Effective Compression Techniques
for Precomputed Visibility

Michiel van de Panne
A. James Stewart

Department of Computer Science, University of Toronto
{van, jstewart}@dgp.utoronto.ca

Abstract. In rendering large models, it is important to identify the small subset
of primitives that is visible from a given viewpoint. One approach is to partition
the viewpoint space into viewpoint cells, and then precompute a visibility table
which explicitly records for each viewpoint cell whether or not each primitive is
potentially visible. We propose two algorithms for compressing such visibility
tables in order to produce compact and natural descriptions of potentially—visible
sets. Alternatively, the algorithms can be thought of as techniques for cluster-
ing cells and clustering primitives according to visibility criteria. The algorithms
are tested on three types of scenes which have very different structures: a ter-
rain model, a building model, and a world consisting of curved tunnels. The
results show that the natural structure of each type of scene can automatically be
exploited to achieve a compact representation of potentially visible sets.

1 Introduction

The visibility problem is to determine which scene elements are visible from a particular
viewpoint. Algorithms that solve this problem are very expensive in time, in memory, or
in complexity. For these reasons, real-time applications will often precompute visibility
information, store it, and later use it to accelerate rendering.

Storage of the precomputed visibility information can require a very large amount
of memory. This paper describes two effective techniques to compress precomputed
visibility information. These techniques are very general and may be used in applica-
tions as varied as architectural walkthroughs, terrain flyovers, and tunnel roaming.

Techniques that precompute visibility typically divide space into regions and de-
termine what parts of scene are visible from each region. This is a common strategy:
Teller and Sequin [17] divide a building into rooms and, for each room, compute the
other rooms visible from it. Yagel and Ray [19] subdivide space into a regular grid of
cells and use a different method to compute cell-to—cell visibility. Games in maze-like
environments often have room—to—room visibility explicitly stored in a table.

These techniques can be thought of as using a very coarse form of clustering to
reduce memory requirements: By storing cell-to—cell visibility, rather than cell-to—
polygon visibility, groups of polygons in the same cell are clustered and do not need to
be exhaustively enumerated.

This coarse form of clustering has several drawbacks: polygon clusters are restricted
to correspond one—to—one to viewpoint regions; viewpoint regions themselves are not
clustered at all; a polygon cluster must be entirely rendered if even a tiny fraction of
it is visible; and it is unclear how to create optimal clusters in less well-structured
environments, such as terrains.

In this paper, the space of viewpoints is divided into small regions and a precom-
putation step determines which polygons are visible from each region. A boolean vis-
ibility table encodes this information: entry (i, j) of the table is TRUE if polygon j is
potentially visible from some point in region i. Given the fine subdivision of space and
the possibly large number of polygons, the visibility table is potentially huge.

This paper’s principal contribution consists of two methods to compress the visibil-
ity table:

e The first is a lossy compression method which merges viewpoint regions and
merges polygons. This method may conservatively deem a polygon to be visi-
ble when in fact it is not. Like all conservative visibility algorithms, this does
not pose a problem as long as hidden surface elimination (e.g. Z—buffering) is
performed during rendering.

e The second is a lossless compression method which contructs a graph of view-
point and polygon clusters. Visible polygons can be enumerated by performing a
very simple traversal of this graph. This lossless method never mistakenly deems
a polygon to be visible when it is not.

These compression methods have several desirable features:

e A combination of the two compression techniques yields better compression than
either alone.

e The level of compression may be chosen to optimize memory, occlusion infor-
mation, or some ratio of the two.

e These techniques permit very efficient “random access” decompression: For any
particular viewpoint region, all visible polygons can be quickly enumerated.

e The polygon and viewpoint clusters are automatically adapted in a natural way
to the environment, making this a very general method. For example, in our
experiments (presented in Section 6) we discovered:

— in terrains, polygons are clustered in separate valleys and on peaks;
— in tunnels, viewpoints are clustered in contiguous tunnel sections; and

— in buildings, polygons are clustered around “open corridors” from which all
of the polygons of the cluster are visible.

