
1

Synthesizing Parameterized Motions
Michiel van de Panne

Ryan Kim*
Eugene Fiume

Dept. of Computer Science
*Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Canada, M5S 1A4

{van | rkim | elf}@dgp.utoronto.ca

Abstract

In striving to construct higher level control representations for simulated characters
or creatures, one must seek flexible control representations to build upon. We
present a method for the synthesis of parameterized, physics-based motions. The
method can be applied to both periodic and aperiodic motions. The basis of the
method is a low-level control representation in which linear combinations of con-
trollers generally produce predictable in-between motions.

1.0 Introduction

Many of the most interesting objects to animate, such as humans, animals, and robots, are capable
of controlling their own motion using muscles or actuators. While realistic motion can be obtained
for theseactive systems[15] by applying the Newtonian laws of physics, this also requires solving
an associated control problem. Informally stated control problems for animation such as “jump
from A to B, then walk to the left” can be posed in a variety of ways. In this paper we examine
how to produce control solutions that are reusable and can be parameterized. Producing control
solutions to a class of motions as opposed to a specific motion eliminates the need to resolve the
control problem each time a new variation of a motion is required.

Since the first use of physics-based animation for articulated figures by Wilhelms[23] and Arm-
strong and Green[1], a variety of control techniques have been proposed. Some of these draw
upon control theory or biological motor control, while others focus directly on creating a usable
tool for animation. The approaches taken by this latter group can be broadly divided into two
classes. The first poses the problem in terms of a trajectory through state-space and time which is
subject to the constraints of physics and the constraints of the desired motion. The second
approach involves creating a controller which produces motion by directly supplying actuating
forces and torques to a mechanical simulation. The first approach has closer ties to keyframing,
while the second better reflects the way movement is generated in real humans, animals, and
robots.

The trajectory-based approach iteratively modifies an initial trajectory towards satisfying the laws
of physics and user-imposed constraints while optimizing a user-defined objective function. This
method was originally proposed by Witkin and Kass[24] and subsequently extended by Cohen[4].
A problem (or feature) of this method is that the laws of physics are treated as a soft constraint,
thus the resulting motion is not guaranteed to be physically plausible.

[to be presented at the Fifth Eurographics
Workshop on Animation and Simulation, Sept. 17-18, 1994]

2

We shall focus on the alternative approach to solving the control problem, namely creating con-
trollers. Controllers provide the benefit of capturing a skill in a reusable way. A controller can be
made even more versatile by parameterizing it in a desired way. A simple example is that of pro-
ducing gaits of different speeds using a single controller. Lastly, controllers can make use of feed-
back, which often allows for a greatly simplified representation of the control and provides the
capability to take corrective actions while a motion is in progress.

Many control structures used in the context of animation take the form of finite-state machines.
Zeltzer uses a hierarchy of finite-state machines to provide kinematic control over a human skele-
ton[25]. Hodgins, Sweeney, and Lawrence use such a representation to control juggling, pumping
a swing, and riding a see-saw[7]. Stewart and Cremer use a state-machine to add and remove con-
straints in order to control a walking biped[18]. The kinematic walking of Bruderlin and Cal-
vert[3] could also be considered as being driven by a type of state machine. Most of these systems
are governed by controllers that discretise a periodic cycle into several states. An alternative is to
make direct use of sinusoidal oscillations, as done by Miller[12], McKenna and Zeltzer[11], and
van de Panne, Fiume, and Vranesic[21]. The work of Raibert and Hodgins[15] in controlling hop-
ping and running motions provides an important step forward, showing how an effective decom-
position can be used for this class of motions to yield a set of simpler, solvable control problems.

The work of Ngo and Marks[13] and van de Panne and Fiume[20] introduced methods of auto-
mating the synthesis of controllers for arbitrary types of simple articulated figures. The control
structures used in these methods can also be considered to be finite-state machines. Each state
specifies a desired pose and transitions between states are either timed or based upon sensory data.
In neither case was it shown how the synthesized controllers could be scripted or parameterized.
The search techniques used in these papers differ in form but are similar in function. Ngo and
Marks sample the parameter space in a global way by initially creating a random population of
controllers. Local searches are then performed using the mutation and crossover operations of
genetic algorithms. Van de Panne and Fiume explicitly separate the global and local search of the
parameter space.

