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Water motion can be realistically captured
by physically based fluid models. We be-
gin by presenting a survey on fluid simu-
lation models that are based on fluid dy-
namics equations, from the most compre-
hensive Navier–Stokes equations to the sim-
ple wave equation. We then present a model
that is based on the two-dimensional shal-
low water equations. The equations are inte-
grated by a novel numerical method – the im-
plicit semi-Lagrangian integration scheme –
which allows large timesteps while maintain-
ing stability, and which is described in de-
tail in this paper. Gentle wave motions, the
superposition of waves, drifting objects, and
obstacles and boundaries of various shapes
can be efficiently simulated with this model.
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Water motion is a complex phenomenon which has
yet to be fully captured in interactive computer
simulation. This study focuses on developing and
analysing an efficient and stable algorithm for ani-
mating waves based upon a set of two-dimensional
shallow water equations. By taking advantage of
the considerable effort already invested in analysing
water motion in areas such as physics and fluid dy-
namics, a physically based fluid model is capable of
producing realistic wave motions.
We begin this paper with a delineation of fluid dy-
namics equations, upon which fluid animation mod-
els have been based. These equations vary greatly
in complexity, with the most comprehensive model
being the Navier–Stokes equations, which capture
the turbulent or stable behaviour of fluid with arbi-
trary viscosity in three dimensions. At the other end
of the spectrum we find the simple wave equation,
which describes the sinusoidal propagation of a sim-
ple wave.
In Sect. 3, we outline a physically based model for
animating water waves that is based on the two-
dimensional shallow water equations. This formula-
tion falls in the middle of the complexity spectrum
of fluid models and captures gentle ocean waves. In
this model, the equations are integrated by the im-
plicit semi-Lagrangian integration scheme, which al-
lows large timesteps while maintaining stability, and
which will be described in detail in this paper. We
will show how the model can be used to animate wa-
ter waves and objects drifting on the water, and how
to incorporate obstacles and boundaries of various
shapes. Boundary conditions are handled by setting
the perpendicular components of the velocity to zero.
In Sect. 4, we analyse our algorithm, compare it with
other models, and demonstrate that our algorithm is
both stable and computationally efficient with a com-
plexity of O(N2), where N is the number of grid
subintervals in one dimension.

2 Survey of fluid dynamics models

A vast amount of effort has been invested in the
field of computational fluid dynamics to create mod-
els that describe fluid motions. These models vary
in their levels of complexity and comprehensiveness,
and some are better suited for animating a certain
phenomenon than others. In this section, we summa-
rize a number of fluid dynamics models that have
been proposed for simulating the motions of incom-
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pressible fluids (i.e. liquids), point out the scope
of applicability and limitations of each model, and
compare their computational complexity.
The Navier–Stokes equations, notably the most com-
prehensive of all fluid models, describe the motion
of a fluid particle at an arbitrary location in the fluid
field at any instant of time, and are derived from
Newton’s second law of motion. In three dimensions,
the equations for an incompressible fluid take the fol-
lowing form:
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where u, v andw are fluid velocity components in the
x-, y- and z-directions, respectively; p denotes the
pressure; g denotes the gravitational constant; ρ de-
notes the density, assumed constant; and ν denotes
the kinematic viscosity of the fluid. The Navier–
Stokes equations are usually applied in conjunction
with the continuity equation, which states the law of
conservation of mass:

∂u
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+ ∂v

∂y
+ ∂w

∂z
= 0. (4)

Simulation models based on the Navier–Stokes
equations, such as that proposed by Foster and
Metaxas (1996), are highly realistic, since they cap-
ture the three-dimensional dynamics of fluid with
arbitrary viscosity. Interesting phenomena, such as
a jet of water splashing into a tank or large ocean
waves crashing into a shallow cove, can be simu-
lated with a high level of realism. The downside of
such models is that, since the equations are three-
dimensional, the algorithm takes O(N3) time to run,
where N is the number of grid subintervals in one
dimension. Thus, interactive rates are difficult to
achieve at present for these models.

