresses. Each solid line in the figure corresponds to a
single optimization episode after a new node has been added
(see Algorithm 1).
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Fig. 9. Policy performance versus function evaluations during the policy
search for a single-trailer truck driving backwards on a winding track.

V. CONCLUSIONS

We have described a semi-parametric control policy for
learning the challenging task of efficiently steering zero,
one, and two-trailer trucks forwards and backwards along
families of winding tracks. We show that the resulting
behaviors generalize to similar but novel tracks. The control
policies have a highly compact representation that can be
adaptively refined to suit the complexity of the control
problem.

As future work, we wish to explore the use of smooth
interpolation kernels to allow for better representation of
continuously-valued actions. We also wish to consider how
to develop steering policies that are usable on an even wider
variety of tracks by finding an appropriate parameterization
that reflects the current class of track. Lastly, we wish to
develop solutions that also consider velocity control and
skidding behaviors.
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