The beauty of using the visibility table is that viewpoint clusters and polygon clus-
ters may be treated identically: one consists of a cluster of rows, while the other consists
of a cluster of columns. This observation yields very simple algorithms which do not
need to know anything about the underlying structure of the viewpoint regions or the
scene polygons.

2 Related Work

In work of similar spirit to ours, Yagel and Ray [19] precompute visibility information
for a two—dimensional scene using a regular subdivision of space. Their principal con-
tribution is an elegant algorithm to compute cell-to—cell visibility, but they also suggest
clustering cells of similar visibility using criteria like those of our lossy compression
algorithm. Wang et al.[18] combine precomputed potentially-visible sets with detail
simplification in regions where the sets become very large.

Most methods that precompute visibility divide the viewpoint space into cells and
compute cell-to—cell visibility. This has the implicit effect of clustering polygons in

each cell, which reduces the memory requirement at the cost of not taking advantage of
detailed visibility information. Teller and Sequin [17] divide a building into rooms and
compute room—to-room visibility. Coorg and Teller[6] exploit the presence of large
occluders to perform occlusion culling for a viewpoint. Cohen-Or et al.[2] exploit large
convex occluders to compute cell-to-object visibility. Plantinga[13] uses a small set of
effective occluders and computes visual events among the occluders in order to partition
the viewpoint space into 2D cells.

Coorg and Teller [5], Gigus and Malik [7], and Cohen-Or and Zadicari[4] all ex-
ploit features of aspect graphs to produce incremental updates of visibility. Yagel and
Ray [19] also suggest recording only changes in visibility in order to compress their
cell-to—cell visibility information.

Another class of visibility methods computes visibility during the rendering process.
Some examples include the hierarchical Z-buffer of Meagher [12] and of Greene, Kass,
and Miller [9], the hierarchical coverage masks of Greene [8], and the hierarchical
occlusion maps of Zhang et al [20]. An advantage of these techniques is that they
can cope with dynamic scenes. However, these techniques work best when a set of
large occluders can rapidly be identified for the current viewpoint, which is not always
possible. These techniques can potentially be used in conjunction with a compressed
visibility table, using a table to achieve the same result as a large occluder.

There has also been a substantial amount of work in clustering for global illumi-
nation. Hierarchical radiosity [10], for example, imposes a hierarchical structure on
the scene surfaces and computes energy transfer between different nodes in this hier-
archy. An alternative “hierarchy of uniform grids” is described by Cazals, Drettakis,
and Puech [1]. However, the principal expense in global illumination lies in determin-
ing whether one surface sees another, and clustering usually occurs before visibility is
computed, which is opposite to what we do when compressing the visibility table.

3 The Visibility Table

Visibility is encoded in a boolean table, in which each row initially corresponds to one
viewpoint cell and each column initially correponds to one polygon. The table ideally
encodes the partial visibility: the entry in row ¢, column j is TRUE if and only if polygon
J is at least partially visible from some point in cell <. However, our lossy compression
can allow some occlusions to be lost, in which case the table will encode a conservative
visibility set[2], which is a superset of the exact partial-visibility set.

Any division of viewpoint regions may be used; our experiments used a regular
voxel subdivision of space. One could just as well use another subdivision, such as an
oct-tree, a binary space partition, or a k—d tree. Similarly, any division of the scene may
be used; our experiments used single polygons. One could also pre—cluster polygons
manually, given some knowledge of the scene, or one could go in the opposite direction,
subdividing very large polygons (e.g. imposters) if it is likely that only a part of the
polygon will be visible at any time.

Given a visibility table, rendering is simple: I.ocate the row corresponding to the
region containing the viewpoint and render each polygon whose corresponding column
contains the value TRUE. In order that the rendering time be proportional to the number
of visible polygons, each row of the table can be stored as a linked list of the TRUE
entries, or alternatively, the FALSE entries must be run—length encoded. We choose the
latter. A row is represented by a sequence of integers, where each integer is the number
of FALSE entries before the next TRUE entry. For example, the sequence 5, 3, 0, 0, 1
indicates that TRUE entries occur in columns 5, 9, 10, 11, and 13:

0 1 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17

(0T OO O[O T[O[0[O] T[T T[O0]T][0[0[0]0]]