Stam (1999) proposed a stable model, based on
the Navier–Stokes equations, that produces com-
plex fluid-like flows. By solving the equations with
the method of characteristics, and treating the diffu-
sion terms implicitly, large timesteps may be used.
However, the problems of simulating fluids with free
boundaries (such as water) and with obstacles were
not addressed.
Chen and his co-workers achieved interactive-rate
simulation by eliminating the vertical dependence
and solving the resulting two-dimensional Navier–
Stokes equations (Chen and Lobo 1995; Chen et al.
1997). The fluid surface is then elevated by com-
puting its height from the pressure field. They an-
imated fluids of various viscosities by varying the
Reynolds number. However, the adoption of an ex-
plicit time integration method leads to potential in-
stabilities unless small timesteps are chosen, which
in turn increases the computational cost. Moreover,
their single-layered two-dimensional approach can-
not easily model liquid flows in a container with
curved boundary, or around an object with cross-
sectional area that varies with depth.
Also worth mentioning are commercial fluid simula-
tors that are based on the Navier–Stokes equations.
One example is RealWave by Next Limit S.L. Real-
Wave tracks the propagation of gravitational waves
on a mesh, and simulates liquid surfaces like the
sea. It solves the simplified Navier–Stokes equations,
with a simulated viscosity factor, using an explicit
numerical integration scheme. Another example is
Digital NatureTools by Areté Entertainment. In this
model, the ghost fluid method is used to capture
a contact discontinuity in a multiphase incompress-
ible flow (e.g. an air–water interface), and the level
set function is evolved over time (Kang et al. 2000).
Wave motions, including breaking and overturn-
ing waves, have also been investigated and ef-
fectively modelled. Longuet-Higgins and Cokelet
(1975, 1978) proposed a numerical method for fol-
lowing the time history of space-periodic irrotational
surface waves using the velocity potential of marked
fluid particles at the free surface. At each timestep,
an integral equation is solved for the new normal
component of velocity. The number of indepen-
dent variables in the computation is O(N2). In this
formulation, both viscosity and surface tension are
ignored.
By assuming zero viscosity and considering only
two-dimensional motions, an even simpler set of
fluid equations can be derived – the shallow wa-
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Fig. 1. One-dimensional shallow water wave

ter equations, which describe flows of thin layers
of fluids (Haltiner and Williams 1980):
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Here h is the height field and b is the height of the
ground, as shown in Fig. 1. On the thin boundary of
a liquid, the height field and the pressure field are re-
lated by p = gρh. Equations (5) and (6) are derived
from Newton’s second law of motion, whereas equa-
tion (7) is the continuity equation.
The shallow water equations are often adopted in
oceanographic or atmospheric applications for large-
scale global modelling, where the Coriolis force,
induced by the rotation of the Earth, is included.
For animation purposes, however, the Coriolis force
is considered negligible and has been excluded in
the above equations, since it is orders of magni-
tude smaller than other quantities in the equations
and is therefore insignificant except in engineering
applications. The shallow water equations are lim-
ited to the description of two-dimensional inviscid
flows, which means that fluids with high viscosity
cannot be modelled, and that the fluids cannot splash
or break. Nonetheless, these equations adequately
model a reasonably large class of fluid motions, and
we thus choose to base our animation model on the
shallow water equations.