The work in progress reported upon here shows how finite-state machines may be automatically
synthesized using the two-phase optimization technique reported in [20]. We name our control
representationpose-control graphs because each state specifies a desired internalpose for the
creature to take. In their simplest form, namely cyclic pose control graphs, they operate as virtual
wind-up toys. A study ofcyclic pose-control graphs and an analysis of the motions produced is
given in [22]. We use the ideas in [22] as a point of departure for the work in progress presented
here.

The basic operation of pose-control graphs is described in section 2. Section 3 describes how peri-
odic and aperiodic motions are synthesized. Section 4 discusses how the synthesized controllers
can be interpolated to produce parameterized motions. Section 5 concludes and gives thoughts on
future work.

2.0 Pose-Control Graphs

A pose-control graph is a directed graph whose states specify a desiredpose for a creature to take.
The arcs specify conditions upon which transitions between states are taken. A pose consists of a
specification of all the internal degrees of freedom of a creature. This is equivalent to all the
degrees of freedom, less those necessary to position and orient the creature with respect to the

3

external world. Poses are used as input to a simple low-level control system that is responsible for
driving each actuator towards its desired position, typically by exerting torques at rotary joints in
our case. Individual proportional-derivative (PD) controllers are used for this purpose. These exert
forces or torques equivalent to a spring and damper placed between the desired and actual posi-
tions of the given degree of freedom.

A typical pose-control graph is shown in Figure1. The controller shown produces a walking
motion for the seven linkwalker figure, having a total of six actuators. Each state’s pose is also
shown. Note that the walking figure will never exactly match the specified poses during its
motion. Because the poses represent desired internal configurations, we can nevertheless obtain an
idea of the expected motion by inspecting the poses alone, just as with keyframes.

Pose control graphs can have several topologies, the simplest of which are shown in Figure2.
Cyclic pose-control graphs are particularly useful for controlling any kind of locomotion because
this is usually periodic in nature. Aperiodic motions can be specified using a linear chain of poses.
Lastly, more complex pose-control graphs can be constructed through composition, yielding an
arbitrary directed graph.

In general, transitions between states can be of several types, although here we shall only deal
with timed transitions. This type of transition causes a change of state after a fixed time interval.
As such, it is a type of open-loop control. We choose to study time-based transitions because it is
important to know what the limitations of open-loop control are before examining the larger space
of possibilities that exists when arbitrary sensory feedback is allowed.

A study limited tocyclic pose-control graphs with timed transitions was presented in [22], which
we now briefly summarize. Several choices in the design of the optimization procedure are analy-
sed. As well, the impact of the design of the physical models upon the motions produced is exam-

FIGURE 1. A pose-control graph for the walker. The arc labels
indicate the duration of the timed state transitions.

T0.14

T0.14

T0.14T0.14

FIGURE 2. Two possible topologies of pose-control graphs.

linear
cyclic

4

ined. Lastly, the motions produced by cyclic pose-control graphs are analysed by looking at their
bifurcation diagrams. Our present work proceeds onwards from [22] in two different directions.
First, we extend the pose-control mechanisms to non-periodic motions. Second, we show that the
pose-control graph representation is useful for being able to interpolate and parameterize physi-
cally-based motions.

Our experiments are carried out on a class of 2D planar articulated figures, although our initial
experiments with 3D creatures have proved to be promising. A creature is specified by modelling
its musculo-skeletal structure. In our case, the skeleton is composed of an assembly of rigid links
connected with rotary pin joints. The ranges of each joint are specified to restrict the poses of a
model to a desired set of allowable configurations. The construction of the walker creature is
shown in Figure3. The muscles are specified by placing actuators of desired strengths at the joints
of the model. The strength of an individual actuator is fixed by its spring-and-damper constants,

 and respectively. The torque exerted is thus given by , where and
 are the position and velocity of the degree of freedom associated with the actuator. is the

desired position of the joint, which is specified by the current pose. Although we use articulated
figures here as models, our method could equally well apply to controlling deformable objects.