The run-length encoding scheme described above can be used as a simple low-
cost method for storing the visibility table in an easy-to-decode fashion, comparable
to conventional sparse-matrix storage techniques. The job of our compression algo-
rithms is to do much better than this, and thus our compression algorithms make use of
this run-length encoding only as a last step. It is worth remarking that, unlike conven-
tional sparse-matrix storage, it would also be possible to run-length encode the non-zero
(TRUE) elements, given that there is only one assignable non-zero value. Thus, the se-
quence 5, 1, 3, 3, 1, 1, 5, 1 could indicate that there are 5 FALSE entries, followed
by one TRUE entry, 3 FALSE entries, etc. In many situations, however, this will be
less compact than simply run-length encoding the FALSE entries, given the expected
sparsity of TRUE entries in densely occluded environments. As well, our compression
techniques will first produce visibility tables which are even sparser (but encode the
same information), and then use a run-length encoding step as a final compression step.

Experiments have shown a preponderance of short runs of FALSE entries. In order
to encode these runs with little memory, each run is represented with either one byte or
three bytes: A run of O to 254 FALSE entries is encoded with a single byte containing
the run length, while a run of 255 to 65535 FALSE entries is encoded with a single byte
of 255 followed by two bytes containing the run length.

Given a set of viewpoint regions and a set of polygons, the initial visibility table
may be constructed in any one of many ways. Since the initial table construction is not a
contribution of this paper, we use a fairly naive approach that samples visibility using an
item buffer: From several points within each viewpoint region and from six directions
around each such point, the scene is rendered into an item buffer in which each polygon
is assigned a unique colour. A quick traversal of the item buffer determines which
polygons are visible. One problem with the item buffer method is, of course, that it
is not conservative: Polygons can be missed due to the limited resolution of the item
buffer and the discrete viewpoint sampling done within the viewpoint region. However,
artifacts caused by such missing polygons will, by definition, likely be small. Another
problem is that it is time consuming, since the scene must be rendered many times from
many different viewpoints. For the experiments described in Section 6, the visibility
tables took several hours to compute using software rendering on 166 Mhz PC. Other
methods may be used to construct the initial visibility table using general methods[19,
15, 2], or methods for specific environments[16, 3].

4 Lossy Compression Algorithm

The lossy compression algorithm compresses the visibility table by merging rows and
by merging columns.

e Two rows are merged if they have a similar set of TRUE entries. The merge deletes
the two old rows and inserts a new row that is the logical OR of the original two
rows. This corresponds to merging two viewpoint regions that have similar sets
of visible polygons. The merge creates a new meta—region from which is visible
the union of the polygons visible from the two original regions. The logical
OR maintains conservative visibility: If a polygon was visible from one of the
original regions, it is visible from the merged region.

e Two columns are merged if they have a similar set of TRUE entries. The merge

deletes the two old columns and inserts a new column that is the logical OR or
the original two columns. This corresponds to merging two polygons that have
identical visibility status in most viewpoint regions. That is, for most viewpoint
regions either both polygons are visible or neither is visible. The merge creates
a new meta—polygon which is visible from all regions from which either one of
the original polygons was visible. Again, the logical OR maintains conservative
visibility.

To determine which ‘similar’ sets of columns or rows should be merged, the lossy
algorithm must determine the benefit and the cost of a potential merge.

The benefit of a merge is equal to the reduction in table size. Since the table is run—
length encoded, its size is proportional to the number of TRUE entries and the benefit of
a merge is equal to the number of TRUE entries that are eliminated.

The cost of a merge is equal to the number of occlusions that are “lost.”” An occlu-
sion is represented by a FALSE entry, which indicates that some polygon is occluded
from viewpoints in some region. An occlusion is “lost” whenever the logical OR is ap-
plied to two entries of different boolean values, TRUE and FALSE: The result of the OR
is TRUE, and the original FALSE value, representing an occlusion, is lost. Note that no
information is lost when two entries of equal value are ORed.

If a row or column is the result of n prior merges, each FALSE entry in that row or
column represents n occlusions. If such a FALSE entry is lost in a merge, the cost is n
lost occlusions, rather than one. Thus, in order that costs be correctly calculated, each
row and column must record the number merges of which it is the result.

