
Effe
tive Compression Te
hniquesfor Pre
omputed VisibilityMi
hiel van de PanneA. James StewartDepartment of Computer S
ien
e, University of Torontofvan,jstewartg�dgp.utoronto.
aAbstra
t. In rendering large models, it is important to identify the small subsetof primitives that is visible from a given viewpoint. One approa
h is to partitionthe viewpoint spa
e into viewpoint 
ells, and then pre
ompute a visibility tablewhi
h expli
itly re
ords for ea
h viewpoint 
ell whether or not ea
h primitive ispotentially visible. We propose two algorithms for 
ompressing su
h visibilitytables in order to produ
e 
ompa
t and natural des
riptions of potentially�visiblesets. Alternatively, the algorithms 
an be thought of as te
hniques for 
luster-ing 
ells and 
lustering primitives a

ording to visibility 
riteria. The algorithmsare tested on three types of s
enes whi
h have very different stru
tures: a ter-rain model, a building model, and a world 
onsisting of 
urved tunnels. Theresults show that the natural stru
ture of ea
h type of s
ene 
an automati
ally beexploited to a
hieve a 
ompa
t representation of potentially visible sets.1 Introdu
tionThe visibility problem is to determinewhi
h s
ene elements are visible from a parti
ularviewpoint. Algorithms that solve this problem are very expensive in time, in memory, orin 
omplexity. For these reasons, real�time appli
ationswill often pre
ompute visibilityinformation, store it, and later use it to a

elerate rendering.Storage of the pre
omputed visibility information 
an require a very large amountof memory. This paper des
ribes two effe
tive te
hniques to 
ompress pre
omputedvisibility information. These te
hniques are very general and may be used in appli
a-tions as varied as ar
hite
tural walkthroughs, terrain �yovers, and tunnel roaming.Te
hniques that pre
ompute visibility typi
ally divide spa
e into regions and de-termine what parts of s
ene are visible from ea
h region. This is a 
ommon strategy:Teller and Sequin [17℄ divide a building into rooms and, for ea
h room, 
ompute theother rooms visible from it. Yagel and Ray [19℄ subdivide spa
e into a regular grid of
ells and use a different method to 
ompute 
ell�to�
ell visibility. Games in maze�likeenvironments often have room�to�room visibility expli
itly stored in a table.These te
hniques 
an be thought of as using a very 
oarse form of 
lustering toredu
e memory requirements: By storing 
ell�to�
ell visibility, rather than 
ell�to�polygon visibility, groups of polygons in the same 
ell are 
lustered and do not need tobe exhaustively enumerated.This 
oarse form of 
lustering has several drawba
ks: polygon 
lusters are restri
tedto 
orrespond one�to�one to viewpoint regions; viewpoint regions themselves are not
lustered at all; a polygon 
luster must be entirely rendered if even a tiny fra
tion ofit is visible; and it is un
lear how to 
reate optimal 
lusters in less well-stru
turedenvironments, su
h as terrains. 1



In this paper, the spa
e of viewpoints is divided into small regions and a pre
om-putation step determines whi
h polygons are visible from ea
h region. A boolean vis-ibility table en
odes this information: entry (i; j) of the table is TRUE if polygon j ispotentially visible from some point in region i. Given the �ne subdivision of spa
e andthe possibly large number of polygons, the visibility table is potentially huge.This paper's prin
ipal 
ontribution 
onsists of two methods to 
ompress the visibil-ity table:� The �rst is a lossy 
ompression method whi
h merges viewpoint regions andmerges polygons. This method may 
onservatively deem a polygon to be visi-ble when in fa
t it is not. Like all 
onservative visibility algorithms, this doesnot pose a problem as long as hidden surfa
e elimination (e.g. Z�buffering) isperformed during rendering.� The se
ond is a lossless 
ompression method whi
h 
ontru
ts a graph of view-point and polygon 
lusters. Visible polygons 
an be enumerated by performing avery simple traversal of this graph. This lossless method never mistakenly deemsa polygon to be visible when it is not.These 
ompression methods have several desirable features:� A 
ombination of the two 
ompression te
hniques yields better 
ompression thaneither alone.� The level of 
ompression may be 
hosen to optimize memory, o

lusion infor-mation, or some ratio of the two.� These te
hniques permit very ef�
ient �random a

