
Effetive Compression Tehniquesfor Preomputed VisibilityMihiel van de PanneA. James StewartDepartment of Computer Siene, University of Torontofvan,jstewartg�dgp.utoronto.aAbstrat. In rendering large models, it is important to identify the small subsetof primitives that is visible from a given viewpoint. One approah is to partitionthe viewpoint spae into viewpoint ells, and then preompute a visibility tablewhih expliitly reords for eah viewpoint ell whether or not eah primitive ispotentially visible. We propose two algorithms for ompressing suh visibilitytables in order to produe ompat and natural desriptions of potentially�visiblesets. Alternatively, the algorithms an be thought of as tehniques for luster-ing ells and lustering primitives aording to visibility riteria. The algorithmsare tested on three types of senes whih have very different strutures: a ter-rain model, a building model, and a world onsisting of urved tunnels. Theresults show that the natural struture of eah type of sene an automatially beexploited to ahieve a ompat representation of potentially visible sets.1 IntrodutionThe visibility problem is to determinewhih sene elements are visible from a partiularviewpoint. Algorithms that solve this problem are very expensive in time, in memory, orin omplexity. For these reasons, real�time appliationswill often preompute visibilityinformation, store it, and later use it to aelerate rendering.Storage of the preomputed visibility information an require a very large amountof memory. This paper desribes two effetive tehniques to ompress preomputedvisibility information. These tehniques are very general and may be used in applia-tions as varied as arhitetural walkthroughs, terrain �yovers, and tunnel roaming.Tehniques that preompute visibility typially divide spae into regions and de-termine what parts of sene are visible from eah region. This is a ommon strategy:Teller and Sequin [17℄ divide a building into rooms and, for eah room, ompute theother rooms visible from it. Yagel and Ray [19℄ subdivide spae into a regular grid ofells and use a different method to ompute ell�to�ell visibility. Games in maze�likeenvironments often have room�to�room visibility expliitly stored in a table.These tehniques an be thought of as using a very oarse form of lustering toredue memory requirements: By storing ell�to�ell visibility, rather than ell�to�polygon visibility, groups of polygons in the same ell are lustered and do not need tobe exhaustively enumerated.This oarse form of lustering has several drawbaks: polygon lusters are restritedto orrespond one�to�one to viewpoint regions; viewpoint regions themselves are notlustered at all; a polygon luster must be entirely rendered if even a tiny fration ofit is visible; and it is unlear how to reate optimal lusters in less well-struturedenvironments, suh as terrains. 1

In this paper, the spae of viewpoints is divided into small regions and a preom-putation step determines whih polygons are visible from eah region. A boolean vis-ibility table enodes this information: entry (i; j) of the table is TRUE if polygon j ispotentially visible from some point in region i. Given the �ne subdivision of spae andthe possibly large number of polygons, the visibility table is potentially huge.This paper's prinipal ontribution onsists of two methods to ompress the visibil-ity table:� The �rst is a lossy ompression method whih merges viewpoint regions andmerges polygons. This method may onservatively deem a polygon to be visi-ble when in fat it is not. Like all onservative visibility algorithms, this doesnot pose a problem as long as hidden surfae elimination (e.g. Z�buffering) isperformed during rendering.� The seond is a lossless ompression method whih ontruts a graph of view-point and polygon lusters. Visible polygons an be enumerated by performing avery simple traversal of this graph. This lossless method never mistakenly deemsa polygon to be visible when it is not.These ompression methods have several desirable features:� A ombination of the two ompression tehniques yields better ompression thaneither alone.� The level of ompression may be hosen to optimize memory, olusion infor-mation, or some ratio of the two.� These tehniques permit very ef�ient �random aess� deompression: For anypartiular viewpoint region, all visible polygons an be quikly enumerated.