Our slow greedy algorithm evaluates all pairs of rows and all pairs of columns,
and merges the pair with the largest ratio of benefit—to—cost. This is repeated until some
user—determined criterion is satisfied. This algorithm is slow because each iteration
takes time quadratic in the number of rows and in the number of columns. For large
scenes with more than a few thousand initial viewpoint regions or initial polygons, the
slow algorithm is unusable. However, the good feature of the slow algorithm is that
it performs progressive compression, thereby allowing control over the compromise
between lost occlusions and table size. A user might express their desired compromise
in terms of a target table size or a limit on the percentage of lost occlusions. We use the
latter in our experiments, stopping the lossy compression when 5% of occlusions have
been lost.

An alternative fast greedy algorithm is used in practice, as follows: A fixed frac-
tion of the rows are chosen as “seed rows.” Each remaining “non-seed row” is tested
against each seed row and is merged with the seed row of maximum benefit—to—cost
ratio. A similar procedure is then performed with the resulting columns. In practice,
we choose the seed rows using a regular sampling pattern. If the list of scene primitives
has some structure, as we might expect, then this helps to distribute the seed rows in an
equitable fashion around the scene. The fast greedy algorithm produces excellent com-
pression and was used in all the lossy compression experiments reported in Section 6.

5 Lossless Compression Algorithm

An alternative compression algorithm can take advantage of locally-similar but globally-
dissimilar visibility relationships. For example, viewpoints located in the hallway of a
building all share the visibility of a room at the end of the hallway, but they may not
share the visibility of rooms located along the hallway. Similar scenarios also occur
in non-architectural scenes, as will be illustrated by the experimental results. In terms

of the visibility table, these situations correspond to rows or columns that share a large
number of TRUE values, but that are not merged by the lossy algorithm because they
also differ in a large number of other entries (i.e. their merge cost is too high). The
lossless compression algorithm, identifies these situations and merges only part of the
row or column.

The lossless compression algorithm operates as follows (refer to Figure 1):

1. Find a set, V, of viewpoints regions that have a set, P, of visible polygons in
common. Pick the set to maximize the product of the cardinalities: |V | x | P]|.

2. Create a single polygon cluster consisting of the polygons of P and allocate for
it a new column in the visibility table. Since the polygon cluster is visible from
each of the viewpoint regions in V, the new column has a TRUE value in each
row corresponding to a regionin V.

3. Symmetrically, create a single region cluster consisting of the viewpoint regions
of V' and allocate for it a new row in the visibility table. Since the region cluster
sees all of the polygons in P, the new row has a TRUE value in each column
corresponding to a polygon in P.

4. Set to FALSE all entries in the intersection of the rows and columns of V' and P.
(These entries are made redundant with the addition of the new row and column.)

5. Repeat with new V' and P until no clusters remain above some user—defined size.

There is no cost to this operation, since no occlusions are lost. The benefit is that
the visibility table becomes sparser. For a given cluster, the benefit can be computed as
the number of TRUE entries which become FALSE, minus the number of TRUE entries
created in the new row and new column. If | V| and | P| are the cardinalities of V" and
P, respectively, then the benefitis |V | x | P| — |V | — | P|. By including the new
region and polygon clusters as a new row and new column of the table, these clusters
can participate in subsequent merges, as shown in Figures 1(b) and 1(c).

To determine which polygons are visible from a particular viewpoint region, the
corresponding row of the visibility table is traversed, just as it is done with the lossy—
compressed table. However, if (on that row) a TRUE entry is encountered in some
column, j, and if column j corresponds to a polygon cluster rather than to a single
polygon, then a recursive traversal of row j is performed. (It is easy to distinguish the
cluster columns, since they all appear to the right of the rightmost polygon column.)

It is interesting to note that the same traversal may be performed with the roles of the
rows and columns reversed (i.e. traverse each column). In this case, we enumerate all
viewpoint regions that see a particular polygon. This symmetry is evident in Figure 1.
For example, polygon c is visible from regions 0, 1, and 3.