In order for the simulation to be stable for large
timesteps, an implicit time integration scheme should
be used. However, the nonlinear advection terms in
the equations (the second and third terms) render the
system nontrivial to solve. Kass and Miller (1990)
proposed a solution to this problem by assuming
that water speed varied slowly in space, and solved
in real time the following linearized shallow water
equations:
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where d = h − b is the water depth. In Sect. 4 we
compare and analyse the efficiency of our model and
that of Kass and Miller.
Khan (1994) proposed a kinematic model for ani-
mating wakes created by a ship moving along an
arbitrary course. Instead of using the dynamic solu-
tion of a free-surface problem, the model superim-
poses circular waves emanating from points along
the ship’s path to determine the wake profile.
As one of the first attempts at modelling water
waves, Fournier and Reeves (1986) presented a sim-
ple model, based on two-dimensional wave equa-
tions, for animating breaking waves near a sloping
beach. Peachey (1986) presented a similar approach.
However, their models lack predictability as wave
motions need to be determined a priori, and user-
introduced perturbations may not be handled easily.
This means that it may be difficult to build interactive
applications from their models, and motions such as
those resulting from an object dropping into water
cannot be simulated.

3 The model

3.1 The shallow water equations

The goal of this paper is to construct a physically
based model for the realistic and interactive-rate sim-
ulation of ocean dynamics. We choose to base our
model on the nonlinear shallow water equations,
with which predictions can be made of the ways
the water height (h) changes with time. The cou-
pled equations are integrated in time using the im-
plicit semi-Lagrangian method, which is described
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in Sect. 3.2. Unlike the explicit Euler integration
scheme, the implicit semi-Lagrangian method inte-
grates along particle trajectories and is thus stable for
large timesteps. Moreover, the nonlinear advection
terms can be handled easily. Since in our algorithm
the water speed is computed for each timestep, sim-
ulations can also be done for objects drifting on the
water surface.

3.2 The implicit semi-Lagrangian time
integration method

The semi-Lagrangian method can be viewed as a hy-
brid between the Eulerian and the Lagrangian ap-
proaches (Durran 1998; Staniforth and Côté 1991).
In an Eulerian advection scheme, the observer stays
at a fixed geographical point as the world, or the
fluid, evolves around him. This scheme retains the
regularity of the mesh as the observer stays fixed,
but requires small timesteps in order to maintain sta-
bility. In a Lagrangian scheme, on the other hand,
the observer watches the world evolve while travel-
ling with a fluid particle. This technique is less re-
stricted by stability requirements and allows larger
timesteps. However, since the fluid particles, initially
regularly spaced, move with time, they usually be-
come irregularly spaced as the system evolves. The
semi-Lagrangian advection scheme attempts to com-
bine the advantages of both schemes – the regularity
of the Eulerian scheme and the enhanced stability of
the Lagrangian scheme – by integrating along par-
ticle trajectories while evaluating target functions at
mesh points at every timestep.
The semi-Lagrangian method was first introduced
in the atmospheric community by Robert (1981). In
most engineering applications, the semi-Lagrangian
method is used in conjunction with the semi-implicit
approach, where the non-advection terms are av-
eraged in time in order to achieve second-order
accuracy. We choose to adopt the relatively sim-
ple implicit approach, which does not involve any
time-averaging but produces only first-order solu-
tions, which should be accurate enough for graphics
applications.
When applied to an advection equation, the semi-
Lagrangian method is equivalent to the classical
method of characteristics (Courant et al. 1952).
However, the semi-Lagrangian method retains its
simplicity and practical utility in more complicated
applications where the characteristics curves may
deviate from the fluid particle trajectories, since the

evolution of the flow continues to be computed fol-
lowing fluid particle trajectories. The method of
characteristics, on the other hand, becomes unwieldy
or impossible in more general problems where the
evolution of the flow along characteristics curves
may be more complicated or characteristics curves
may not even be defined. For the distinction be-
tween the semi-Lagrangian method and the method
of characteristics, we refer interested readers to
Durran (1998).
To show how the shallow water equations can
be integrated by the semi-Lagrangian scheme, we
first consider the one-dimensional shallow water
equations:
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As shown in Fig. 2, the Lagrangian derivatives are
approximated along the trajectories. Imagine a fluid
particle that travels along its trajectory and arrives
at position xi at time tn+1. Then according to the
semi-Lagrangian method, the derivatives are com-
puted from its positions at tn+1, which is xi , and at
tn , which is called the departure point and is marked
as x̃n