ess� de
ompression: For anyparti
ular viewpoint region, all visible polygons 
an be qui
kly enumerated.� The polygon and viewpoint 
lusters are automati
ally adapted in a natural wayto the environment, making this a very general method. For example, in ourexperiments (presented in Se
tion 6) we dis
overed:� in terrains, polygons are 
lustered in separate valleys and on peaks;� in tunnels, viewpoints are 
lustered in 
ontiguous tunnel se
tions; and� in buildings, polygons are 
lustered around �open 
orridors� from whi
h allof the polygons of the 
luster are visible.The beauty of using the visibility table is that viewpoint 
lusters and polygon 
lus-ters may be treated identi
ally: one 
onsists of a 
luster of rows, while the other 
onsistsof a 
luster of 
olumns. This observation yields very simple algorithms whi
h do notneed to know anything about the underlying stru
ture of the viewpoint regions or thes
ene polygons.2 Related WorkIn work of similar spirit to ours, Yagel and Ray [19℄ pre
ompute visibility informationfor a two�dimensional s
ene using a regular subdivision of spa
e. Their prin
ipal 
on-tribution is an elegant algorithm to 
ompute 
ell�to�
ell visibility, but they also suggest
lustering 
ells of similar visibility using 
riteria like those of our lossy 
ompressionalgorithm. Wang et al.[18℄ 
ombine pre
omputed potentially-visible sets with detailsimpli�
ation in regions where the sets be
ome very large.Most methods that pre
ompute visibility divide the viewpoint spa
e into 
ells and
ompute 
ell�to�
ell visibility. This has the impli
it effe
t of 
lustering polygons in2



ea
h 
ell, whi
h redu
es the memory requirement at the 
ost of not taking advantage ofdetailed visibility information. Teller and Sequin [17℄ divide a building into rooms and
ompute room�to�room visibility. Coorg and Teller[6℄ exploit the presen
e of largeo

luders to perform o

lusion 
ulling for a viewpoint. Cohen-Or et al.[2℄ exploit large
onvex o

luders to 
ompute 
ell-to-obje
t visibility. Plantinga[13℄ uses a small set ofeffe
tive o

luders and 
omputes visual events among the o

luders in order to partitionthe viewpoint spa
e into 2D 
ells.Coorg and Teller [5℄, Gigus and Malik [7℄, and Cohen-Or and Zadi
ari[4℄ all ex-ploit features of aspe
t graphs to produ
e in
remental updates of visibility. Yagel andRay [19℄ also suggest re
ording only 
hanges in visibility in order to 
ompress their
ell�to�
ell visibility information.Another 
lass of visibility methods 
omputes visibility during the rendering pro
ess.Some examples in
lude the hierar
hi
al Z�buffer of Meagher [12℄ and of Greene, Kass,and Miller [9℄, the hierar
hi
al 
overage masks of Greene [8℄, and the hierar
hi
alo

lusion maps of Zhang et al [20℄. An advantage of these te
hniques is that they
an 
ope with dynami
 s
enes. However, these te
hniques work best when a set oflarge o

luders 
an rapidly be identi�ed for the 
urrent viewpoint, whi
h is not alwayspossible. These te
hniques 
an potentially be used in 
onjun
tion with a 
ompressedvisibility table, using a table to a
hieve the same result as a large o

luder.There has also been a substantial amount of work in 
lustering for global illumi-nation. Hierar
hi
al radiosity [10℄, for example, imposes a hierar
hi
al stru
ture onthe s
ene surfa
es and 
omputes energy transfer between different nodes in this hier-ar
hy. An alternative �hierar
hy of uniform grids� is des
ribed by Cazals, Drettakis,and Pue
h [1℄. However, the prin
ipal expense in global illumination lies in determin-ing whether one surfa
e sees another, and 
lustering usually o

urs before visibility is
omputed, whi
h is opposite to what we do when 
ompressing the visibility table.3 The Visibility TableVisibility is en
oded in a boolean table, in whi
h ea
h row initially 
orresponds to oneviewpoint 
ell and ea
h 
olumn initially 
orreponds to one polygon. The table ideallyen
odes the partial visibility: the entry in row i, 
olumn j is TRUE if and only if polygonj is at least partially visible from some point in 
ell i. However, our lossy 
ompression
an allow some o

lusions to be lost, in whi
h 
ase the table will en
ode a 
onservativevisibility set[2℄, whi
h is a superset of the exa
t partial-visibility set.Any division of viewpoint regions may be used; our experiments used a regularvoxel subdivision of spa
e. One 
ould just as well use another subdivision, su
h as ano
t�tree, a binary spa
e partition, or a k�d tree. Similarly, any division of the s
ene maybe used; our experiments used single polygons. One 
ould also pre�
luster polygonsmanually, given some knowledge of the s
ene, or one 
ould go in the opposite dire
tion,subdividing very large polygons (e.g. imposters) if it is likely that only a part of thepolygon will be visible at any time.Given a visibility table, rendering is simple: Lo
ate the row 
orresponding to theregion 
ontaining the viewpoint and render ea
h polygon whose 
orresponding 
olumn
ontains the value TRUE. In order that the rendering time be proportional to the numberof visible polygons, ea
h row of the table 
an be stored as a linked list of the TRUEentries, or alternatively, the FALSE entries must be run�length en
oded. We 
hoose thelatter. A row is represented by a sequen
e of integers, where ea
h integer is the numberof FALSE entries before the next TRUE entry. For example, the sequen
e 5, 3, 0, 0, 1indi
ates that TRUE entries o