3.0 Synthesis of Periodic and Aperiodic Motions

To generate a motion, an animator first creates an actuated, articulated figure, specifies the topol-
ogy of the pose-control graph and decides on an optimization metric that distinguishes among
“better” and “worse” control solutions. Typically this function is some combination of measurable
quantities, such as velocity, distance or height of a motion, the stopping distance, the energy con-
sumed, or jerkiness. If the motion is to be periodic, a cyclic graph topology is required. Given a
desired period and a cyclic pose-control graph consisting of states, initial timed transitions of
duration are used. If the motion is aperiodic, a linear pose-control graph using timed transi-
tions is specified apriori.

Supplying an initial timing for a pose-control graph is equivalent to providing some of the infor-
mation available from a keyframe sketch of the motion. In our case, the number of poses and their

L1

L2

L3
L4

L5

L6

L7
30 cm

Actuators

actuator min max
A1
A2
A3
A4
A5
A6

-70

A3

A5

A6

A1,A4

A2

45
-35
80

-40 10
-30 30
45 80
-40 10

reference
L1 wrt L2
L2 wrt L3
L3 wrt L4
L5 wrt L2
L5 wrt L6
L6 wrt L7

+

FIGURE 3. The walker creature. The reference position representing
the zero state for all the degrees of freedom has the figure standing up
straight. “wrt” is used to denote “with respect to”.

kp kd T kp qd q−() kdq̇−= q
q̇ qd

T n
T n⁄

5

timing represent important a priori information. In practice, this information serves to greatly
reduce the search space (and hence search time) for the synthesis procedure. Similarly, making the
pose-control graph cyclic when a periodic motion is desired provides an important constraint on
the search space which greatly reduces the search time. As a result, the time and computational
power necessary to synthesize solutions can be greatly reduced from those reported in [13] and
[20]. It is worthwhile noting that reasonable estimates of the required a priori information could
likely be derived automatically from information about the size of the object and the complexity
of the motion to be performed.

The synthesis technique must determine the pose for each state such that a desired motion is pro-
duced. Our synthesis technique follows the work of [20] in applying a two-phase search, consist-
ing of a global search followed by a local search. Both phases of the search are carried out by
using forward simulation trials of the controller in operation. This approach can be described as
generate-and-test or modify-and-test. The technique repeatedly stochastically generates or modi-
fies existing controllers and then evaluates them with respect to the optimization metric by per-
forming a physical simulation. The first phase, making use of generate-and-test, is used to
generate a set of candidate controllers that perform best (but probably not well) with respect to the
optimization metric. A random candidate controller is generated by assigning randomly-generated
poses to the states in the pose-control graph. Typically we choose to generate and test around 100
controllers, retaining the best 10 controllers as being of interest.

The second phase involves using modify-and-test. In our implementation, a randomly-chosen
parameter of the controller is perturbed by a fixed delta. The parameter vector to be optimized
includes all the degrees of freedom of each pose as well as the transition times between poses. We
choose to fix the value of delta to 5 percent of the joint range for pose angles and to 5 percent of
the original transition times for the state-transition times. The decision to keep or reject a given
controller change is based on the change in resulting performance with respect to the optimization
metric. As in [20], both gradient descent and simulated annealing can be used. Gradient descent
keeps any changes which result in an improved performance and rejects all others. A more robust
optimization scheme is obtained by using simulated annealing[9][20]. In this case, the decision to
accept or reject a change for the worse is governed by a stochastic variable and the annealing
schedule, which gradually lessens the probability of accepting changes for the worse over time.
200-500 trials are typically carried out during the local optimization phase. As with the work pre-
sented in [13], [14], and [20], an optimized physical simulator is necessary to minimize the time
necessary to carry out the trials.

Despite the apparent limitations of open-loop control, the motions that can be obtained using
cyclic pose-control graphs and the synthesis technique just described can be natural and graceful
in appearance, although admittedly this is subjective. Figure 4 shows several frames from a speed-
optimized gait for the cheetah creature. A surprising result is that this kind of gait can be con-

FIGURE 4. A running gait for the 7-link cheetah creature. The motion
has been scaled for the purposes of illustration. In the original motion,
the creature covers more than twice its body length with each bound.