i in Fig. 2. Let αn
i be the displacement of a fluid

particle in the time interval from tn to tn+1, ending
at the downstream point xi . For an arbitrary func-
tion ψ(x, t), let ψ̃n denote the corresponding up-
stream function for the time interval from tn to tn+1:
αn

i = xi − x̃n
i . That is, ψ̃n(xi)≡ ψ(xi −αn

i , tn). Thus,
the Lagrangian derivatives are approximated as
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Fig. 2. With the semi-Lagrangian scheme, the Lagrangian
derivative is approximated along particle trajectories

In the above equations, un+1 and hn+1 are evaluated
at grid points at time level tn+1, while ũn and h̃n are
evaluated at departure points at tn . Details for calcu-
lating the trajectories and computing the departure
points can be found in Appendix A.
We make the assumption that water depth (d) is
approximately constant within the time interval
(tn, tn+1). By adopting approximations (16), we dis-
cretize (13) and (14) in time implicitly to yield the
following equations:
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The height of the ground, b, is assumed to be time-
independent, so there is no time-level superscript as-
sociated with it.
The method described above is first-order, in both
time and space, and implicit. The latter implies that
large timesteps can be taken without loss of stabil-
ity. Equations (17) and (18) can be solved by taking

the partial derivative of (17) with respect to x, and
then using the resulting equation and (17) to elimi-
nate the ∂un+1/∂x and un+1 terms from (18) to yield
a Helmholtz equation in hn+1 only:
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Spatially discretizing the above equation using cen-
tred difference yields the following tridiagonal sys-
tem, of which the solution is the new height field:
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3.2.1 The two-dimensional case

In two dimensions, the time-discretized shallow wa-
ter equations take the following form:

un+1 − ũn
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As in the one-dimensional case, we take the appro-
priate spatial derivatives of (21) and (22) and elim-
inate the divergence term from (23). The resulting
Helmholtz equation in h is
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This is then spatially discretized to become
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which is solved with the conjugate gradient method
(Hestenes and Stiefel 1952). Water speed un+1 and
vn+1 can be updated by back-substituting hn+1 into
(21) and (22).
The wave simulation algorithm is summarized below:
1. Initialize h0, u0, v0 and b.
2. For each timestep tn+1 do:

i. Compute departure points using equation (31).
ii. Compute h, u and v at departure points using

equation (32).
iii. Solve equation (25) for hn+1.
iv. Update un+1 and vn+1 with equations (21)

and (22).

4 Applications and analysis

4.1 Examples

Various types of fluid movements can be animated.
In the first example, we implemented a real-time
simulation of water waves in a rectangular pool, us-
ing fixed and non-reflective boundary conditions;1

the frames, shown in Fig. 3, are taken at 1 s inter-
vals. The animations are rendered interactively using
OpenGL, although off-line raytracing could also be
applied to correctly model refraction effects as well

1 Reflected waves are implicitly modelled by the boundary con-
ditions, as in the real world.

as caustics cast on the bottom of the pool. Since our
model is physically based, we need only supply it
with a set of initial conditions (i.e. the shape of the
water surface at the start of the simulation) for the
waves to evolve naturally according to the shallow
water equations.
All simulations were performed on a 600 MHz Pen-
tium III processor with 128 MB of RAM. A square
grid measuring 100 m on each edge and with a depth
(b) of 10 m was used. A timestep of ∆t =0.1 s was
used and the simulations were run for 5 min. For
a 40 × 40 and a 80 × 80 grid, the simulations took
12.5 s and 55.7 s, respectively, assuming no display.
Run times with interactively rendered display de-
pend on the display hardware as well as the display
timestep.
Objects drifting with the water can also be animated,
as the water speed is computed explicitly in our algo-
rithm. Let (pn

x, pn
y) denote the position of the floating

object at time tn . Then its position at tn+1 is given by

pn+1
x = pn

x +un(pn
x, pn

y)∆t, (26)

pn+1
y = pn

y +vn(pn
x, pn

y)∆t. (27)