� The polygon and viewpoint lusters are automatially adapted in a natural wayto the environment, making this a very general method. For example, in ourexperiments (presented in Setion 6) we disovered:� in terrains, polygons are lustered in separate valleys and on peaks;� in tunnels, viewpoints are lustered in ontiguous tunnel setions; and� in buildings, polygons are lustered around �open orridors� from whih allof the polygons of the luster are visible.The beauty of using the visibility table is that viewpoint lusters and polygon lus-ters may be treated identially: one onsists of a luster of rows, while the other onsistsof a luster of olumns. This observation yields very simple algorithms whih do notneed to know anything about the underlying struture of the viewpoint regions or thesene polygons.2 Related WorkIn work of similar spirit to ours, Yagel and Ray [19℄ preompute visibility informationfor a two�dimensional sene using a regular subdivision of spae. Their prinipal on-tribution is an elegant algorithm to ompute ell�to�ell visibility, but they also suggestlustering ells of similar visibility using riteria like those of our lossy ompressionalgorithm. Wang et al.[18℄ ombine preomputed potentially-visible sets with detailsimpli�ation in regions where the sets beome very large.Most methods that preompute visibility divide the viewpoint spae into ells andompute ell�to�ell visibility. This has the impliit effet of lustering polygons in2

eah ell, whih redues the memory requirement at the ost of not taking advantage ofdetailed visibility information. Teller and Sequin [17℄ divide a building into rooms andompute room�to�room visibility. Coorg and Teller[6℄ exploit the presene of largeoluders to perform olusion ulling for a viewpoint. Cohen-Or et al.[2℄ exploit largeonvex oluders to ompute ell-to-objet visibility. Plantinga[13℄ uses a small set ofeffetive oluders and omputes visual events among the oluders in order to partitionthe viewpoint spae into 2D ells.Coorg and Teller [5℄, Gigus and Malik [7℄, and Cohen-Or and Zadiari[4℄ all ex-ploit features of aspet graphs to produe inremental updates of visibility. Yagel andRay [19℄ also suggest reording only hanges in visibility in order to ompress theirell�to�ell visibility information.Another lass of visibility methods omputes visibility during the rendering proess.Some examples inlude the hierarhial Z�buffer of Meagher [12℄ and of Greene, Kass,and Miller [9℄, the hierarhial overage masks of Greene [8℄, and the hierarhialolusion maps of Zhang et al [20℄. An advantage of these tehniques is that theyan ope with dynami senes. However, these tehniques work best when a set oflarge oluders an rapidly be identi�ed for the urrent viewpoint, whih is not alwayspossible. These tehniques an potentially be used in onjuntion with a ompressedvisibility table, using a table to ahieve the same result as a large oluder.There has also been a substantial amount of work in lustering for global illumi-nation. Hierarhial radiosity [10℄, for example, imposes a hierarhial struture onthe sene surfaes and omputes energy transfer between different nodes in this hier-arhy. An alternative �hierarhy of uniform grids� is desribed by Cazals, Drettakis,and Pueh [1℄. However, the prinipal expense in global illumination lies in determin-ing whether one surfae sees another, and lustering usually ours before visibility isomputed, whih is opposite to what we do when ompressing the visibility table.3 The Visibility TableVisibility is enoded in a boolean table, in whih eah row initially orresponds to oneviewpoint ell and eah olumn initially orreponds to one polygon. The table ideallyenodes the partial visibility: the entry in row i, olumn j is TRUE if and only if polygonj is at least partially visible from some point in ell i. However, our lossy ompressionan allow some olusions to be lost, in whih ase the table will enode a onservativevisibility set[2℄, whih is a superset of the exat partial-visibility set.Any division of viewpoint regions may be used; our experiments used a regularvoxel subdivision of spae. One ould just as well use another subdivision, suh as anot�tree, a binary spae partition, or a k�d tree. Similarly, any division of the sene maybe used; our experiments used single polygons. One ould also pre�luster polygonsmanually, given some knowledge of the sene, or one ould go in the opposite diretion,subdividing very large polygons (e.g. imposters) if it is likely that only a part of thepolygon will be visible at any time.Given a visibility table, rendering is simple: Loate the row orresponding to theregion ontaining the viewpoint and render eah polygon whose orresponding olumnontains the value TRUE. In order that the rendering time be