
Eurographics/SIGGRAPH Symposium on Computer Animation (2003)
D. Breen, M. Lin (Editors)

On Creating Animated Presentations

Douglas E. Zongker1 David H. Salesin1;2

1 University of Washington, Seattle, Washington, USA
2 Microsoft Research, Redmond, Washington, USA

Abstract

Computers are used to display visuals for millions of live presentations each day, and yet only the tiniest fraction
of these make any real use of the powerful graphics hardware available on virtually all of today’s machines. In this
paper, we describe our efforts toward harnessing this power to create better types of presentations: presentations
that include meaningful animation as well as at least a limited degree of interactivity. Our approach has been
iterative, alternating between creating animated talks using available tools, then improving the tools to better
support the kinds of talk we wanted to make. Through this cyclic design process, we have identified a set of common
authoring paradigms that we believe a system for building animated presentations should support. We describe
these paradigms and present the latest version of our script-based system for creating animated presentations,
called SLITHY. We show several examples of actual animated talks that were created and given with versions of
SLITHY, including one talk presented at SIGGRAPH 2000 and four talks presented at SIGGRAPH 2002. Finally,
we describe a set of design principles that we have found useful for making good use of animation in presentation.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities – ap-
plication packages I.3.6 [Computer Graphics]: Methodology and Techniques – languages

1. Introduction

By Microsoft estimates, at least thirty million PowerPoint
presentations are made every day.16 Even if this estimate is
off by an order of magnitude, the implication is clear: pre-
sentation software is a technology that is having an impact
on people’s lives.

Modern-day presentation software – of which Power-
Point, in representing 95% of the presentation-software mar-
ket, is the most prominent example by far – is still rooted
firmly in the past. Although the software has evolved in
many ways, PowerPoint presentations are still essentially
static in nature, just as they were when the software, orig-
inally designed to create overhead transparencies, was first
released in 1987. Even in the latest, animation-enhanced
PowerPoint XP, what limited animation capabilities there are
exist almost entirely to provide “canned” embellishments to
the static layout of the slide—a snazzy entry or exit for a
given text or graphical element, or a way of momentarily
highlighting a particular element.

As researchers and educators, we give a lot of talks, and
we sit through even more. Our own lives would be improved
if we could give – and receive – better talks. This paper ex-
plores how computers might be used to help us communicate
more effectively. In particular, we examine how computers
could be used to create meaningful animation, as well as
some degree of interactivity, to improve live presentations.

Our approach to this problem has been iterative: we be-
gan by trying to make talks that incorporated animation and
interactivity using existing software tools. This led to a wish
list of effects we wanted to achieve and ways we wished
the authoring worked. We began implementing and using
our own system, alternately creating talks and improving
the system itself. We have coalesced our observations about
strategies for authoring animated presentations into a set of
three authoring principles, which we discuss in Section 2.

Our current system is called SLITHY. It is an animation
tool designed specifically for creating and giving presenta-
tions. In designing SLITHY, we ideally wanted to accommo-
date as wide a range of users as possible. However, try as we

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

might, we were unable to imagine any single graphical user
interface – the type of interface, perhaps, that the highest
number of users would find intuitive – that could encompass
the staggering variety of animations that we could envision
authors wanting to create. Ultimately, we chose to emphasize
power over ease of use. SLITHY is therefore a script-based
programming system, analogous to TEX for text processing,
and as such is better suited for use by more technically-
inclined users. Despite these limitations, SLITHY has been
used to give a number of presentations (including four at
SIGGRAPH 2002 by users other than the authors of the sys-
tem). Although we recognize that this style of authoring is
not for everyone, we feel that the problem of creating bet-
ter presentations is important enough and hard enough that
even a solution that serves only the needs of a more limited,
but still significant community (including, but not limited
to, the technical contributors to SIGGRAPH and other com-
puter graphics conferences) is a worthwhile step. The design
and implementation of SLITHY are covered in Section 3.