ur in 
olumns 5, 9, 10, 11, and 13:3



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 . . .The run-length en
oding s
heme des
ribed above 
an be used as a simple low-
ost method for storing the visibility table in an easy-to-de
ode fashion, 
omparableto 
onventional sparse-matrix storage te
hniques. The job of our 
ompression algo-rithms is to do mu
h better than this, and thus our 
ompression algorithms make use ofthis run-length en
oding only as a last step. It is worth remarking that, unlike 
onven-tional sparse-matrix storage, it would also be possible to run-length en
ode the non-zero(TRUE) elements, given that there is only one assignable non-zero value. Thus, the se-quen
e 5, 1, 3, 3, 1, 1, 5, 1 
ould indi
ate that there are 5 FALSE entries, followedby one TRUE entry, 3 FALSE entries, et
. In many situations, however, this will beless 
ompa
t than simply run-length en
oding the FALSE entries, given the expe
tedsparsity of TRUE entries in densely o

luded environments. As well, our 
ompressionte
hniques will �rst produ
e visibility tables whi
h are even sparser (but en
ode thesame information), and then use a run-length en
oding step as a �nal 
ompression step.Experiments have shown a preponderan
e of short runs of FALSE entries. In orderto en
ode these runs with little memory, ea
h run is represented with either one byte orthree bytes: A run of 0 to 254 FALSE entries is en
oded with a single byte 
ontainingthe run length, while a run of 255 to 65535 FALSE entries is en
oded with a single byteof 255 followed by two bytes 
ontaining the run length.Given a set of viewpoint regions and a set of polygons, the initial visibility tablemay be 
onstru
ted in any one of many ways. Sin
e the initial table 
onstru
tion is not a
ontribution of this paper, we use a fairly naive approa
h that samples visibility using anitem buffer: From several points within ea
h viewpoint region and from six dire
tionsaround ea
h su
h point, the s
ene is rendered into an item buffer in whi
h ea
h polygonis assigned a unique 
olour. A qui
k traversal of the item buffer determines whi
hpolygons are visible. One problem with the item buffer method is, of 
ourse, that itis not 
onservative: Polygons 
an be missed due to the limited resolution of the itembuffer and the dis
rete viewpoint sampling done within the viewpoint region. However,artifa
ts 
aused by su
h missing polygons will, by de�nition, likely be small. Anotherproblem is that it is time 
onsuming, sin
e the s
ene must be rendered many times frommany different viewpoints. For the experiments des
ribed in Se
tion 6, the visibilitytables took several hours to 
ompute using software rendering on 166 Mhz PC. Othermethods may be used to 
onstru
t the initial visibility table using general methods[19,15, 2℄, or methods for spe
i�
 environments[16, 3℄.4 Lossy Compression AlgorithmThe lossy 
ompression algorithm 
ompresses the visibility table by merging rows andby merging 
olumns.� Two rows aremerged if they have a similar set of TRUE entries. Themerge deletesthe two old rows and inserts a new row that is the logi
al OR of the original tworows. This 
orresponds to merging two viewpoint regions that have similar setsof visible polygons. The merge 
reates a new meta�region from whi
h is visiblethe union of the polygons visible from the two original regions. The logi
alOR maintains 
onservative visibility: If a polygon was visible from one of theoriginal regions, it is visible from the merged region.� Two 
olumns are merged if they have a similar set of TRUE entries. The merge4



deletes the two old 
olumns and inserts a new 
olumn that is the logi
al OR orthe original two 
olumns. This 
orresponds to merging two polygons that haveidenti
al visibility status in most viewpoint regions. That is, for most viewpointregions either both polygons are visible or neither is visible. The merge 
reatesa new meta�polygon whi
h is visible from all regions from whi
h either one ofthe original polygons was visible. Again, the logi
al OR maintains 
onservativevisibility.To determine whi
h `similar' sets of 
olumns or rows should be merged, the lossyalgorithm must determine the bene�t and the 
ost of a potential merge.The bene�t of a merge is equal to the redu
tion in table size. Sin
e the table is run�length en
oded, its size is proportional to the number of TRUE entries and the bene�t ofa merge is equal to the number of TRUE entries that are eliminated.The 
ost of a merge is equal to the number of o

lusions that are �lost.� An o

lu-sion is represented by a FALSE entry, whi
h indi
ates that some polygon is o

ludedfrom viewpoints in some region. An o

lusion is �lost� whenever the logi
al OR is ap-plied to two entries of different boolean values, TRUE and FALSE: The result of the ORis TRUE, and the original FALSE value, representing an o

lusion, is lost. Note that noinformation is lost when two entries of equal value are ORed.If a row or 
olumn is the result of n prior merges, ea
h FALSE entry in that row or
olumn represents n o