proportional to the numberof visible polygons, eah row of the table an be stored as a linked list of the TRUEentries, or alternatively, the FALSE entries must be run�length enoded. We hoose thelatter. A row is represented by a sequene of integers, where eah integer is the numberof FALSE entries before the next TRUE entry. For example, the sequene 5, 3, 0, 0, 1indiates that TRUE entries our in olumns 5, 9, 10, 11, and 13:3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 . . .The run-length enoding sheme desribed above an be used as a simple low-ost method for storing the visibility table in an easy-to-deode fashion, omparableto onventional sparse-matrix storage tehniques. The job of our ompression algo-rithms is to do muh better than this, and thus our ompression algorithms make use ofthis run-length enoding only as a last step. It is worth remarking that, unlike onven-tional sparse-matrix storage, it would also be possible to run-length enode the non-zero(TRUE) elements, given that there is only one assignable non-zero value. Thus, the se-quene 5, 1, 3, 3, 1, 1, 5, 1 ould indiate that there are 5 FALSE entries, followedby one TRUE entry, 3 FALSE entries, et. In many situations, however, this will beless ompat than simply run-length enoding the FALSE entries, given the expetedsparsity of TRUE entries in densely oluded environments. As well, our ompressiontehniques will �rst produe visibility tables whih are even sparser (but enode thesame information), and then use a run-length enoding step as a �nal ompression step.Experiments have shown a preponderane of short runs of FALSE entries. In orderto enode these runs with little memory, eah run is represented with either one byte orthree bytes: A run of 0 to 254 FALSE entries is enoded with a single byte ontainingthe run length, while a run of 255 to 65535 FALSE entries is enoded with a single byteof 255 followed by two bytes ontaining the run length.Given a set of viewpoint regions and a set of polygons, the initial visibility tablemay be onstruted in any one of many ways. Sine the initial table onstrution is not aontribution of this paper, we use a fairly naive approah that samples visibility using anitem buffer: From several points within eah viewpoint region and from six diretionsaround eah suh point, the sene is rendered into an item buffer in whih eah polygonis assigned a unique olour. A quik traversal of the item buffer determines whihpolygons are visible. One problem with the item buffer method is, of ourse, that itis not onservative: Polygons an be missed due to the limited resolution of the itembuffer and the disrete viewpoint sampling done within the viewpoint region. However,artifats aused by suh missing polygons will, by de�nition, likely be small. Anotherproblem is that it is time onsuming, sine the sene must be rendered many times frommany different viewpoints. For the experiments desribed in Setion 6, the visibilitytables took several hours to ompute using software rendering on 166 Mhz PC. Othermethods may be used to onstrut the initial visibility table using general methods[19,15, 2℄, or methods for spei� environments[16, 3℄.4 Lossy Compression AlgorithmThe lossy ompression algorithm ompresses the visibility table by merging rows andby merging olumns.� Two rows aremerged if they have a similar set of TRUE entries. Themerge deletesthe two old rows and inserts a new row that is the logial OR of the original tworows. This orresponds to merging two viewpoint regions that have similar setsof visible polygons. The merge reates a new meta�region from whih is visiblethe union of the polygons visible from the two original regions. The logialOR maintains onservative visibility: If a polygon was visible from one of theoriginal regions, it is visible from the merged region.� Two olumns are merged if they have a similar set of TRUE entries. The merge4