6

trolled in an open-loop manner. It is locally stable with respect to small perturbations, always
being drawn back to a terminal limit cycle. The analysis of such local stability has been more
extensively studied elsewhere[10]. Other results and analyses of cyclic pose-control graphs are
presented in [22]

Many interesting aperiodic motions can be derived from periodic motions. Suppose we wish Luxo
the hopping lamp to perform a large leap half-way through a sequence of hops. Let the hopping
gait have a cyclic pose-control graph consisting of poses A, B, C, as in the top-left of Figure5. We
now “unwind” two cycles of the motion so that a linear chain of poses exists at the time of the
desired leap. After the leap, we reinstate the cyclic hopping motion. We thus have a full pose-con-
trol graph as depicted in Figure5. Four states in the chain are marked as modifiable, as well as the
timing of the transitions between these states. These are thus the set of parameters which can be
changed by a local optimization (phase two) to allow anticipation, leaping, and recovery for the
leap. The leap itself is specified by using the distance travelled over all the hops as an evaluation
metric. Because only the parameters associated with one hop are modifiable, this hop is optimized
to become a leap. Proper anticipation and recovery is ensured because the entire sequence of hops
is simulated during each trial.

The results of the synthesis of a leap are shown in Figure6. Simulated annealing is used as the
optimization technique for this particular motion. The optimization function for this synthesis is
the distance travelled over all 7 hops. As well, all changes resulting in a fall are rejected. A fall for
Luxo is defined as any part of the body (other than the base) touching the ground. The synthesis of
such a leaping motion typically requires on the order of 300 simulation trials, requiring approxi-
mately one hour to compute on a modern workstation (~60 SPECfp92).

Surprisingly, the result can also be parameterized. In determining the control for as large a leap as
possible, we also have determined the control for any intermediate-size leap. Figure6d shows the
result of such a medium-sized leap, obtained by interpolating between the original and final pose-
control graphs of the synthesis process. This kind of parameterization is further discussed in sec-
tion 4. A useful outcome is that a creature can directly use the results of an ‘obstacle detector’

AB

CB

C

A

B C

A

B C

modifiable state

fixed state

modifiable transition

fixed transition

FIGURE 5. Unwinding a pose-control graph. A periodic motion can
serve as the basis of an aperiodic motion by unrolling a portion of
the cyclic pose-control graph.

7

returning the distance-to and size of upcoming obstacles in order to always generate appropriate
jumps.

Stopping is an important and largely unexplored aspect of motion. It can be automatically synthe-
sized using our approach. We begin with a fast hopping gait for Luxo. The controller consists of a
three-state cyclic pose-control graph. The last two of a total of five cycles are ‘unwound’ and these
poses are marked as modifiable. The optimization function to be minimized is in this case the dis-
tance travelled without falling over, with a penalty assigned for travelling backwards. This is
expressed in , where is the furthest distance travelled at any
point in the motion, and is the final position at the end of the motion.

FIGURE 6. Synthesis of a leap. A regular hopping gait for Luxo is shown
in (A). For clarity, only the motion of the middle link is shown. (B) shows
the result of a leaping motion derived from (A) through optimization. (C)
details the anticipation and recovery involved in the leap. (D) shows a
smaller leap, obtained by interpolating between the control used for (A)
and (C).

4x scaling

A

B

C

D

FIGURE 7. Synthesis of a stop. (A) shows a fast hopping gait for Luxo.
The middle link only is shown. (B) shows a stopping motion derived
from (A) through optimization. (C) shows a slowing-down motion
obtained by interpolating between the control used for (A) and (B).

A

B

C

fopt xmax xmax xend−()+= xmax
xend

8

The results of the synthesis process for a stopping motion are shown in Figure7. The stopping
motion is achieved over one hop. Simulated annealing was used to find the parameter modifica-
tions necessary to proceed from the original, fast periodic gait to the same gait with a quick stop. It
is thus possible to specify a motion such as ‘stop as soon as possible’ through the use of optimiza-
tion functions without fixing the final time at which the stop should happen. As with the leaping
motion, the original and final pose-control graphs can be interpolated to yield pose-control graphs
for intermediate stopping motions. Figure7c shows a slowing-down motion achieved in this man-
ner.