lusions. If su
h a FALSE entry is lost in a merge, the 
ost is nlost o

lusions, rather than one. Thus, in order that 
osts be 
orre
tly 
al
ulated, ea
hrow and 
olumn must re
ord the number merges of whi
h it is the result.Our slow greedy algorithm evaluates all pairs of rows and all pairs of 
olumns,and merges the pair with the largest ratio of bene�t�to�
ost. This is repeated until someuser�determined 
riterion is satis�ed. This algorithm is slow be
ause ea
h iterationtakes time quadrati
 in the number of rows and in the number of 
olumns. For larges
enes with more than a few thousand initial viewpoint regions or initial polygons, theslow algorithm is unusable. However, the good feature of the slow algorithm is thatit performs progressive 
ompression, thereby allowing 
ontrol over the 
ompromisebetween lost o

lusions and table size. A user might express their desired 
ompromisein terms of a target table size or a limit on the per
entage of lost o

lusions. We use thelatter in our experiments, stopping the lossy 
ompression when 5% of o

lusions havebeen lost.An alternative fast greedy algorithm is used in pra
ti
e, as follows: A �xed fra
-tion of the rows are 
hosen as �seed rows.� Ea
h remaining �non�seed row� is testedagainst ea
h seed row and is merged with the seed row of maximum bene�t�to�
ostratio. A similar pro
edure is then performed with the resulting 
olumns. In pra
ti
e,we 
hoose the seed rows using a regular sampling pattern. If the list of s
ene primitiveshas some stru
ture, as we might expe
t, then this helps to distribute the seed rows in anequitable fashion around the s
ene. The fast greedy algorithm produ
es ex
ellent 
om-pression and was used in all the lossy 
ompression experiments reported in Se
tion 6.5 Lossless Compression AlgorithmAn alternative 
ompression algorithm 
an take advantage of lo
ally-similar but globally-dissimilar visibility relationships. For example, viewpoints lo
ated in the hallway of abuilding all share the visibility of a room at the end of the hallway, but they may notshare the visibility of rooms lo
ated along the hallway. Similar s
enarios also o

urin non-ar
hite
tural s
enes, as will be illustrated by the experimental results. In terms5



of the visibility table, these situations 
orrespond to rows or 
olumns that share a largenumber of TRUE values, but that are not merged by the lossy algorithm be
ause theyalso differ in a large number of other entries (i.e. their merge 
ost is too high). Thelossless 
ompression algorithm, identi�es these situations and merges only part of therow or 
olumn.The lossless 
ompression algorithm operates as follows (refer to Figure 1):1. Find a set, V , of viewpoints regions that have a set, P , of visible polygons in
ommon. Pi
k the set to maximize the produ
t of the 
ardinalities: jV j � jP j.2. Create a single polygon 
luster 
onsisting of the polygons of P and allo
ate forit a new 
olumn in the visibility table. Sin
e the polygon 
luster is visible fromea
h of the viewpoint regions in V , the new 
olumn has a TRUE value in ea
hrow 
orresponding to a region in V .3. Symmetri
ally, 
reate a single region 
luster 
onsisting of the viewpoint regionsof V and allo
ate for it a new row in the visibility table. Sin
e the region 
lustersees all of the polygons in P , the new row has a TRUE value in ea
h 
olumn
orresponding to a polygon in P .4. Set to FALSE all entries in the interse
tion of the rows and 
olumns of V and P .(These entries are made redundant with the addition of the new row and 
olumn.)5. Repeat with new V and P until no 
lusters remain above some user�de�ned size.There is no 
ost to this operation, sin
e no o

lusions are lost. The bene�t is thatthe visibility table be
omes sparser. For a given 
luster, the bene�t 
an be 
omputed asthe number of TRUE entries whi
h be
ome FALSE, minus the number of TRUE entries
reated in the new row and new 
olumn. If jV j and jP j are the 
ardinalities of V andP , respe
tively, then the bene�t is j V j � jP j � j V j � jP j. By in
luding the newregion and polygon 
lusters as a new row and new 
olumn of the table, these 
lusters
an parti
ipate in subsequent merges, as shown in Figures 1(b) and 1(
).To determine whi
h polygons are visible from a parti
ular viewpoint region, the
orresponding row of the visibility table is traversed, just as it is done with the lossy�
ompressed table. However, if (on that row) a TRUE entry is en
ountered in some
olumn, j, and if 
olumn j 
orresponds to a polygon 
luster rather than to a singlepolygon, then a re
ursive traversal of row j is performed. (It is easy to distinguish the
luster 
olumns, sin
e they all appear to the right of the rightmost polygon 
olumn.)It is interesting to note that the same traversal may be performedwith the roles of therows and 
olumns reversed (i.e. traverse ea
h 
olumn). In this 
ase, we enumerate allviewpoint regions that see a parti
ular polygon. This symmetry is evident in Figure 1.For example, polygon 
 is visible from regions 0, 1, and 3.6 Experimental ResultsOur experiments applied both types of 
ompression, as well as their 
ombination, tothree types of s
enes. These s
enes were 
hosen for their dissimilar stru
tures in orderto illustrate the generality of our method and to show that the 
ompression te
hniquesautomati
ally exploit the natural stru
ture of ea
h s
ene in order to yield 
ompa
t vis-ibility des
riptions. We �rst motivate the 
hoi
e of ea
h dataset or s
ene and thenprovide a summary of the key properties of ea
h s
ene.The terrain dataset is shown in Figure 2 and was pro
edurally generated using aniterative subdivide-and-displa
e approximation of a fra
tal terrain. The existen
e ofo