If (pn
x, pn

y) is not one of the grid points, then un and
vn can be approximated with linear interpolation as
in (32). In this model, the interaction of objects with
the water is “one-way” in that the objects are affected
by the motions of the water, but not vice versa. Thus,
physical effects such as wave diffraction and radia-
tion are not captured. This simplification is valid as
long as the characteristic lengths of the objects are
small compared to the wavelength.
We also include examples to demonstrate the ability
of our algorithm to handle non-trivial boundary con-
ditions. In one example, shown in Fig. 4, blocks of
various shapes are placed in the pool; in another ex-
ample, water waves are animated in a triangular pool.
In our implementation, we constrain the perpendicu-
lar component of the water velocity to be zero at the
walls. Specifically, the grid points along a wall which
runs north–south should have zero east–west veloci-
ties, and vice versa. For concave corners, such as the
four corners of a rectangular pool, all the velocities
are set to zero. For a convex corner, such as the cor-
ner of a rectangular block surrounded by water, the
component of the velocity incident to the corner at
a 45◦ angle is set to zero. Homogeneous Neumann
conditions are imposed on the water height at the
boundaries; that is, we assume that the water height
does not change across the boundaries.
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a b

c d

e f

Fig. 3a–f. Simulation of water waves in a rectangular pool. a First frame; b second frame; c third frame; d fourth frame; e fifth
frame; f sixth frame
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a b

c d

e f

Fig. 4a–f. An example of wave animation with non-trivial boundary conditions. a First frame; b second frame; c third frame;
d fourth frame; e fifth frame; f sixth frame
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4.2 Solution stability and accuracy

Explicit time integration methods, because of their
simplicity, were used in many implementations of
fluid models (Chen and Lobo 1995; Chen et al. 1997;
Foster and Metaxas 1996). However, the major dis-
advantage of explicit integration methods is that a se-
vere restriction is imposed on the timestep size. In
other words, unless a very small timestep is chosen,
the numerical solution may diverge exponentially
from the true solution.
By choosing an implicit integration method, we
ensure that stability is not restricted by the mag-
nitude of the gradient terms (the second and third
terms in (13) and (14), respectively). By adopting
the semi-Lagrangian approach, we also ensure that
the timestep size is not limited by the Courant–
Friedrichs–Lewy (CFL) condition (Durran 1998).
Our algorithm is stable as long as the departure
points are estimated with sufficient accuracy. In
other words, as long as the true departure points
(xi −αn

i ) fall between the two grid points (xm−1
and xm) used in the linear interpolation (32) to es-
timate upstream function values, the integration re-
mains stable. We will avoid a lengthy mathematical
analysis here, but it suffices to say that as long as
the product of the timestep (∆t) and wind sheer
(max(|ux|, |uy|, |vx |, |vy|)) is bounded by some con-
stant, numerical stability is ensured (Pudykiewicz
et al. 1985).
The stability of our algorithm is compared experi-
mentally to an explicit method. Various initial con-
ditions were tested, including examples with a water
drop, an upside-down gauss hill, and a moving wave-
front, and in each case the largest timestep possible
before instability occurred was measured. A numeri-
cal solution is considered unstable when, over a long
period of simulation, it fails to closely resemble the
expected solution, obtained using a small timestep
and a fine spatial grid, or, in our algorithm, the con-
jugate gradient solver does not converge. In all of
our test cases, the maximum timestep obtained for
the implicit semi-Lagrangian method is up to a hun-
dred times larger than that for the explicit method.
With very large timesteps, however, we observe no-
ticeable damping, and the number of iterative steps
required in the conjugate gradient solver becomes
excessive as the initial guess becomes less accurate.
Damping is caused by the implicit nature of the time
integration scheme and by the spatial interpolation
required to estimate the upstream function values.