It is an open question among cognitive psychologists
as to whether or not animation improves learning. A
number of studies3; 15; 20 have found a positive effect, but
other researchers criticize these results on methodological
grounds.13; 21 The central issue seems to be determining how
to make two presentations, one animated and one not, that
are exactly equivalent, “except for the animation.” Despite
the lack of conclusive psychological research, people are us-
ing animation, even if it is only the simple effects available
in PowerPoint. In our experience, audiences seem to appreci-
ate a richer style of animation even more. As we made more
and more of these animated talks, we were also interested in
learning how best to apply animation in presenting material.
If animation is going to be used, we can at least try to make
it as useful as possible. We have tried to understand why
some uses of animation seemed to make information clearer,
while others appeared to be simply gratuitous and distract-
ing. For example (and to our own surprise), we found that
many of the principles of classical animation10 do not neces-
sarily work so well for presentations. In Section 4 we detail
our observations on principles for good presentation anima-
tion.

Finally, Section 5 shows examples of some presentations
created with our system, Section 6 compares SLITHY, the
system we built, to other existing systems, and Section 7
presents some conclusions and directions for future work.

2. Authoring principles

Our first set of principles is concerned with techniques
for authoring animation. Since presentation animation com-
monly has a different purpose and visual style than charac-
ter animation, we expect that authors will demand a different
set of tools for creating the animation. Here we discuss three
general authoring techniques that we have found to be use-
ful.

Figure 1 Four instances of a pulley diagram, with the handle
in different positions. Parameterization lets us animate the
diagram by manipulating a single abstract “amount of pull”
parameter, rather than managing all the individual graphical
elements individually.

Use parameterization. The first principle is the use of pa-
rameterization at all levels of the system. The use of param-
eterized models is common in 3D character animation tools.
Since it is impractical to create 3D animation by keyframing
individual pieces of geometry, a layer of indirection is added.
Models are created that encapsulate the details of geometry
and expose high-level logical parameters to the animator.

This idea is just as useful in 2D as it is in 3D, though it
is not so commonly seen in 2D animation tools. When we
create a figure for use on an animated slide, we want to cre-
ate not just a picture but also a set of behaviors that restrict
how the parts of the diagram move and change, similiar to
the work of Ngo et al.14 This simplifies the task of anima-
tion considerably. Consider the pulley diagram of Figure 1.
It is much easier to create and edit an animation by changing
an abstract “pull” parameter than by moving the rectangle,
lengthening and shortening the lines, rotating the triangle,
and so on. We express just once the mapping between model
parameters and the underlying geometry; then we can (po-
tentially) use that model again and again in multiple anima-
tions. Of course, just as in character animation, the model
and the animation cannot be designed in isolation from each
other. If a character needs to smile in one scene, the model
had better have a “smile” control. If a slide diagram needs to
animate in a certain way, the diagram creator needs to make
sure it exposes the appropriate controls.

Combining graphical primitives into models is not the
only application for parameterization within a presentation
authoring system. Many elements of a presentation are typi-
cally used repeatedly throughout the talk, from the animated
transitions to the layout of text on slides. We desire sup-
port for creating all these elements through parameterizable
macros, partly to avoid repetitious work by the author and
partly to encourage the use of a unified visual style through-
out a presentation—including the ability to make changes to
the style without editing each individual slide.

Treat animations as models. The second principle we
have observed is the usefulness of treating animations them-
selves as parameterized models that happen to have a single
parameter: time. By this way of thinking, both animations
and models are objects that map a set of input parameters
onto a set of output graphical primitives. The only thing spe-

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

cial about “animations” is that their input parameter set hap-
pens to consist of a single scalar value. The advantage of this
approach is that an animation object does not have to contain
everything visible on the screen at once. Instead, we can con-
struct animations in smaller logical units and combine them
to make slides, just as we would combine static graphics and
text in standard presentation tools.