lusion-
ulling te
hniques spe
i�
 to terrains [14℄ motivated the 
hoi
e of this ex-ample, as well as the large number of simulation and gaming appli
ations that involve6



a b 
 d e f0 1 1 1 1 0 11 1 1 1 1 1 12 1 1 0 1 0 13 0 1 1 1 0 1 �!Cluster � a b 
 d e f �0 0 0 0 0 0 0 11 0 0 0 0 1 0 12 1 1 0 1 0 1 03 0 1 1 1 0 1 0� 1 1 1 1 0 1 0(a)a b 
 d e f �0 0 0 0 0 0 0 11 0 0 0 0 1 0 12 1 1 0 1 0 1 03 0 1 1 1 0 1 0� 1 1 1 1 0 1 0 �!Cluster � a b 
 d e f � �0 0 0 0 0 0 0 1 01 0 0 0 0 1 0 1 02 1 0 0 0 0 0 0 13 0 0 1 0 0 0 0 1� 1 0 1 0 0 0 0 1� 0 1 0 1 0 1 0 0(b)
(
)Fig. 1. An example of the lossless 
lustering algorithm, where letters denote polygons anddigits denote viewpoint regions. (a) The visibility table is modi�ed when a 
luster, �, is 
re-ated, 
onsisting of f0; 1g � fa; b; 
; d; fg. (b) A se
ond 
luster, �, is 
reated, 
onsisting off2; 3; �g � fb; d; fg. In
luded in � are the viewpoint regions of 
luster �, but not the polygonsof 
luster �. (
) An alternative representation of the visibility table, where a line dire
ted upwardfrom i to j 
orresponds to TRUE entry in row i, 
olumn j of the visibility table. To enumerate thepolygons visible in a region, i, all upward paths from i are followed. For 
lustered tables, thesepaths traverse intermediate 
lusters, su
h as � and � in the rightmost graph. For example, thepolygons visible from viewpoint region 3 are b, 
, d, and f. All polygons are visible from region1.
7



(a) (b) (
) (d)Fig. 2. The terrain dataset. (a) primitives (b) voxel grid de�ning the viewpoint 
ells (
) plan viewof terrain (d) plan view of visible set for a parti
ular viewpoint.
(a) (b) (
) (d)Fig. 3. The tunnels dataset. (a) exterior view (b) voxelization used for the viewpoint 
ells (
)interior view with diffuse lighting (d) exterior view of visible set for the viewpoint used in (
).moving on or over terrains. In our example we deal spe
i�
ally with voxel�to�primitivevisibility, as one might use in a �ight simulator. Other appli
ations whi
h restri
t theviewpoint to the surfa
e, su
h as in driving or walking simulations, would do better touse a 2D surfa
e parameterization of the viewpoint spa
e instead of a volumetri
 pa-rameterization. The viewing spa
e is divided into a 10� 10� 8 set of voxels, as shownin Figure 2(b). Viewpoints below the terrain surfa
e are treated as having a 
ompletelyo

luded view of the world.Our se
ond test s
ene 
onsists of a set of winding tunnels, as shown in Figure 3.This dataset was motivated by appli
ations su
h as 
olonos
opy [11℄. The voxeliza-tion is 
onstru
ted pro
edurally from the boundary representation of the tunnels. Theviewpoint 
ell whi
h 
ontains a given viewpoint 
an be qui
kly lo
ated by 
omputinga unique voxel ID based on the quantized xyz 
oordinates of the viewpoint, and thenusing a hash table indexed by this ID. This avoids allo
ating voxel storage for the largevolume of spa
e outside of the tunnel system, under the assumption that the viewpointshould always remain within the tunnels. Viewpoints that are outside the tunnel walls� even if they are inside 
ells that straddle the walls � are 
onsidered to see nothing,so treatment of straddling 
ells requires some 
are.Lastly, we 
hoose a building �oorplan as a dataset, as shown in Figure 4. The�oorplan exists on a 10 � 17 unit grid. All wall segments are broken into primitives,ea
h no longer than 1 unit in length. The viewpoint 
ells 
onsist of 1 � 1 unit squareson the grid. These are s
hemati
ally illustrated in Figure 4(b). The s
ene is 
onstru
tedas a 3D model, although the 2D �oorplan effe
tively 
ontains all the information aboutthe stru
ture of the s
ene. Ea
h wall is double�sided.The key properties that 
hara
terize ea
h of the three example s
enes are given inTable 1. Some details of this table bear further explanation. The maximum o

lusionin the terrain and tunnel s
enes is 100%, as some viewpoint 
ells are lo
ated below theterrain surfa
e or outside the tunnel wall. The dataset size assumes an un
ompressed8