The two-phase synthesis technique can also be applied directly to the synthesis of non-periodic
motions. These are specified using linear pose-control graphs. We assume that the number of
poses and an initial estimate of the timing between successive poses is specified in advance. This
information could in principle also be automatically synthesized, but we view it as a useful way
for an animator to provide a concrete specification of the desired motion. Something that requires
more thought for aperiodic motions is the optimization function. In the case of the recovery
motions that we shall consider, the goal of a motion is to get the creature from a fallen-down state
to one where the creature is back on its ‘feet’ again. It is necessary in this case to provide an opti-
mization function that will reflect any partial progress made towards the goal.

Figure8 shows the two possible landing states for Luxo and the synthesized recovery motions.
For the Luxo creature, the optimization metric is the deviation of a line passing from the centre of
the base to the centre of mass from the horizontal. Both phases of the optimization technique are
used, with gradient descent being used to accomplish phase two. The recovery motion from the
front requires fewer trials to find than the fanciful backward roll required to recover from its back.

The recovery motion for the walker is shown in Figure9. There are few possible recovery solu-
tions because of the lack of ‘arms’ on the walker. The position of the final pose is specified in
advance to avoid adding the expense of searching for a suitable stable upright position to the
search for the recovery motion itself. The optimization metric to be maximized is the angle of the
centre of mass measured in a fashion similar to that used for Luxo. This provides a suitable indica-
tor of partial progress towards the desired recovery motion. Despite being a more complex figure
than Luxo, the recovery motions required fewer trials for the walker. This suggests that the
required synthesis time is not only a function of model complexity. It is also dependent on the

FIGURE 8. Fall recovery for Luxo. The same pose control graph
is used for both recoveries (A). The two recovery motions are
quite different (B and C), and are shown with different display
time steps.

T0.2 T0.2
1 2 3A

B

C

9

“ease” of the problem being solved. We have also had success in using a secondary optimization
metric that minimizes the energy used in order to achieve more efficient recovery motions.

The direct synthesis of aperiodic motions using linear pose-control graphs becomes more difficult
as the motion involves more states. Whereas periodic motions typically require only three or four
poses, lengthy aperiodic motions may easily require more. Each additional parameter in effect
adds another dimension to the parameter space to be searched. While the stochastic synthesis tech-
niques are relatively adept at searching in high-dimensional parameter spaces, it is still clearly
advantageous to keep the dimension of the search space as low as possible. As a result, complex
aperiodic motions are probably best synthesized in several segments. This has been noted earlier
in the work of Cohen[4].

4.0 Motion Parameterization

Parameterized motions are an essential way of dealing with the enormous space of all possible
motions. It is also a necessary step for being able to build more complex control mechanisms
based upon more abstract notions of motion. Thus far we have shown that the animator can influ-
ence a motion through the construction of the model and the specification of the optimization met-
ric. In this section we shall show how variations on a gait can be generated without the use of
optimization, and how gaits can be interpolated and parameterized using the pose-control graph
representation.

There is a complex relationship between the parameters of a pose-control graph and the resulting
motions it produces. This relationship is determined through simulation because of the general
difficulty in determining it analytically for arbitrary figures. A simulation of the creature with a
given pose-control graph yields the resulting motion. A small change in the parameters of the
pose-control graph usually leads to a small change in the resulting motion. As a result of this prop-
erty, it is possible to interpolate between similar motions by interpolating between their controller
parameters. We shall define similar motions as any in a set of motions originally derived from the
same pose-control graph.

T0.2 T0.2
1 2 3A 4

T0.2

B

C

FIGURE 9. Fall recovery for the walker. A 4-state pose control
graph is used (A) for both recovery motions (B and C).

10

Figure10 illustrates how a variety of similar gaits can be arrived at. The axes of the figure are
defined by two arbitrarily-chosen parameters of a pose-control graph, and . These may thus
represent a degree of freedom in the pose for a state or the timing information for a state transition.
The figure shows two different ways in which these parameters can be changed from their nominal
values to yield variations of a nominal motion. One method already discussed for changing the
values of the parameters is to use optimization techniques. These typically lead to controllers such
as those marked A and B in Figure10. Our current implementation of the optimization techniques
only makes changes to one parameter at a time, resulting in the types of parameter trajectories
shown.