Build slides hierarchically. The result of combining ani-
mations together is, of course, a new composite animation.
This suggests our final authoring principle, that of support-
ing deep hierarchical assembly. We want the ability to nest
these characters and models within each other to any de-
gree of depth. This ability is not typically necessary in a
traditional character animation setting. There, the modeled
characters are placed into a scene, their controls manipu-
lated via keyframing, and frames rendered out. In presenta-
tions, though, the models and animations can be much more
abstract, and it often makes sense for them to be included
in one another. For example, imagine a slide (an anima-
tion) that features a block diagram of a system. The diagram
would be created as a parameterized model. Each block of
the diagram might contain a thumbnail animation to suggest
to the audience the task performed inside that block. The
small animations would each contain their own models as
well. While very deep nesting is not necessary – a few levels
is all that is probably useful in practice – it is clearly useful
to support more than just one level of models-in-animations.

3. Slithy

Our presentation system, SLITHY, is implemented as a set of
libraries and a runtime system for the popular programming
language Python. SLITHY users therefore have access to a
complete, general-purpose programming language for use in
creating their animations. A presentation in SLITHY can be
thought of as a collection of drawing objects. There are three
major types of drawing object available in SLITHY:

� Parameterized diagrams can require an arbitrary set of pa-
rameters as input, and they produce their graphical output
imperatively by executing a procedure that makes calls to
the SLITHY drawing library. The user creates a parame-
terized diagram by writing a Python function; this Python
function is executed every time the diagram needs to be
redrawn. These functions can contain arbitrary Python
code; they are not limited to the primitives available in
our graphics library. They can also invoke other parame-
terized diagrams or animation objects.

� Animation objects require exactly one scalar parameter,
which we will typically think of as representing time.
The object provides a mapping from the time parameter
to a set of other drawing objects to invoke, along with
values for their parameters. This kind of object is con-
structed by writing an animation script in Python. The

script is executed just once to produce the animation ob-
ject. Each command in the script edits the mapping that
the object represents; the finished object is returned at the
completion of the script. The SLITHY runtime system can
then “play” an animation object by repeatedly invoking it,
passing in the current time as the value of its parameter.

A single animation object can control the parameters of
multiple other drawing objects. In addition to user-created
parameterized diagrams, the system also has a number of
built-in objects to display things like background fills, text
boxes, still images, and bulleted lists. These objects are
essentially very simple prefabricated parameterized dia-
grams created to implement commonly used slide ele-
ments.

� Interactive objects are similar to animation objects in that
they represent a mapping from a single scalar time pa-
rameter to a set of other drawing objects and their param-
eters. The difference is that while animation objects are
created by a single script, executed just once when the
presentation is loaded, interactive objects can be edited
while they are being played. The author writes an inter-
active controller that contains handlers for input events
such as keystrokes and mouse movements. The handlers
can then modify the animation being shown. With inter-
active controllers, the presenter can effectively generate a
new animation object during the presentation.

Every drawing object takes a set of input parameter values
and produces graphics on its own notionally infinite can-
vas. A camera rectangle specifies what region of that canvas
must be visible in the object’s viewport. An object’s view-
port may be placed on the canvas of another object. In this
way, drawing objects can contain each other in a hierarchy.
Each object is responsible for providing parameters to the
objects it contains. The top object of the hierarchy is always
an animation object, whose viewport is the entire SLITHY

window, and whose single time parameter is driven by the
computer’s real-time clock.

The remainder of this section will discuss the three classes
of drawing objects and their implementations in more detail.

3.1. Parameterized diagrams

Parameterized diagrams are the most straightforward kind of
drawing object. A parameterized diagram is simply a Python
function that does some drawing when called. For doing this
drawing, SLITHY provides a graphics library that has a vari-
ety of primitives beyond the lines and triangles provided by
OpenGL.