deletes the two old olumns and inserts a new olumn that is the logial OR orthe original two olumns. This orresponds to merging two polygons that haveidential visibility status in most viewpoint regions. That is, for most viewpointregions either both polygons are visible or neither is visible. The merge reatesa new meta�polygon whih is visible from all regions from whih either one ofthe original polygons was visible. Again, the logial OR maintains onservativevisibility.To determine whih `similar' sets of olumns or rows should be merged, the lossyalgorithm must determine the bene�t and the ost of a potential merge.The bene�t of a merge is equal to the redution in table size. Sine the table is run�length enoded, its size is proportional to the number of TRUE entries and the bene�t ofa merge is equal to the number of TRUE entries that are eliminated.The ost of a merge is equal to the number of olusions that are �lost.� An olu-sion is represented by a FALSE entry, whih indiates that some polygon is oludedfrom viewpoints in some region. An olusion is �lost� whenever the logial OR is ap-plied to two entries of different boolean values, TRUE and FALSE: The result of the ORis TRUE, and the original FALSE value, representing an olusion, is lost. Note that noinformation is lost when two entries of equal value are ORed.If a row or olumn is the result of n prior merges, eah FALSE entry in that row orolumn represents n olusions. If suh a FALSE entry is lost in a merge, the ost is nlost olusions, rather than one. Thus, in order that osts be orretly alulated, eahrow and olumn must reord the number merges of whih it is the result.Our slow greedy algorithm evaluates all pairs of rows and all pairs of olumns,and merges the pair with the largest ratio of bene�t�to�ost. This is repeated until someuser�determined riterion is satis�ed. This algorithm is slow beause eah iterationtakes time quadrati in the number of rows and in the number of olumns. For largesenes with more than a few thousand initial viewpoint regions or initial polygons, theslow algorithm is unusable. However, the good feature of the slow algorithm is thatit performs progressive ompression, thereby allowing ontrol over the ompromisebetween lost olusions and table size. A user might express their desired ompromisein terms of a target table size or a limit on the perentage of lost olusions. We use thelatter in our experiments, stopping the lossy ompression when 5% of olusions havebeen lost.An alternative fast greedy algorithm is used in pratie, as follows: A �xed fra-tion of the rows are hosen as �seed rows.� Eah remaining �non�seed row� is testedagainst eah seed row and is merged with the seed row of maximum bene�t�to�ostratio. A similar proedure is then performed with the resulting olumns. In pratie,we hoose the seed rows using a regular sampling pattern. If the list of sene primitiveshas some struture, as we might expet, then this helps to distribute the seed rows in anequitable fashion around the sene. The fast greedy algorithm produes exellent om-pression and was used in all the lossy ompression experiments reported in Setion 6.5 Lossless Compression AlgorithmAn alternative ompression algorithm an take advantage of loally-similar but globally-dissimilar visibility relationships. For example, viewpoints loated in the hallway of abuilding all share the visibility of a room at the end of the hallway, but they may notshare the visibility of rooms loated along the hallway. Similar senarios also ourin non-arhitetural senes, as will be illustrated by the experimental results. In terms5

of the visibility table, these situations orrespond to rows or olumns that share a largenumber of TRUE values, but that are not merged by the lossy algorithm beause theyalso differ in a large number of other entries (i.e. their merge ost is too high). Thelossless ompression algorithm, identi�es these situations and merges only part of therow or olumn.The lossless ompression algorithm operates as follows (refer to Figure 1):1. Find a set, V , of viewpoints regions that have a set, P , of visible polygons inommon. Pik the set to maximize the produt of the ardinalities: jV j � jP j.2. Create a single polygon luster onsisting of the polygons of P and alloate forit a new olumn in the visibility table. Sine the polygon luster is visible fromeah of the viewpoint regions in V , the new olumn has a TRUE value in eahrow orresponding to a region in V .3. Symmetrially, reate a single region luster onsisting of the viewpoint regionsof V and alloate for it a new row in the visibility table. Sine the region lustersees all of the polygons in P , the new row has a TRUE value in eah olumnorresponding to a polygon in P .4. Set to FALSE all entries in the intersetion of the rows and olumns of V and P .