6 Experimental Results

Our experiments applied both types of compression, as well as their combination, to
three types of scenes. These scenes were chosen for their dissimilar structures in order
to illustrate the generality of our method and to show that the compression techniques
automatically exploit the natural structure of each scene in order to yield compact vis-
ibility descriptions. We first motivate the choice of each dataset or scene and then
provide a summary of the key properties of each scene.

The terrain dataset is shown in Figure 2 and was procedurally generated using an
iterative subdivide-and-displace approximation of a fractal terrain. The existence of
occlusion-culling techniques specific to terrains [14] motivated the choice of this ex-
ample, as well as the large number of simulation and gaming applications that involve

la b ¢ d e f la b c d e f «
01 1 1 1 0o 1 0Olo o 0o 0 0 o0 1
I{1 1 1 1 1 1 l1{0o o o o0 1 0 1
211 1 0 1 0 1 . 201 1 0 1 0 1 0
310 1 1 1 0 1 Custera 3]0 1 1 1 0 1 0
a|ll 1 1 1 0 1 0
(a)
la b c d e f « a b ¢c d e f a p
0[0 0 0 0 0 0 1 00 0 0 0 0 0 1 0
l1{0 0 0 O 1 0 1 1{o o o o 1 O 1 O
211 1 0 1 0 1 0 201 0 0 0 0 0 0 1
3]0 1 1 1 0 1 0 Cugers 30 0 1 0 0 0 0 1
all 1 1 1 0 1 0 all 0 1.0 0 0 0 1
Blo 1. 0 1 0 1 0 0
(b)
abcdef abcdef abcdef
p
a o
0123 0123 0123
(©)

Fig. 1. An example of the lossless clustering algorithm, where letters denote polygons and
digits denote viewpoint regions. (a) The visibility table is modified when a cluster, «, is cre-
ated, consisting of {0,1} x {a,b,c,d, f}. (b) A second cluster, 3, is created, consisting of
{2,3,a} x {b,d, f}. Included in 3 are the viewpoint regions of cluster c, but not the polygons
of cluster . (¢) An alternative representation of the visibility table, where a line directed upward
from ¢ to j corresponds to TRUE entry in row ¢, column j of the visibility table. To enumerate the
polygons visible in a region, i, all upward paths from ¢ are followed. For clustered tables, these
paths traverse intermediate clusters, such as o and (3 in the rightmost graph. For example, the
polygons visible from viewpoint region 3 are b, ¢, d, and f. All polygons are visible from region
1.

(c) (d)

Fig. 2. The terrain dataset. (a) primitives (b) voxel grid defining the viewpoint cells (c) plan view
of terrain (d) plan view of visible set for a particular viewpoint.

(a) (b) (d)

Fig. 3. The tunnels dataset. (a) exterior view (b) voxelization used for the viewpoint cells (c)
interior view with diffuse lighting (d) exterior view of visible set for the viewpoint used in (c).

moving on or over terrains. In our example we deal specifically with voxel-to—primitive
visibility, as one might use in a flight simulator. Other applications which restrict the
viewpoint to the surface, such as in driving or walking simulations, would do better to
use a 2D surface parameterization of the viewpoint space instead of a volumetric pa-
rameterization. The viewing space is divided into a 10 x 10 x 8 set of voxels, as shown
in Figure 2(b). Viewpoints below the terrain surface are treated as having a completely
occluded view of the world.

Our second test scene consists of a set of winding tunnels, as shown in Figure 3.
This dataset was motivated by applications such as colonoscopy [11]. The voxeliza-
tion is constructed procedurally from the boundary representation of the tunnels. The
viewpoint cell which contains a given viewpoint can be quickly located by computing
a unique voxel ID based on the quantized zyz coordinates of the viewpoint, and then
using a hash table indexed by this ID. This avoids allocating voxel storage for the large
volume of space outside of the tunnel system, under the assumption that the viewpoint
should always remain within the tunnels. Viewpoints that are outside the tunnel walls
— even if they are inside cells that straddle the walls — are considered to see nothing,
so treatment of straddling cells requires some care.

Lastly, we choose a building floorplan as a dataset, as shown in Figure 4. The
floorplan exists on a 10 x 17 unit grid. All wall segments are broken into primitives,
each no longer than 1 unit in length. The viewpoint cells consist of 1 x 1 unit squares
on the grid. These are schematically illustrated in Figure 4(b). The scene is constructed
as a 3D model, although the 2D floorplan effectively contains all the information about
the structure of the scene. Each wall is double—sided.