(a) (b) (
)Fig. 4. The rooms dataset. (a) plan view (b) plan view showing voxels (
) plan view showingprimitivess
ene properties terrain tunnels rooms# viewpoint 
ells 800 1275 170# primitives 1217 4166 242mean o

lusion 84% 82% 90%min, max o

lusion 48%, 100% 70%, 100% 80%, 94%data set size 15 kB 50 kB 10 kBun
ompressed table size 122 kB 664 kB 5.3 kBtable size, gzip 26 kB 64 kB 1.2 kBlossy 
ompressionredu
tion applied 2p, 2v 10p, 5v 200gtable size (
ompression) 22.1 kB (5.5�) 23 kB (29�) 0.2 kB (27�)lossless 
ompression# 
lusters 2000 2000 100table size (
ompression) 28.5 kB (4.3�) 95 kB (7.0�) 1.3 kB (4.1�)lossless 
ompressiontable size (
ompression) 6.1 kB (20�) 4.4 kB (151�) 0.1 kB (53�)% of original table size (gzip) 5% (21%) 0.7% (10%) 2% (23%)% of dataset size (gzip) 41% (173%) 9% (128%) 1% (12%)Table 1. Experimental Data and Resultsrepresentation of an indexed�vertex representation of the geometry. An xyz vertextriple is assumed to be represented in 12 bytes, while an index is assumed to be storedas a 4�byte integer. The raw table size assumes a binary representation of the visibilitytable. The run�length en
oded versions of the raw table are 
omparable in size to thebinary�en
oded raw tables for our examples.We use gzip to provide a simple point of 
omparison for our 
ompression te
h-niques. In pra
ti
e, the requirement for random a

ess to the rows in order to answervisibility queries means that individual rows should be 
ompressed instead of the entiretable. We use gzip as applied to the entire table as an upper bound on the performan
eof a row�based 
ompression algorithm. It should also be noted that a further advantageof our 
ompression s
hemes is that they produ
e enumerated lists of visible primitives,unlike binary 
ompression algorithms whi
h only reprodu
e the original rows of thevisibility table. Lastly, we note that gzip is only a `fair' 
omparison for the lossless
ompression algorithm. 9



6.1 Lossy Compression ResultsThe 
ompression tests we apply to the test s
enes are (1) lossy 
ompression, (2) lossless
ompression, and (3) lossy 
ompression followed by lossless 
ompression. We �rstlook at how lossy 
ompression performs on the datasets. The results are summarized inTable 1, where the notation 10p, 5v means that the number of primitives was redu
edby a fa
tor of 10 and the number of viewpoint 
ells was redu
ed by a fa
tor of 5. In all
ases, the lossy 
lustering pro
edure was 
ontinued until 5% of the o

lusions presentin the original visibility table were lost. The fast greedy algorithm was applied in the
ase of the terrain and tunnels datasets be
ause of their size. The slow greedy algorithm
ould be applied to the room s
ene (for 200 iterations) be
ause of its small size. In all
ases, the lossy 
ompression took less than 20 minutes to 
omplete as 
omputed on a166 MHz PC.The results show that the lossy 
ompression s
heme 
an redu
e the size of the pre-
omputed visibility table by a fa
tor of 29 for the well�stru
tured tunnel s
ene. It alsodoes very well on the rooms s
ene (27� 
ompression), although not as well for theless�stru
tured terrain s
ene (5.5�). Figure 5(a) (see 
olor plates) shows the 
lusterswhi
h are formed for the terrain s
ene, resulting from redu
ing the number of primi-tives by a fa
tor of 30, showing a plan view on the left, and an interior view on the right.Clusters typi
ally 
onsist of 
onne
ted polygons, although this adja
en
y informationis not expli
itly present in the raw visibility table. As well, 
lusters tend to be basedon mountain fa
es and valleys. The 
lusters produ
ed for the tunnel s
ene, shown inFigure 5(b) show similar behaviors, 
reating a pat
hwork 
overage of the tunnel walls.We do not show the viewpoint 
lusters for the terrain and tunnel s
enes, as they aredif�
ult to depi
t, given their 3D nature.The viewpoint 
lusters formed for the room s
ene, shown in Figure 5(
) are mainlybased on individual rooms, as one might intuitively expe
t. The primitive 
lusters aresimilarly organized. The two �gures on the right illustrate examples of the lost o
-
lusions that arise during the lossy 
ompression. The viewpoint is indi
ated as a bluedot, while the blue wall segments indi
ate the original minimal�size PVS. The red wallsegments indi
ate the additions made to the PVS in the interest of obtaining good 
om-pression.6.2 Lossless Compression ResultsThe results for lossless 
ompression are shown in Table 1 and Figure 6. Lossless 
lus-tering by itself produ
es 
ompression fa
tors of between 4 and 7. These results are
omparable to gzip, keeping in mind that gzip is not amenable to the random�a