We will illustrate some of the features of our param-
eterized diagram system by building a simple example—
constructing an analog clock face. We begin with this six-
line function:

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

def clock_face():
set_camera(Rect(-12, -15, 12, 12))
clear(white)
thickness(0.25)
circle(10, 0, 0)
circle(10.5, 0, 0)

The Python keyword def is used to introduce a new func-
tion, named clock_face in this example. The other five
lines are calls to functions in the drawing library. First we
specify what rectangular portion of the infinite canvas must
be visible in the diagram’s viewport—in this case, the area
from (�12;�15) to (12;12). Then we clear the diagram’s
canvas to white, set the line thickness, and draw a pair of
concentric circles around the origin. Note that diagrams are
written in a straightforward imperative style of program-
ming. This function is called every time the diagram is to
be drawn (typically, once per frame of animation). There is
no object state to track from one invocation to the next; the
appearance is completely specified by the sequence of draw-
ing library routines used in the current call to the function.

Continuing the example, suppose we want to place marker
dots at the 12, 3, 6, and 9 o’clock positions. We could do this
with four calls to the dot drawing function (which produces
a filled circle), but instead we’ll encapsulate the marker-
drawing code in a new helper function and call that instead.
To the function started above, we add:

marker(9, 0)
marker(0, 9)
marker(-9, 0)
marker(0, -9)

def marker(x, y):
dot(0.5, x, y)

This version of the code creates a function marker that
takes two parameters, x and y, and draws a marker at the
indicated position. For simply drawing a dot this might be
overkill, but suppose we then wanted to change every marker
from a dot to a diamond. We could do this quite easily by
changing the body of the marker function.

diamond = Path()
diamond.moveto(0.5,0).lineto(0,0.5)
diamond.lineto(-0.5,0).lineto(0,-0.5)
diamond.closepath()

def marker(x, y):
push()
translate(x, y)
fill(diamond)
pop()

Unlike dot, there is no built-in function for drawing dia-

monds. Here we build one using a path object, another fea-
ture provided in our drawing library. With path objects, users
can describe arbitrary paths constructed of line and Bézier
curve segments, similar to the path construction operators in
PostScript. The path object can then be instanced in the di-
agram using the stroke and/or fill functions. Here we
define a path called diamond, which can be drawn within
the marker function with a single call to fill. To posi-
tion the diamond correctly, we use the push and pop li-
brary functions, which save and restore the current graphics
state (including transform matrix, drawing color, etc.), and
the translate function, which changes the origin of the
drawing coordinate system.

Now we will draw a clock with hands. Since we are cre-
ating a parameterized diagram rather than a static picture, of
course, the time shown on the clock should come as a param-
eter to the function. We’ll begin by declaring a new function
clock and use the already defined function clock_face
to draw the dial:

def clock(minutes=(SCALAR, 0, 1440),
label=(STRING, ’San Diego’)):

clock_face()

The clock function takes two parameters. One,
minutes, represents the number of minutes past midnight
to display on the clock, while the label parameter is a text
string to be shown beneath the clock face. Scalar-valued pa-
rameters like minutes are specified along with their allow-
able range of values. We can then make use of these param-
eter values in drawing:

San Diego

minute_angle = minutes * 6.0
hour_angle = minutes / 2.0

push()
rotate(-minute_angle)
color(gray50)
line(0, -2, 0, 8)
pop()

color(black)
text(0, -13, label, font = labelfont,

size = 3, anchor = ’c’)

The first two lines use the value of the minutes parame-
ter to compute the appropriate angles for the minute and hour
hands. This computation is done with the ordinary Python
arithmetic operators, and the results are assigned to a new
local variable. Note that the Python language is dynamically
typed, and does not require variable declarations. These fea-
tures, among others, make Python well suited for beginning
programmers.