The key properties that characterize each of the three example scenes are given in
Table 1. Some details of this table bear further explanation. The maximum occlusion
in the terrain and tunnel scenes is 100%, as some viewpoint cells are located below the
terrain surface or outside the tunnel wall. The dataset size assumes an uncompressed

(a) (b) (©)

Fig. 4. The rooms dataset. (a) plan view (b) plan view showing voxels (c) plan view showing
primitives

scene properties terrain tunnels rooms

viewpoint cells 800 1275 170

primitives 1217 4166 242

mean occlusion 84% 82% 90%

min, max occlusion 48%, 100% 70%, 100% 80%, 94%
data set size 15 kB 50kB 10 kB
uncompressed table size 122 kB 664 kB 5.3kB

table size, gzip 26 kB 64 kB 1.2kB

lossy compression

reduction applied 2p, 2v 10p, 5v 200g

table size (compression) 22.1kB (5.5x) | 23 kB (29x) 0.2kB (27x)
lossless compression

clusters 2000 2000 100

table size (compression) 28.5kB (4.3%x) | 95kB (7.0x) 1.3kB (4.1x)
lossless compression

table size (compression) 6.1 kB (20x) 44kB (151x) | 0.1 kB (53%)
% of original table size (gzip) | 5% (21%) 0.7% (10%) 2% (23%)

% of dataset size (gzip) 41% (173%) 9% (128%) 1% (12%)

Table 1. Experimental Data and Results

representation of an indexed—vertex representation of the geometry. An zyz vertex
triple is assumed to be represented in 12 bytes, while an index is assumed to be stored
as a 4-byte integer. The raw table size assumes a binary representation of the visibility
table. The run—length encoded versions of the raw table are comparable in size to the
binary—encoded raw tables for our examples.

We use gzip to provide a simple point of comparison for our compression tech-
niques. In practice, the requirement for random access to the rows in order to answer
visibility queries means that individual rows should be compressed instead of the entire
table. We use gzip as applied to the entire table as an upper bound on the performance
of a row—based compression algorithm. It should also be noted that a further advantage
of our compression schemes is that they produce enumerated lists of visible primitives,
unlike binary compression algorithms which only reproduce the original rows of the
visibility table. Lastly, we note that gzip is only a ‘fair’ comparison for the lossless
compression algorithm.

6.1 Lossy Compression Results

The compression tests we apply to the test scenes are (1) lossy compression, (2) lossless
compression, and (3) lossy compression followed by lossless compression. We first
look at how lossy compression performs on the datasets. The results are summarized in
Table 1, where the notation 10p, 5v means that the number of primitives was reduced
by a factor of 10 and the number of viewpoint cells was reduced by a factor of 5. In all
cases, the lossy clustering procedure was continued until 5% of the occlusions present
in the original visibility table were lost. The fast greedy algorithm was applied in the
case of the terrain and tunnels datasets because of their size. The slow greedy algorithm
could be applied to the room scene (for 200 iterations) because of its small size. In all
cases, the lossy compression took less than 20 minutes to complete as computed on a
166 MHz PC.

The results show that the lossy compression scheme can reduce the size of the pre-
computed visibility table by a factor of 29 for the well-structured tunnel scene. It also
does very well on the rooms scene (27 x compression), although not as well for the
less—structured terrain scene (5.5x). Figure 5(a) (see color plates) shows the clusters
which are formed for the terrain scene, resulting from reducing the number of primi-
tives by a factor of 30, showing a plan view on the left, and an interior view on the right.
Clusters typically consist of connected polygons, although this adjacency information
is not explicitly present in the raw visibility table. As well, clusters tend to be based
on mountain faces and valleys. The clusters produced for the tunnel scene, shown in
Figure 5(b) show similar behaviors, creating a patchwork coverage of the tunnel walls.
We do not show the viewpoint clusters for the terrain and tunnel scenes, as they are
difficult to depict, given their 3D nature.