Another method of automatically generating variations of a motion is to randomly choose a direc-
tion in the parameter space and to explore changes in this direction until a similarity criterion is no
longer met. This type of exploration results in the synthesized variations of the type shown in
Figure10. In order to use this approach, one needs to specify only a single similarity metric, as
opposed to the alternative of specifying a different optimization metric for each variation desired.
To date, we have used speed as a similarity criterion. Any gait having a speed within% of the
nominal gait is classified as being similar.

In order to be able to effectively generate a random direction in the parameter space, it is neces-
sary to know the sensitivity of the motion with respect to each parameter, in terms of the similarity
metric. For this reason, the axes of the parameter space are first explored to determine these sensi-
tivities. The results can be used to normalize the parameter space for the automated synthesis of
motion variations.

Once many variations of pose-control graphs have been generated, either through an optimization
procedure or the synthesis procedure described above, these variations can then be used as a type
of palette by an animator to interactively design new gait variations. The interface we propose for
interaction with the motions is based upon similar ideas used for modelling plant-like struc-
tures[5], sculptures [6] [19], and abstract images and animations[16][17]. The current instance of
the motion being designed and a set of alternative variations are presented at the same time. This
type of design-through-selection has previously proved to be an effective interface for exploring
other types of high-dimensional spaces[5][16][19]. Figure11 shows the user interface for this type
of gait design. The sliders associated with the nine smaller windows are used to change the control
parameters of the pose-control graph being designed towards those of the chosen example. The

FIGURE 10. Obtaining variations of a motion.

p1

p2

nominal values
optimized variations
synthesized variations

A

B

p1 p2

30±

11

parameters for the pose-control graph being designed are calculated as a linear combination of
those of the nominal motion and the variations selected using the sliders.

Using linear combinations of control parameters to create new controllers generally results in pre-
dictable motions, but this need not always be the case. If a nominal controller is defined by a
parameter vector and a speed-optimal variation of that controller is defined by, then there is
no guarantee that a controller defined by , will have ,
where , , and are the respective speeds attained by the nominal, optimal, and interpolated
controllers. In practice thus far we have found that the motions resulting from interpolated con-
trollers are generally predictable and well-behaved. Convex combinations are generally the most
predictable.

A powerful result of the ability to interpolate between gaits in the pose-control graph representa-
tion is that it allows for arbitrary parameterizations of motions. For example, as a result of having
synthesized a fast gait from a slow one, we also know how to generate a gait of any in-between
speed. In a more complex setting, the high dimensional parameter space of the controller can be
reduced for control purposes to a low-dimensional parameter space designed by the animator. As
an example, a four dimensional parameter space can be designed by choosing four motion varia-
tions to serve as the axes of a new four-dimensional space. The nominal motion lies at the origin
of this new space. We also foresee parameterized motions being useful in building more complex
controllers. Having direct control over more abstract parameters such as speed should simplify the
creation of higher levels of control.

Figure12 shows an example of interpolating between gaits by linearly interpolating the parame-
ters of two pose-control graphs. As described earlier, an interpolated controller is used in a simula-
tion to generate an interpolated motion. The motion which is generated in this fashion thus has the
desirable characteristics of an interpolated gait, while at the same time being faithful to the laws of
physics.

It is interesting to note that the result of interpolation in the controller parameter space
(Figure12C) yields a different result than kinematic interpolation of individual degrees of free-
dom between appropriate frames of the two animations (Figure12D). In general, kinematic inter-

[317 by 206 pixels, 1.000 aspect ratio, 2.50 by 1.62 inches]
FIGURE 11. The display for interactive gait design. The window on the
left displays an ongoing physical simulation of the controller being
designed, while the 9 smaller windows play back animations of
possible gait variations.

Pn Ps
P kPn 1 k−() Ps+= k 0 1,[]∈ vn v vs≤ ≤

vn vs v

12

polation can cause violations of physical constraints. Pose-control graphs seem to be an effective
representation for interpolating between different motions variations while allowing all physical
constraints to be properly maintained.