(These entries are made redundant with the addition of the new row and olumn.)5. Repeat with new V and P until no lusters remain above some user�de�ned size.There is no ost to this operation, sine no olusions are lost. The bene�t is thatthe visibility table beomes sparser. For a given luster, the bene�t an be omputed asthe number of TRUE entries whih beome FALSE, minus the number of TRUE entriesreated in the new row and new olumn. If jV j and jP j are the ardinalities of V andP , respetively, then the bene�t is j V j � jP j � j V j � jP j. By inluding the newregion and polygon lusters as a new row and new olumn of the table, these lustersan partiipate in subsequent merges, as shown in Figures 1(b) and 1().To determine whih polygons are visible from a partiular viewpoint region, theorresponding row of the visibility table is traversed, just as it is done with the lossy�ompressed table. However, if (on that row) a TRUE entry is enountered in someolumn, j, and if olumn j orresponds to a polygon luster rather than to a singlepolygon, then a reursive traversal of row j is performed. (It is easy to distinguish theluster olumns, sine they all appear to the right of the rightmost polygon olumn.)It is interesting to note that the same traversal may be performedwith the roles of therows and olumns reversed (i.e. traverse eah olumn). In this ase, we enumerate allviewpoint regions that see a partiular polygon. This symmetry is evident in Figure 1.For example, polygon is visible from regions 0, 1, and 3.6 Experimental ResultsOur experiments applied both types of ompression, as well as their ombination, tothree types of senes. These senes were hosen for their dissimilar strutures in orderto illustrate the generality of our method and to show that the ompression tehniquesautomatially exploit the natural struture of eah sene in order to yield ompat vis-ibility desriptions. We �rst motivate the hoie of eah dataset or sene and thenprovide a summary of the key properties of eah sene.The terrain dataset is shown in Figure 2 and was proedurally generated using aniterative subdivide-and-displae approximation of a fratal terrain. The existene ofolusion-ulling tehniques spei� to terrains [14℄ motivated the hoie of this ex-ample, as well as the large number of simulation and gaming appliations that involve6

a b d e f0 1 1 1 1 0 11 1 1 1 1 1 12 1 1 0 1 0 13 0 1 1 1 0 1 �!Cluster � a b d e f �0 0 0 0 0 0 0 11 0 0 0 0 1 0 12 1 1 0 1 0 1 03 0 1 1 1 0 1 0� 1 1 1 1 0 1 0(a)a b d e f �0 0 0 0 0 0 0 11 0 0 0 0 1 0 12 1 1 0 1 0 1 03 0 1 1 1 0 1 0� 1 1 1 1 0 1 0 �!Cluster � a b d e f � �0 0 0 0 0 0 0 1 01 0 0 0 0 1 0 1 02 1 0 0 0 0 0 0 13 0 0 1 0 0 0 0 1� 1 0 1 0 0 0 0 1� 0 1 0 1 0 1 0 0(b)
()Fig. 1. An example of the lossless lustering algorithm, where letters denote polygons anddigits denote viewpoint regions. (a) The visibility table is modi�ed when a luster, �, is re-ated, onsisting of f0; 1g � fa; b; ; d; fg. (b) A seond luster, �, is reated, onsisting off2; 3; �g � fb; d; fg. Inluded in � are the viewpoint regions of luster �, but not the polygonsof luster �. () An alternative representation of the visibility table, where a line direted upwardfrom i to j orresponds to TRUE entry in row i, olumn j of the visibility table. To enumerate thepolygons visible in a region, i, all upward paths from i are followed. For lustered tables, thesepaths traverse intermediate lusters, suh as � and � in the rightmost graph. For example, thepolygons visible from viewpoint region 3 are b, , d, and f. All polygons are visible from region1.
7

(a) (b) () (d)Fig. 2. The terrain dataset. (a) primitives (b) voxel grid de�ning the viewpoint ells () plan viewof terrain (d) plan view of visible set for a partiular viewpoint.
(a) (b) () (d)Fig. 3. The tunnels dataset. (a) exterior view (b) voxelization used for the viewpoint ells ()interior view with diffuse lighting (d) exterior view of visible set for the viewpoint used in ().moving on or over terrains. In our example we deal spei�ally with voxel�to�primitivevisibility, as one might use in a �ight simulator. Other appliations whih restrit theviewpoint to the surfae, suh as in driving or walking simulations, would do better touse a 2D surfae parameterization of the viewpoint spae instead of a volumetri pa-rameterization. The viewing spae is divided into a 10� 10� 8 set of voxels, as shownin Figure 2(b). Viewpoints below the terrain surfae are treated as having a ompletelyoluded view of the world.Our seond test sene onsists of a set of winding tunnels, as shown in Figure 3.This dataset was motivated by appliations suh as olonosopy [11℄. The voxeliza-tion is onstruted proedurally from the boundary representation of the tunnels. Theviewpoint ell whih ontains a given viewpoint an be quikly loated by omputinga unique voxel ID based on the quantized xyz oordinates of the viewpoint, and thenusing a hash table indexed by this ID. This avoids alloating voxel storage for the largevolume of