Nevertheless, this relaxation in timestep restriction
allows much fewer timesteps to be taken for the same
length of simulation, thereby reducing the total com-
putation cost tremendously.
Our model adopts the complete shallow water equa-
tions (without the Coriolis terms) so that the ani-
mations may be natural and realistic. Consequently,
our solution should be more accurate in the physical
sense than that of, say, Kass and Miller (1990), who
based their model on a linearized version of the shal-
low water equations, also without the Coriolis terms.
Our numerical solution is first-order in both time and
space, and, as pointed out earlier in this section, is
relatively stable even for large timesteps.

4.3 Volume and energy conservation

We studied the conservative properties of our algo-
rithm using the test cases mentioned in Sect. 4.2.
Without any addition or removal of water, the total
volume, computed by integrating water depth over
the water domain, should remain constant through-
out the simulation. In all our experiments, the change
in water volume was found to be less than 5%. Since
this variation is small and barely noticeable, we con-
sider it acceptable.
On the other hand, our algorithm does not appear
to conserve energy. The total energy E of the wa-
ter is computed as the square of the magnitude of
its velocity: E = u2 +v2. For a sufficiently long sim-
ulation, the waves eventually dampen out and the
water surface returns to its calm and peaceful state.
At first sight, this seems to be a disappointment,
since there is no damping term in the shallow water
equations, which implies that, once initiated, a wave
should never die out. However, one must also take
into account the effects of spatial interpolation and
the implicit nature of the integration scheme, both of
which introduce numerical damping, which causes
the wave to lose its energy, slow down and eventu-
ally dampen out. This effect actually agrees (though
for different reasons) with our everyday observa-
tion that ripples trapped in a finite pool dampen and
slowly disappear. Moreover, real liquids lose energy
because of their non-zero viscosity. The energy loss
for our simulations occurs for the same reasons that
contribute to the stability of the system: that veloc-
ity values are obtained by interpolating within the
grid neighbourhood and that the integration is im-
plicit. Thus, energy loss is a necessary compromise
for achieving such a stable integration method.
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4.4 Efficiency

In this section we give a simple analysis of the nu-
merical complexity of our algorithm. Most of the ef-
fort of computation goes into solving the Helmholtz
equation (25). Let N be the number of subintervals
in one dimension, and k be the number of iterations
of the conjugate gradient method, employed in solv-
ing (25). By taking advantage of the sparsity of the
matrices, the conjugate gradient method has a com-
plexity of O(N2k) (Saad and Schultz 1986). In all
our simulations, one or two iterations sufficed to at-
tain the level of accuracy desired. Therefore, our al-
gorithm has an overall complexity of O(N2).
We compare the efficiency of our method to that pro-
posed by Kass and Miller (1990). In their work, it
was assumed that water speed varied slowly in space,
allowing for a linearized version of the shallow wa-
ter equations (8)–(10) to be used, one without the
nonlinear advection terms. The equation for h, after
eliminating u and v from the system, takes the form

∂2h

∂t2
= gd

(
∂2h

∂x2
+ ∂2h

∂y2

)
. (28)

The above equation was solved with the alternating
direction implicit (ADI) method. The form of ADI
method presented by Kass and Miller (1990) appears
to be unconventional in that the dependence of h on
x and y is largely uncoupled, as represented by Kass
and Miller’s equations (19) and (20). A conventional
(and improved) version of the ADI algorithm can be
described as follows:
For k = 1, 2, . . . , until convergence, do:

1. Solve the following equation in the x-direction:

∂2hn+ 1
2 ,[k]

∂t2
− gdn ∂

2hn+ 1
2 ,[k]

∂x2
= gdn ∂

2hn,[k−1]

∂y2
.(29)

2. Using newly computed hn+ 1
2 ,[k], solve the follow-

ing equation in the y-direction:

∂2hn+1,[k]

∂t2
− gdn ∂

2hn+1,[k]