5.0 Conclusions

Pose-control graphs are a flexible control representation for use in creating parameterized periodic
and aperiodic motions for physically-based creatures. When used with timed state-transitions,
their open-loop control is simple in nature but is capable of producing graceful and complex
motions when used with the appropriate synthesis techniques.

While the use of state-machines for control is common, we have shown how to apply optimization
techniques in new ways towards the automatic synthesis of desired motions. It has been shown
that different kinds of aperiodic motions can be synthesized using periodic motions as a starting
point. More importantly, it has been shown that motions can be easily parameterized using the
pose-control graph representation. This makes it easier to design higher-level controllers as well
as allowing for the interactive design of physically-based motions.

There are several problems with the proposed techniques which have not been addressed. A large
class of motions cannot be controlled in the open-loop fashion of pose-control graphs. Motions
that are neither statically nor dynamically stable without the use of feedback, such as balancing a
pole or riding a bicycle, cannot be controlled using open-loop methods. Such types of motion are
in general effectively controlled using continuous state feedback. The synthesis of pose-control

FIGURE 12. Interpolating between gaits. (A) shows the nominal gait
for this example. (B) shows a variation of the gait in (A), which tilts the
front of the base much further down during a jump. (C) is a gait
determined by a controller calculated to lie midway between that of
(A) and (B), and then simulating the result. (D) shows the result of
using the equivalent kinematic interpolation between (A) and (B). The
gait in (C) is further mixed with a fast gait to obtain (E).

(4x scaling in x for all graphs)

13

graphs through optimization remains a computationally expensive process. Synthesis typically
takes on the order of 100-600 trials, each trial chosen to have a duration of 4 or 5 seconds of sim-
ulation time. Each such trial typically takes anywhere from 5 - 80 seconds to complete on a mod-
ern workstation for planar articulated creatures having 7 or fewer links.1 It is likely that this could
be improved considerably by further refining the optimization process, introducing varying
degrees of simulation fidelity at varying costs, and parallelizing the execution of the simulation
trials across multiple processors.

How well the synthesis technique presented here scales with the animation of more complex
objects remains to be seen. In performing global searches of large parameter spaces, efficient algo-
rithms must take advantage of some underlying structure or constraints of the problem to be
solved. We believe that the control representation and algorithms we work with here can be
readily extended to take advantage of any structure or constraints that may be used to deal with
complex systems. It is worthwhile noting that many articulations in animals are not independently
controllable, such as those in the spinal cord. This suggests that the control problem is not as com-
plex as the number of joints in an articulated figure might indicate. Furthermore, it is easy to con-
ceive of simple models as being the initial steps in a coarse-to-fine solution process that terminates
with a model of the desired complexity and its controller.

A variety of future work is necessary to further build on the work presented here. We are currently
studying how to compose the synthesized motions together in order to obtain more complex
autonomous behaviours. The techniques described here also need to be extended to more com-
plex, three-dimensional models and movements. The motions generated through the use of opti-
mization are an equal product of both the optimization techniqueand the physical model.
Constructing more complex models of both the figure (skeleton) and its actuators (muscles) is
likely necessary to achieve the next degree of realism in physically-based animations. Given that
many interesting and useful motions can be synthesized using largely open-loop control, it is
interesting to examine in a systematic way exactly what additional control benefits can be
obtained by allowing the use of a variety of sensory information. It is not clear what thebest way
of integrating sensory information into a controller should be. Pose-control graphs are structured
to use sensory information to make discrete decisions, so this is a first route of investigation.

References

[1] W. W. Armstrong and M. Green, The Dynamics of Articulated Rigid Bodies for Purposes
of Animation. Proceedings of Graphics Interface ‘85, 1985, 407-415.

[2] N. I. Badler, B. Barsky, and D. Zeltzer. Making Them Move.Morgan Kaufmann Publishers
Inc., 1991.

[3] A. Bruderlin and T. W. Calvert. Interactive Animation of Personalized Human Locomo-
tion. InProceedings of Graphics Interface ‘93, 1993, 17-23.