spae outside of the tunnel system, under the assumption that the viewpointshould always remain within the tunnels. Viewpoints that are outside the tunnel walls� even if they are inside ells that straddle the walls � are onsidered to see nothing,so treatment of straddling ells requires some are.Lastly, we hoose a building �oorplan as a dataset, as shown in Figure 4. The�oorplan exists on a 10 � 17 unit grid. All wall segments are broken into primitives,eah no longer than 1 unit in length. The viewpoint ells onsist of 1 � 1 unit squareson the grid. These are shematially illustrated in Figure 4(b). The sene is onstrutedas a 3D model, although the 2D �oorplan effetively ontains all the information aboutthe struture of the sene. Eah wall is double�sided.The key properties that haraterize eah of the three example senes are given inTable 1. Some details of this table bear further explanation. The maximum olusionin the terrain and tunnel senes is 100%, as some viewpoint ells are loated below theterrain surfae or outside the tunnel wall. The dataset size assumes an unompressed8

(a) (b) ()Fig. 4. The rooms dataset. (a) plan view (b) plan view showing voxels () plan view showingprimitivessene properties terrain tunnels rooms# viewpoint ells 800 1275 170# primitives 1217 4166 242mean olusion 84% 82% 90%min, max olusion 48%, 100% 70%, 100% 80%, 94%data set size 15 kB 50 kB 10 kBunompressed table size 122 kB 664 kB 5.3 kBtable size, gzip 26 kB 64 kB 1.2 kBlossy ompressionredution applied 2p, 2v 10p, 5v 200gtable size (ompression) 22.1 kB (5.5�) 23 kB (29�) 0.2 kB (27�)lossless ompression# lusters 2000 2000 100table size (ompression) 28.5 kB (4.3�) 95 kB (7.0�) 1.3 kB (4.1�)lossless ompressiontable size (ompression) 6.1 kB (20�) 4.4 kB (151�) 0.1 kB (53�)% of original table size (gzip) 5% (21%) 0.7% (10%) 2% (23%)% of dataset size (gzip) 41% (173%) 9% (128%) 1% (12%)Table 1. Experimental Data and Resultsrepresentation of an indexed�vertex representation of the geometry. An xyz vertextriple is assumed to be represented in 12 bytes, while an index is assumed to be storedas a 4�byte integer. The raw table size assumes a binary representation of the visibilitytable. The run�length enoded versions of the raw table are omparable in size to thebinary�enoded raw tables for our examples.We use gzip to provide a simple point of omparison for our ompression teh-niques. In pratie, the requirement for random aess to the rows in order to answervisibility queries means that individual rows should be ompressed instead of the entiretable. We use gzip as applied to the entire table as an upper bound on the performaneof a row�based ompression algorithm. It should also be noted that a further advantageof our ompression shemes is that they produe enumerated lists of visible primitives,unlike binary ompression algorithms whih only reprodue the original rows of thevisibility table. Lastly, we note that gzip is only a `fair' omparison for the losslessompression algorithm. 9

6.1 Lossy Compression ResultsThe ompression tests we apply to the test senes are (1) lossy ompression, (2) losslessompression, and (3) lossy ompression followed by lossless ompression. We �rstlook at how lossy ompression performs on the datasets. The results are summarized inTable 1, where the notation 10p, 5v means that the number of primitives was reduedby a fator of 10 and the number of viewpoint ells was redued by a fator of 5. In allases, the lossy lustering proedure was ontinued until 5% of the olusions presentin the original visibility table were lost. The fast greedy algorithm was applied in thease of the terrain and tunnels datasets beause of their size. The slow greedy algorithmould be applied to the room sene (for 200 iterations) beause of its small size. In allases, the lossy ompression took less than 20 minutes to omplete as omputed on a166 MHz PC.The results show that the lossy ompression sheme an redue the size of the pre-omputed visibility table by a fator of 29 for the well�strutured tunnel sene. It alsodoes very well on the rooms sene (27� ompression), although not as well for theless�strutured terrain sene (5.5�). Figure 5(a) (see olor plates) shows the lusterswhih are formed for the terrain sene, resulting from reduing the number of primi-tives by a fator of 30, showing a plan view on the left, and an interior view on the right.Clusters typially onsist of onneted polygons, although this adjaeny informationis not expliitly present in the raw visibility table. As well, lusters tend to be basedon mountain faes and