essand fast enumeration requirements of visibility appli
ations.The 
lusters formed by the lossless 
ompression algorithm have a different stru
turethan those of the lossy 
ompression, as shown in Figure 6 (see 
olor plates). Clustersformed early on appear high in the 
luster hierar
hy and result in the largest storageredu
tions. We illustrate some of these 
lusters in Figure 6 for the three test s
enes.In Figure 6(a), the same 
luster is shown twi
e; �rst in a plan view and then in a sideview. Although the 
luster looks to be an unlikely agglomeration of primitives in theplan view, the side view reveals that it is really a group of primitives fa
ing a parti
-ular dire
tion, and hen
e 
onsistently visible as a group from a parti
ular (large) setof viewpoints. The important 
lusters for the tunnel s
ene, shown in Figure 6(b), tendto be 
oherent 
ylindri
al regions of the tunnels, although the 
lusters do not provide
ompletely 
ontinuous 
overage, as evident from the �holes.� The appearan
e of theseholes is unintuitive to us. The rooms dataset provides results having an intuitive inter-10



pretation, as shown in Figure 6(
). The �gure on the left shows a 
luster whi
h groupstogether the primitives in a room. The remaining two 
lusters illustrate distributed 
lus-ters whi
h effe
tively 
apture parti
ular `visibility 
orridors' within the s
ene.6.3 Combining Lossy and Lossless CompressionAn interesting 
hara
teristi
 of the lossy and lossless 
ompression te
hniques is thatthey appear to operate in orthogonal fashions. The results of following lossy 
ompres-sion with lossless 
ompression are given in Table 1. The o

lusions whi
h are `lost'when using the 
ombination of te
hniques are the same as those whi
h are lost usingthe lossy te
hnique alone. The 
ompression ratios a
hieved for the terrain and tunnelss
enes are approximately the produ
t of the 
ompression ratios a
hievable by ea
h te
h-nique alone. For all three datasets, the 
ombined 
ompression performs 4 to 10 timesbetter than gzip. More interestingly, the �nal 
ompressed visibility table, only amountsto a small per
entage of the storage spa
e required for the un
ompressed dataset geom-etry.There are several 
aveats to be stated about Table 1. The rooms example has 3Dgeometry but a 2D visibility problem, and therefore the storage 
ost for the pre
om-puted visibility is small when 
ompared to the storage 
ost for the dataset geometry.The tunnels dataset is perhaps the most 
onvin
ing result, storing 95% of the o

lu-sion relationships with a memory 
ost of 9% of the un
ompressed dataset geometry.However, this kind of results is probably restri
ted to s
enes whi
h have well stru
turedvisibility 
oheren
e. A last 
aveat is that any implementation that must de
ode the ta-ble must also build asso
iated indexing data stru
tures su
h as the hash table requiredfor the tunnel s
ene in order to ef�
iently lo
ate the viewpoint 
ell, given a parti
u-lar viewpoint. These additional data stru
tures 
ould potentially double or triple thestorage 
osts given in Table 1, although we have not yet evaluated their average 
osts.Nevertheless, the results show that remarkably little storage spa
e is needed to en
odepre
omputed visibility information.7 Summary and Dis
ussionPre
omputed visibility information 
an be used to answer the question �What is visiblefrom this viewpoint?� The algorithms presented in this paper address a new problem (tothe best of our knowledge): How 
an pre
omputed visibility information be ef�
iently
ompressed? Experimental results show that the proposed algorithms are effe
tive forthree very different types of datasets: a terrain, a series of winding tunnels, and a build-ing interior. The result is a near�optimal method of o

lusion 
ulling whi
h has lowstorage 
ost and whi
h permits fast, random�a

ess enumeration of visible primitives.We propose a variety of future work whi
h would extend these te
hniques to newappli
ation domains as well as addressing some 
aveats in their use.� S
alability is an important issue. Large s
enes likely need to be ta
kled with atop�down divide�and�
onquer approa
h, in addition to the bottom�up approa
hproposed thus far.� The 
ompromise between storage 
ost and lost o

lusions needs to be exploredin terms of a trade-off between rendering time and storage 
ost.� The viewpoint spa
e 
ould be expanded to in
lude the viewing dire
tion. Thete
hnique 
ould also be applied to ef�
iently store voxel�to�voxel visibility.� Models of the rendering 
ost 
ould be in
orporated into the 
lustering 
riteria.11