∂y2
= gdn ∂

2hn+ 1
2 ,[k]

∂x2
. (30)

In our study equations (29) and (30) are used in place
of (19) and (20) in Kass and Miller (1990). The linear
systems that are solved in steps 1 and 2 are derived
in Appendix B. When tested on a workstation with
a Sparc Ultra 4 processor, using the same test cases
as those in the stability test in Sect. 4.2, our algo-
rithm was approximately four times as fast as that of

Kass and Miller. This speed-up may be attributed to
the faster convergence rate of the conjugate gradient
method used in our algorithm over the ADI method
chosen by Kass and Miller, and to the fact that only
one linear system is solved in our algorithm, while
two are solved in that of Kass and Miller.
The ADI method also has the disadvantage of be-
ing non-scalable on a parallel machine because of
the global data exchanges involved between the two
ADI steps. Global communication introduces unde-
sirable communication delays, especially when the
number of processors is large. The conjugate gradi-
ent method, on the other hand, is known to be highly
scalable and can therefore be easily implemented
on a parallel machine (Gupta 1995). The semi-
Lagrangian scheme introduces certain complications
to parallel implementation on distributed memory
machines, mainly that the departure points and the
associated downstream points may not lie within the
local memory of the same processor. Nevertheless,
there have been a number of successful parallel im-
plementations of semi-Lagrangian numerical meth-
ods (Malevsky and Thomas 1997; Thomas and Côté
1995; Thomas et al. 1997).

5 Discussion

We have presented a physically based model to an-
imate water waves. The model is capable of pro-
ducing realistic wave motions, and has been shown
to be stable even with large timesteps. Compared
to the model presented by Kass and Miller (1990),
our algorithm uses fewer simplifying assumptions,
since it is based on the complete shallow water equa-
tions (without the Coriolis terms), and is also more
efficient, exhibiting a four-time speed-up in our ex-
periments. With this speed-up, more detailed ocean
scenes may be simulated in real time.
The limitations of our model lie in the fact that the
shallow water equations are restricted to the descrip-
tion of inviscid flows of thin layers of fluids. In other
words, phenomena such as three-dimensional flows,
fluids with high viscosity and breaking waves can-
not be modelled. Nonetheless, our model serves well
in its purpose of modelling gentle ocean waves and
drifting objects.
To address the above limitations, and in part moti-
vated by the efficiency of our integration technique,
we plan to develop a more sophisticated fluid model
based on the Navier–Stokes equations in subsequent
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work. Though the Navier–Stokes equations capture
all fluid motions, there are few real-time applica-
tions that are based on these equations due to their
computational complexity. Current techniques either
fail to achieve interactive rate, or are unstable over
a long simulation with large timesteps (Chen and
Lobo 1995; Chen et al. 1997; Foster and Metaxas
1996). It is therefore our goal to build a fluid simu-
lation model, based on the Navier–Stokes equations,
that is capable of animating fluids with differing vis-
cosities, and turbulent motions in three dimensions.

Appendices

A Trajectory calculations

We describe in detail how the departure points are
computed in Sect. 3.2. In (17) and (18), ũn and h̃n are
evaluated at departure points (xi −αn

i ) at time level
tn in Fig. 5, where αn

i is the displacement of a fluid
particle in the time interval from tn to tn+1, ending
at the downstream point xi . The displacement αn

i can
be computed by integrating (15) backwards in time.
With a first-order approximation,

αn
i = ∆tun(xi). (31)

Note that the departure points are often off-mesh
points. This means that values for ũn and h̃n may
not be known, in which case they are approximated
with linear interpolation. Let xm denote the mth grid
point: xm ≡ m∆x. Suppose xm−1 < xi −αn

i < xm;
then

ũn(xi)≡ un(xi −αn
i )

= (xi−αn
i −xm−1)un(xm)+(xm −xi +αn

i )u
n(xm−1)

∆x
.