[4] M. F. Cohen. Interactive Spacetime Control for Animation.Proceedings of SIGGRAPH
‘92. In ACM Computer Graphics, 26, 2 (July 1992), 293-302.

[5] R. Dawkins.The Blind Watchmaker. Harlow Logman, 1986.

1. Our planar dynamics simulator is currently available through anonymous ftp from: dgp.utoronto.ca in the directory
pub/van.

14

[6] M. Haggerty. Evolution by Esthetics, an interview with W. Latham and S. Todd. IEEE
Computer Graphics and Applications, 11, 2 (March 1991), 5-9.

[7] J. K. Hodgins and M. H. Raibert. Biped Gymnastics. The International Journal of Robotics
Research, 9, 2 (April 1990), 115-132.

[8] J. K. Hodgins, P. K. Sweeney, and D. G. Lawrence. Generating Natural-looking Motion
for Computer Animation.Proceedings of Graphics Interface ‘92, 265-272, May 1992.

[9] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by simulated annealing.Sci-
ence, 220, 13 (May 1983), 671-680.

[10] T. McGeer. Passive Dynamic Walking.The International Journal of Robotics Research, 9,
2, 1990, 62-82.

[11] M. McKenna and D. Zeltzer. Dynamic Simulation of Autonomous Legged Locomotion.
Proceedings of SIGGRAPH ‘90. In ACM Computer Graphics, 22, 4 (August 1990), 29-38.

[12] G. S. P. Miller. The Motion Dynamics of Snakes and Worms. Proceedings of SIGGRAPH
‘88. In ACM Computer Graphics, 22, 4 (August 1988), 169-178.

[13] J. T. Ngo and J. Marks. Spacetime Constraints Revisitied. Proceedings of SIGGRAPH ‘93.
In ACM Computer Graphics, 27 (August 1993).

[14] J. Park, D. Fussell, M. Pandy, and J. C. Browne. Realistic Animation Using Musculoten-
don Skeletal Dynamics and Suboptimal Control.Third Eurographics Workshop on Anima-
tion and Simulation, September, 1992.

[15] M. H. Raibert and J. K. Hodgins. Animation of dynamic legged locomotion.Proceedings
of SIGGRAPH ‘91, In ACM Computer Graphics, 25, 4 (July 1991), 349-358.

[16] K. Sims. Artificial Evolution for Computer Graphics.Proceedings of SIGGRAPH ‘91, In
ACM Computer Graphics, 25, 4 (July 1991), 319-328.

[17] K. Sims. Primordial Dance.ACM Siggraph Video Review, issue 71, segment 26, 1991.

[18] A. J. Stewart and J. F. Cremer. Beyond Keyframing: An Algorithmic Approach to Anima-
tion. InProceedings of Graphics Interface ‘92, 1992, 273-281.

[19] S. J. P. Todd and W. Latham. Mutator: A Subjective Human Interface for the Evolution of
Computer Sculptures.IBM United Kingdom Scientific Centre Report 248, 1991.

[20] M. van de Panne and E. Fiume. Sensor-Actuator Networks.Proceedings of SIGGRAPH
‘93, In ACM Computer Graphics, August 1993, 335-342.

[21] M. van de Panne, E. Fiume, and Z. Vranesic. Physically Based Modeling and Control of
Turning.CVGIP: Graphical Models and Image Processing, 55, 6 (Nov. 1993) , 507-521.

[22] M. van de Panne, R. Kim, and E. Fiume. Virtual Wind-up Toys for Animation, to appear in
Proceedings of Graphics Interface ‘94, May, 1994.

[23] J. Wilhelms and B. Barsky. Using Dynamic Analysis for the Animation of Articulated
Bodies such as Humans and Robots.Proceedings of Graphics Interface ‘85, 1985, 97-104.

[24] A. Witkin and M. Kass. Spacetime Constraints.Proceedings of SIGGRAPH ‘88.In ACM
Computer Graphics, 22, 4 (August 1988), 159-168.

[25] D. Zeltzer. Motor Control Techniques for Figure Animation.IEEE Computer Graphics
and Applications, Nov. 1992, 53-59.