Since the drawing is constructed as a Python function,
all of the features of the Python language are available: op-
erators for computation, control structures such as if and
while, and a rich set of data types including lists and dic-

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

tionaries. It is not necessary to use all of these abilities for
simple diagrams like this example, but they can be helpful
for making more complex figures.

The next group of lines actually draw the minute hand by
rotating the coordinate system through the appropriate angle
and drawing a gray line. A similar block of code (not shown
here) is used to add the hour hand as well. Finally, the string-
valued label parameter is drawn beneath the clock face.

Parameterized diagrams can be tested by loading them
into SLITHY’s test harness, which lets the user interactively
manipulate the diagram’s parameters via on-screen widgets
and see the results. Users can also click in the diagram and
see those points back-projected into the diagram’s coordi-
nate system; this aids in placing objects on the canvas. Fig-
ure 3(a) shows the clock diagram in the test window—the
minutes and label parameters are mapped to by a slider
and a text box, respectively.

3.2. Animation scripts

Our system applies the character animation technique of
building models and animating them via high-level controls.
Parameterized diagrams provide a way to express one half of
this scheme—mapping from the control parameters onto the
output drawing. Animation objects provide a convenient way
to specify the other mapping—from a single time value onto
a set of values for the model control parameter. In contrast to
the procedural nature of parameterized diagrams, where the
user code is executed every time the diagram is drawn, once
per frame, an animation script is executed only once, during
the initialization of the presentation. The script builds an an-
imation object that the SLITHY system can then sample to
draw the animation. An example script is shown in Figure 2,
with the resulting animation illustrated in Figure 5.

Every parameter controlled by an animation object is rep-
resented by a data structure called a timeline. The timeline
partitions the entire range of possible time values (from neg-
ative infinity to positive infinity) into a set of nonoverlap-
ping domains. For each domain, the timeline contains either
a constant value for the parameter, or a function that can be
called to produce the parameter’s value within that domain.

When an animation object is created, a trivial timeline is
created for each parameter under the animation’s control.
This trivial timeline is just a single domain covering all of
time, containing the parameter’s default value. Subsequent
commands within the animation script then edit these time-
lines to produce the desired animation. Using the linear
command on a parameter, for instance, will overwrite part
of a parameter’s timeline with a pair of new domains: one
expressing linear interpolation to a new value and one con-
taining the new value for all the following time. This and
other timeline editing commands are illustrated in Figure 4.

While the script is executing, the system maintains a

def clock_animation():

bg = Fill(style=’horz’, color=black, color2=darkgray)

left = Drawable(get_camera().left(0.5).inset(0.05),

clock)

right = Drawable(get_camera().right(0.5).inset(0.05),

clock, _alpha=0.0)

start_animation(bg, left, right)

set(left.label, ’San Antonio’)

set(left.minutes, 195+120)

set(right.minutes, 195)

parallel()

smooth(3.0, bg.color2, lightgray)

linear(3.0, left.minutes, 300+120)

linear(3.0, right.minutes, 300)

fade_in(1.5, right)

serial()

wait(1.5)

fade_out(1.5, left)

end()

end()

return end_animation()

Figure 2 A script for creating a four-second animation con-
taining three drawing objects: a gradient background fill
and two Drawables, which are containers for other draw-
ing objects (usually parameterized diagrams). In this case
both drawables contain instances of the clock example dia-
gram from Section 3.1. The body of the script (between the
start_animation and end_animation calls) con-
sists of commands to manipulate the parameter timelines of
the animation’s graphical elements.

(a) (b)
Figure 3 Two screenshots of the SLITHY object tester. Part
(a) shows the clock parameterized diagram; the controls cor-
respond to the diagram’s parameters. In part (b), the tester
is showing the animation of Figure 2; the controls are a time
slider with “play” and “stop” buttons.

value called the time cursor, which specifies where edits
will take place. At the start of a script the system is in se-
rial mode, which means that every edit command with a
duration (such as linear, which produces linear interpo-
lation, and smooth, which produces smooth interpolation)
advances the cursor by that duration. Animation commands
will then happen in sequence, one beginning when the previ-
ous one ended. The whole script has a single time cursor, so
even edits applied to different parameters will not overlap.