The viewpoint clusters formed for the room scene, shown in Figure 5(c) are mainly
based on individual rooms, as one might intuitively expect. The primitive clusters are
similarly organized. The two figures on the right illustrate examples of the lost oc-
clusions that arise during the lossy compression. The viewpoint is indicated as a blue
dot, while the blue wall segments indicate the original minimal-size PVS. The red wall
segments indicate the additions made to the PVS in the interest of obtaining good com-
pression.

6.2 Lossless Compression Results

The results for lossless compression are shown in Table 1 and Figure 6. Lossless clus-
tering by itself produces compression factors of between 4 and 7. These results are
comparable to gzip, keeping in mind that gzip is not amenable to the random—access
and fast enumeration requirements of visibility applications.

The clusters formed by the lossless compression algorithm have a different structure
than those of the lossy compression, as shown in Figure 6 (see color plates). Clusters
formed early on appear high in the cluster hierarchy and result in the largest storage
reductions. We illustrate some of these clusters in Figure 6 for the three test scenes.
In Figure 6(a), the same cluster is shown twice; first in a plan view and then in a side
view. Although the cluster looks to be an unlikely agglomeration of primitives in the
plan view, the side view reveals that it is really a group of primitives facing a partic-
ular direction, and hence consistently visible as a group from a particular (large) set
of viewpoints. The important clusters for the tunnel scene, shown in Figure 6(b), tend
to be coherent cylindrical regions of the tunnels, although the clusters do not provide
completely continuous coverage, as evident from the “holes.” The appearance of these
holes is unintuitive to us. The rooms dataset provides results having an intuitive inter-

10

pretation, as shown in Figure 6(c). The figure on the left shows a cluster which groups
together the primitives in a room. The remaining two clusters illustrate distributed clus-
ters which effectively capture particular ‘visibility corridors’ within the scene.

6.3 Combining Lossy and Lossless Compression

An interesting characteristic of the lossy and lossless compression techniques is that
they appear to operate in orthogonal fashions. The results of following lossy compres-
sion with lossless compression are given in Table 1. The occlusions which are ‘lost’
when using the combination of techniques are the same as those which are lost using
the lossy technique alone. The compression ratios achieved for the terrain and tunnels
scenes are approximately the product of the compression ratios achievable by each tech-
nique alone. For all three datasets, the combined compression performs 4 to 10 times
better than gzip. More interestingly, the final compressed visibility table, only amounts
to a small percentage of the storage space required for the uncompressed dataset geom-
etry.

There are several caveats to be stated about Table 1. The rooms example has 3D
geometry but a 2D visibility problem, and therefore the storage cost for the precom-
puted visibility is small when compared to the storage cost for the dataset geometry.
The tunnels dataset is perhaps the most convincing result, storing 95% of the occlu-
sion relationships with a memory cost of 9% of the uncompressed dataset geometry.
However, this kind of results is probably restricted to scenes which have well structured
visibility coherence. A last caveat is that any implementation that must decode the ta-
ble must also build associated indexing data structures such as the hash table required
for the tunnel scene in order to efficiently locate the viewpoint cell, given a particu-
lar viewpoint. These additional data structures could potentially double or triple the
storage costs given in Table 1, although we have not yet evaluated their average costs.
Nevertheless, the results show that remarkably little storage space is needed to encode
precomputed visibility information.

7 Summary and Discussion

Precomputed visibility information can be used to answer the question “What is visible
from this viewpoint?” The algorithms presented in this paper address a new problem (to
the best of our knowledge): How can precomputed visibility information be efficiently
compressed? Experimental results show that the proposed algorithms are effective for
three very different types of datasets: a terrain, a series of winding tunnels, and a build-
ing interior. The result is a near—optimal method of occlusion culling which has low
storage cost and which permits fast, random—access enumeration of visible primitives.

We propose a variety of future work which would extend these techniques to new
application domains as well as addressing some caveats in their use.

e Scalability is an important issue. Large scenes likely need to be tackled with a
top—down divide—and—conquer approach, in addition to the bottom—up approach
proposed thus far.

e The compromise between storage cost and lost occlusions needs to be explored
in terms of a trade-off between rendering time and storage cost.

e The viewpoint space could be expanded to include the viewing direction. The
technique could also be applied to efficiently store voxel-to—voxel visibility.

e Models of the rendering cost could be incorporated into the clustering criteria.