valleys. The lusters produed for the tunnel sene, shown inFigure 5(b) show similar behaviors, reating a pathwork overage of the tunnel walls.We do not show the viewpoint lusters for the terrain and tunnel senes, as they aredif�ult to depit, given their 3D nature.The viewpoint lusters formed for the room sene, shown in Figure 5() are mainlybased on individual rooms, as one might intuitively expet. The primitive lusters aresimilarly organized. The two �gures on the right illustrate examples of the lost o-lusions that arise during the lossy ompression. The viewpoint is indiated as a bluedot, while the blue wall segments indiate the original minimal�size PVS. The red wallsegments indiate the additions made to the PVS in the interest of obtaining good om-pression.6.2 Lossless Compression ResultsThe results for lossless ompression are shown in Table 1 and Figure 6. Lossless lus-tering by itself produes ompression fators of between 4 and 7. These results areomparable to gzip, keeping in mind that gzip is not amenable to the random�aessand fast enumeration requirements of visibility appliations.The lusters formed by the lossless ompression algorithm have a different struturethan those of the lossy ompression, as shown in Figure 6 (see olor plates). Clustersformed early on appear high in the luster hierarhy and result in the largest storageredutions. We illustrate some of these lusters in Figure 6 for the three test senes.In Figure 6(a), the same luster is shown twie; �rst in a plan view and then in a sideview. Although the luster looks to be an unlikely agglomeration of primitives in theplan view, the side view reveals that it is really a group of primitives faing a parti-ular diretion, and hene onsistently visible as a group from a partiular (large) setof viewpoints. The important lusters for the tunnel sene, shown in Figure 6(b), tendto be oherent ylindrial regions of the tunnels, although the lusters do not provideompletely ontinuous overage, as evident from the �holes.� The appearane of theseholes is unintuitive to us. The rooms dataset provides results having an intuitive inter-10

pretation, as shown in Figure 6(). The �gure on the left shows a luster whih groupstogether the primitives in a room. The remaining two lusters illustrate distributed lus-ters whih effetively apture partiular `visibility orridors' within the sene.6.3 Combining Lossy and Lossless CompressionAn interesting harateristi of the lossy and lossless ompression tehniques is thatthey appear to operate in orthogonal fashions. The results of following lossy ompres-sion with lossless ompression are given in Table 1. The olusions whih are `lost'when using the ombination of tehniques are the same as those whih are lost usingthe lossy tehnique alone. The ompression ratios ahieved for the terrain and tunnelssenes are approximately the produt of the ompression ratios ahievable by eah teh-nique alone. For all three datasets, the ombined ompression performs 4 to 10 timesbetter than gzip. More interestingly, the �nal ompressed visibility table, only amountsto a small perentage of the storage spae required for the unompressed dataset geom-etry.There are several aveats to be stated about Table 1. The rooms example has 3Dgeometry but a 2D visibility problem, and therefore the storage ost for the preom-puted visibility is small when ompared to the storage ost for the dataset geometry.The tunnels dataset is perhaps the most onvining result, storing 95% of the olu-sion relationships with a memory ost of 9% of the unompressed dataset geometry.However, this kind of results is probably restrited to senes whih have well struturedvisibility oherene. A last aveat is that any implementation that must deode the ta-ble must also build assoiated indexing data strutures suh as the hash table requiredfor the tunnel sene in order to ef�iently loate the viewpoint ell, given a partiu-lar viewpoint. These additional data strutures ould potentially double or triple thestorage osts given in Table 1, although we have not yet evaluated their average osts.Nevertheless, the results show that remarkably little storage spae is needed to enodepreomputed visibility information.7 Summary and DisussionPreomputed visibility information an be used to answer the question �What is visiblefrom this viewpoint?