(32)

A similar formula can be applied to the height field to
obtain its values at departure points.

B Details of ADI iterations
We will now derive the linear systems that are solved
in steps 1 and 2 of the ADI iterations outlined in
Sect. 4.4. In the formulation of Kass and Miller
(1990), a staggered system is used in which the
height field h is computed on mesh points that are
staggered with respect to those of the wave speed u
and v (see Fig. 1 in Kass and Miller (1990) for an

Fig. 5. An illustration of the semi-Lagrangian time inte-
gration method

illustration). After spatial discretization using a first-
order finite difference method, the shallow water
equations (8)–(10) become

∂ui, j

∂t
= −g

(
hi+1, j −hi, j

∆x

)
, (33)

∂vi, j

∂t
= −g

(
hi, j+1 −hi, j

∆y

)
, (34)

∂hi, j

∂t
=
(

di−1, j +di, j

2∆x

)
ui−1, j −

(
di, j +di+1, j

2∆x

)
ui, j

+
(

di, j−1 +di, j

2∆y

)
vi, j−1 −

(
di, j +di, j+1

2∆y

)
vi, j . (35)

Assuming that the water depth d is constant over
each timestep, we take the time derivative of (35),
eliminate from the resulting equation the dependence
on u and v using (33) and (34), and obtain the follow-
ing differential equation in h:

∂2hi, j

∂t2
= −g

(
di−1, j +di, j

2∆x2

)
(hi, j −hi−1, j)

+ g

(
di, j +di+1, j

2∆x2

)
(hi+1, j −hi, j)

− g

(
di, j−1 +di, j

2∆y2

)
(hi, j −hi, j−1)

+ g

(
di, j +di, j+1

2∆y2

)
(hi, j+1 −hi, j). (36)

The goal of the first ADI subiteration (29) is to march
forward half a timestep using information from pre-
vious time levels n and n − 1. The first and second
time derivatives of the height field h are approxi-
mated as follows:

ḧn+ 1
2 = ḣn+ 1

2 − ḣn

∆t/2
, (37)
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ḣn+ 1
2 = hn+ 1

2 −hn

∆t/2
, (38)

ḣn = hn −hn−1

∆t
. (39)

Combining (36)–(39), we obtain the equation for the
first ADI subiteration:

h
n+ 1

2
i, j + g

(
∆t

2

)2 (di−1, j +di, j

2∆x2

)(
h

n+ 1
2

i, j −h
n+ 1

2
i−1, j

)

− g

(
∆t

2

)2 (di, j +di+1, j

2∆x2

)(
h

n+ 1
2

i+1, j −h
n+ 1

2
i, j

)

= 3

2
hn

i, j −
1

2
hn−1

i, j − g

(
∆t

2

)2 (di, j−1 +di, j

2∆y2

)
× (hn

i, j −hn
i, j−1

)
+ g

(
∆t

2

)2 (di, j +di, j+1

2∆y2

)
(hn

i, j+1 −hn
i, j). (40)

In the second subiteration, we solve for hn+1 using its
values at time levels tn and tn+ 1

2
. The principal equa-

tion for this subiteration can be derived similarly:

hn+1
i, j + g

(
∆t

2

)2 (di, j−1 +di, j

2∆y2

) (
hn+1

i, j −hn+1
i, j−1

)

− g

(
∆t

2

)2 (di, j +di, j+1

2∆y2

) (
hn+1

i, j+1 −hn+1
i, j

)

= 2h
n+ 1

2
i, j −hn

i, j − g

(
∆t

2

)2 (di−1, j +di, j

2∆x2

)

× (hn+ 1
2

i, j −h
n+ 1

2
i−1, j

)
+ g

(
∆t

2

)2 (di, j +di+1, j

2∆x2

)(
h

n+ 1
2

i+1, j −h
n+ 1

2
i, j

)
. (41)

In our experiments, two ADI iterations for each
timestep suffice to produce the desired level of accu-
racy.
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