11

References

1.

15.

16.

17.

18.

20.

Frédéric Cazals, George Drettakis, and Claude Puech. Filtering, clustering and hierarchy
construction: a new solution for ray-tracing complex scenes. Computer Graphics Forum,
14(3):371-382, August 1995. Proceedings of Eurographics "95. ISSN 1067-7055.

. D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative visibility and strong

occlusion for viewspace partitioning of densely occluded scenes. 1998.

. D. Cohen-Or and A. Shaked. Visibility and dead-zones in digital terrain maps. Computer

Graphics Forum, 14(3):C/171-C/180, September 1995.

. D. Cohen-Or and E. Zadicario. Visibility streaming for network-based walkthroughs. In

Proceedings of Graphics Interface 98, 1998.

. Satyan Coorg and Seth Teller. Temporally coherent conservative visibility. In Proceedings of

the Twelfth Annual Symposium On Computational Geometry (ISG ’96), pages 78-87, New
York, May 1996. ACM Press.

. Satyan Coorg and Seth Teller. Real-time occlusion culling for models with large occluders.

In Proceedings of the 1997 Symposium on 3D Interactive Graphics, 1997.

. Z. Gigus and J. Malik. Computing the aspect graph for the line drawings of polyhedral

objects. IEEE Trans. Pattern Analysis and Machine Intelligence, 12(2), February 1990.

. N. Greene. Hierarchical polygon tiling with coverage masks. Computer Graphics, 30(An-

nual Conference Series):65-74, 1996.

. N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer visibility. In Computer Graphics

(SIGGRAPH ’93 Proceedings), 1993.

. Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity algorithm.

Computer Graphics (SIGGRAPH 91 Proceedings), 25(4):197-206, July 1991.

. Lichan Hong, Shigeru Muraki, Arie Kaufman, Dirk Bartz, and Taosong He. Virtual voyage:

Interactive navigation in the human colon. In Turner Whitted, editor, SIGGRAPH 97 Con-

ference Proceedings, Annual Conference Series, pages 27-34. ACM SIGGRAPH, Addison

Wesley, August 1997.

. Donald J. Meagher. Efficient synthetic image generation of arbitrary 3-D objects. In Pro-

ceedings of the IEEE Conference on Pattern Recognition and Image Processing, pages 473—
478, June 1982.

. H. Plantinga. Conservative visibility preprocessing for efficient walkthroughs of 3d scenes.

In Proceedings of Graphics Interface '93, pages 166-173, 1993.

. A. James Stewart. Fast horizon computation at all points of a terrain with visibility and

shading applications. IEEE Transactions on Visualization and Computer Graphics, 4(1):82—
93, March 1998.

Seth Teller and Pat Hanrahan. Global visibility algorithms for illumination computations. In
Computer Graphics Proceedings, Annual Conference Series, 1993, pages 239-246, 1993.
Seth J. Teller. Computing the antipenumbra of an area light source. In Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 139-148, July 1992,

Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walkthroughs.
In Thomas W. Sederberg, editor, Computer Graphics (SIGGRAPH ’91 Proceedings), vol-
ume 25, pages 61-69, July 1991.

Y. Wang, H. Bao, and Q. Peng. Accelerated walkthroughs of virtual environments based
on visibility preprocessing and simplification. Computer Graphics Forum (Eurographics 98
issue), 17(3):187-194, 1998.

. R. Yagel and W. Ray. Visibility computation for efficient walkthrough of complex environ-

ments. Presence, 5(1):45-60, 1995.
H. Zhang, D. Manocha, T. Hudson, and Kenneth E. Hoff III. Visibility culling using hierar-
chical occlusion maps. In SIGGRAPH 97 Conference Proceedings.

(b)

(c)

Fig. 5. Clustering resulting from lossy compression. (a) terrain dataset (b) tunnels dataset (c)
rooms dataset

(a)
(b)

r 1
(¢ - | L | L |

Fig. 6. Clustering resulting from lossless compression. (a) terrain dataset (b) tunnels dataset (c)
rooms dataset