Referen
es1. Frédéri
 Cazals, George Drettakis, and Claude Pue
h. Filtering, 
lustering and hierar
hy
onstru
tion: a new solution for ray-tra
ing 
omplex s
enes. Computer Graphi
s Forum,14(3):371�382, August 1995. Pro
eedings of Eurographi
s '95. ISSN 1067-7055.2. D. Cohen-Or, G. Fibi
h, D. Halperin, and E. Zadi
ario. Conservative visibility and strongo

lusion for viewspa
e partitioning of densely o

luded s
enes. 1998.3. D. Cohen-Or and A. Shaked. Visibility and dead-zones in digital terrain maps. ComputerGraphi
s Forum, 14(3):C/171�C/180, September 1995.4. D. Cohen-Or and E. Zadi
ario. Visibility streaming for network-based walkthroughs. InPro
eedings of Graphi
s Interfa
e '98, 1998.5. Satyan Coorg and Seth Teller. Temporally 
oherent 
onservative visibility. In Pro
eedings ofthe Twelfth Annual Symposium On Computational Geometry (ISG '96), pages 78�87, NewYork, May 1996. ACM Press.6. Satyan Coorg and Seth Teller. Real-time o

lusion 
ulling for models with large o

luders.In Pro
eedings of the 1997 Symposium on 3D Intera
tive Graphi
s, 1997.7. Z. Gigus and J. Malik. Computing the aspe
t graph for the line drawings of polyhedralobje
ts. IEEE Trans. Pattern Analysis and Ma
hine Intelligen
e, 12(2), February 1990.8. N. Greene. Hierar
hi
al polygon tiling with 
overage masks. Computer Graphi
s, 30(An-nual Conferen
e Series):65�74, 1996.9. N. Greene, M. Kass, and G. Miller. Hierar
hi
al Z-buffer visibility. In Computer Graphi
s(SIGGRAPH '93 Pro
eedings), 1993.10. Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierar
hi
al radiosity algorithm.Computer Graphi
s (SIGGRAPH '91 Pro
eedings), 25(4):197�206, July 1991.11. Li
han Hong, Shigeru Muraki, Arie Kaufman, Dirk Bartz, and Taosong He. Virtual voyage:Intera
tive navigation in the human 
olon. In Turner Whitted, editor, SIGGRAPH 97 Con-feren
e Pro
eedings, Annual Conferen
e Series, pages 27�34. ACM SIGGRAPH, AddisonWesley, August 1997.12. Donald J. Meagher. Ef�
ient syntheti
 image generation of arbitrary 3�D obje
ts. In Pro-
eedings of the IEEE Conferen
e on Pattern Re
ognition and Image Pro
essing, pages 473�478, June 1982.13. H. Plantinga. Conservative visibility prepro
essing for ef�
ient walkthroughs of 3d s
enes.In Pro
eedings of Graphi
s Interfa
e '93, pages 166�173, 1993.14. A. James Stewart. Fast horizon 
omputation at all points of a terrain with visibility andshading appli
ations. IEEE Transa
tions on Visualization and Computer Graphi
s, 4(1):82�93, Mar
h 1998.15. Seth Teller and Pat Hanrahan. Global visibility algorithms for illumination 
omputations. InComputer Graphi
s Pro
eedings, Annual Conferen
e Series, 1993, pages 239�246, 1993.16. Seth J. Teller. Computing the antipenumbra of an area light sour
e. In Computer Graphi
s(SIGGRAPH '92 Pro
eedings), volume 26, pages 139�148, July 1992.17. Seth J. Teller and Carlo H. Séquin. Visibility prepro
essing for intera
tive walkthroughs.In Thomas W. Sederberg, editor, Computer Graphi
s (SIGGRAPH '91 Pro
eedings), vol-ume 25, pages 61�69, July 1991.18. Y. Wang, H. Bao, and Q. Peng. A

elerated walkthroughs of virtual environments basedon visibility prepro
essing and simpli�
ation. Computer Graphi
s Forum (Eurographi
s 98issue), 17(3):187�194, 1998.19. R. Yagel and W. Ray. Visibility 
omputation for ef�
ient walkthrough of 
omplex environ-ments. Presen
e, 5(1):45�60, 1995.20. H. Zhang, D. Mano
ha, T. Hudson, and Kenneth E. Hoff III. Visibility 
ulling using hierar-
hi
al o

lusion maps. In SIGGRAPH 97 Conferen
e Pro
eedings.
12



(a)
(b)
(
)Fig. 5. Clustering resulting from lossy 
ompression. (a) terrain dataset (b) tunnels dataset (
)rooms dataset
(a)
(b)
(
)Fig. 6. Clustering resulting from lossless 
ompression. (a) terrain dataset (b) tunnels dataset (
)rooms dataset 13