� The algorithms presented in this paper address a new problem (tothe best of our knowledge): How an preomputed visibility information be ef�ientlyompressed? Experimental results show that the proposed algorithms are effetive forthree very different types of datasets: a terrain, a series of winding tunnels, and a build-ing interior. The result is a near�optimal method of olusion ulling whih has lowstorage ost and whih permits fast, random�aess enumeration of visible primitives.We propose a variety of future work whih would extend these tehniques to newappliation domains as well as addressing some aveats in their use.� Salability is an important issue. Large senes likely need to be takled with atop�down divide�and�onquer approah, in addition to the bottom�up approahproposed thus far.� The ompromise between storage ost and lost olusions needs to be exploredin terms of a trade-off between rendering time and storage ost.� The viewpoint spae ould be expanded to inlude the viewing diretion. Thetehnique ould also be applied to ef�iently store voxel�to�voxel visibility.� Models of the rendering ost ould be inorporated into the lustering riteria.11

Referenes1. Frédéri Cazals, George Drettakis, and Claude Pueh. Filtering, lustering and hierarhyonstrution: a new solution for ray-traing omplex senes. Computer Graphis Forum,14(3):371�382, August 1995. Proeedings of Eurographis '95. ISSN 1067-7055.2. D. Cohen-Or, G. Fibih, D. Halperin, and E. Zadiario. Conservative visibility and strongolusion for viewspae partitioning of densely oluded senes. 1998.3. D. Cohen-Or and A. Shaked. Visibility and dead-zones in digital terrain maps. ComputerGraphis Forum, 14(3):C/171�C/180, September 1995.4. D. Cohen-Or and E. Zadiario. Visibility streaming for network-based walkthroughs. InProeedings of Graphis Interfae '98, 1998.5. Satyan Coorg and Seth Teller. Temporally oherent onservative visibility. In Proeedings ofthe Twelfth Annual Symposium On Computational Geometry (ISG '96), pages 78�87, NewYork, May 1996. ACM Press.6. Satyan Coorg and Seth Teller. Real-time olusion ulling for models with large oluders.In Proeedings of the 1997 Symposium on 3D Interative Graphis, 1997.7. Z. Gigus and J. Malik. Computing the aspet graph for the line drawings of polyhedralobjets. IEEE Trans. Pattern Analysis and Mahine Intelligene, 12(2), February 1990.8. N. Greene. Hierarhial polygon tiling with overage masks. Computer Graphis, 30(An-nual Conferene Series):65�74, 1996.9. N. Greene, M. Kass, and G. Miller. Hierarhial Z-buffer visibility. In Computer Graphis(SIGGRAPH '93 Proeedings), 1993.10. Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarhial radiosity algorithm.Computer Graphis (SIGGRAPH '91 Proeedings), 25(4):197�206, July 1991.11. Lihan Hong, Shigeru Muraki, Arie Kaufman, Dirk Bartz, and Taosong He. Virtual voyage:Interative navigation in the human olon. In Turner Whitted, editor, SIGGRAPH 97 Con-ferene Proeedings, Annual Conferene Series, pages 27�34. ACM SIGGRAPH, AddisonWesley, August 1997.12. Donald J. Meagher. Ef�ient syntheti image generation of arbitrary 3�D objets. In Pro-eedings of the IEEE Conferene on Pattern Reognition and Image Proessing, pages 473�478, June 1982.13. H. Plantinga. Conservative visibility preproessing for ef�ient walkthroughs of 3d senes.In Proeedings of Graphis Interfae '93, pages 166�173, 1993.14. A. James Stewart. Fast horizon omputation at all points of a terrain with visibility andshading appliations. IEEE Transations on Visualization and Computer Graphis, 4(1):82�93, Marh 1998.15. Seth Teller and Pat Hanrahan. Global visibility algorithms for illumination omputations. InComputer Graphis Proeedings, Annual Conferene Series, 1993, pages 239�246, 1993.16. Seth J. Teller. Computing the antipenumbra of an area light soure. In Computer Graphis(SIGGRAPH '92 Proeedings), volume 26, pages 139�148, July 1992.17. Seth J. Teller and Carlo H. Séquin. Visibility preproessing for interative walkthroughs.In Thomas W. Sederberg, editor, Computer Graphis (SIGGRAPH '91 Proeedings), vol-ume 25, pages 61�69, July 1991.18. Y. Wang, H. Bao, and Q. Peng. Aelerated walkthroughs of virtual environments basedon visibility preproessing and simpli�ation. Computer Graphis Forum (Eurographis 98issue), 17(3):187�194, 1998.19. R. Yagel and W. Ray. Visibility omputation for ef�ient walkthrough of omplex environ-ments. Presene, 5(1):45�60, 1995.20. H. Zhang, D. Manoha, T. Hudson, and Kenneth E. Hoff III. Visibility ulling using hierar-hial olusion maps. In SIGGRAPH 97 Conferene Proeedings.
12

(a)
(b)
()Fig. 5. Clustering resulting from lossy ompression. (a) terrain dataset (b) tunnels dataset ()rooms dataset
(a)
(b)
()Fig. 6. Clustering resulting from lossless ompression. (a) terrain dataset (b) tunnels dataset ()rooms dataset 13