To make simultaneous changes to different parameters,
the script can use parallel mode. In parallel mode the cur-

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

linear(1.0, x, 1.0)

wait(1.0)

smooth(1.0, x, 0.0)

set(x, 0.5)

x

x

x

x

x

N Figure 4 The effect of
a series of animation script
commands on the timeline
of a single parameter x.
The dotted line represents
the position of the time cur-
sor.

J Figure 5 Frames from
the animation of Figure 2.

sor is not advanced after each edit command, so edits begin
at the same time. When the script exits parallel mode, the
cursor is advanced to the end of the longest of the parallel
components. Uses of parallel mode and serial mode can be
nested within one another to produce complex overlapping
effects.

Other edit commands include set, a zero-duration edit
that produces an instantaneous change in a parameter’s
value, and wait, which moves the time cursor without
changing any of the timelines. Figure 4 illustrates the ef-
fect of a series of these commands on a simple timeline. The
get function can be used to obtain a parameter’s value at
any point in time.

In addition to the timelines of parameter values for draw-
ing objects contained in the animation, there is also a special-
ized timeline called the working-set timeline that determines
which of those objects are drawn and their stacking order at
any point in time. The details of this timeline are hidden from
the user; it is instead manipulated via the functions enter
and exit, which add and remove objects from the anima-
tion, and lift and lower, which change the stacking or-
der. The pause command marks a point where SLITHY will
stop and wait for the presenter to press the spacebar before
continuing.

Loading an animation object into the test harness as in
Figure 3(b) allows the user to interactively scrub to arbitrary
points in time as well as playing it back in the normal fash-
ion.

3.3. Interactive controllers

The implementation of an interactive controller is very sim-
ilar to that of an animation script. Instead of a single func-
tion that creates all of the animation, though, a controller
is implemented as a class. An instance of this class is cre-
ated when the interactive object is first shown on the screen.
Just like an animation object, an interactive object contains
a set of child drawing objects and timelines for controlling
their parameters. Unlike an animation object, though, inter-
active objects can also have various methods that are called
to edit the timelines while the animation is being played in
response to user input events such as keypresses and mouse
movements.

Every time one of these event-handling methods is called,
the time cursor is positioned at the current playback time
so that edits made by the method will appear immediately.
All of the commands available within animation scripts
can also be used in these animation-editing methods of in-
teractive controllers: parameter timelines can be modified
with linear, smooth, set, etc.; the time cursor can be
controlled with parallel, serial, wait, etc.; and the
enter, exit, lift, and lower functions can modify the
set of child drawing objects.

3.4. GUI tools for authoring

Creating presentations by programming may be fine for
some technical users, but we hope to eventually make high-
quality animations available to a wide variety of presenters.
Interactive interfaces for authoring arbitrary animation tend
to be quite complex. We believe that by writing tools for spe-
cific, small domains, we can limit the range of animations
enough to make interactive specification feasible, while still
producing useful, content-rich animations. We can imagine
assembling a library of these small tools that cover a wide
range of presentation topics. One tool might be used for
producing ordinary bulleted-list slides, another for produc-
ing animated data plots, a third for showing still images.
(Even with still images there are opportunites for useful an-
imation: zooming in for closeups, labeling and captioning,
etc.) Hand-authoring of SLITHY code would be limited to
the subjects so specialized that no tool covers them—which,
for some presentations, could be an empty collection.

While this grand vision remains for the moment just that –
a vision – we have produced simple prototype implementa-
tions of tools that work in this manner. The first is a tool for
creating still image slideshows, inspired by the work of doc-
umentary filmmaker Ken Burns. Our tool allows the user to
load in images and to interactively specify zooms and pans
over them and animated transitions between them. The out-
put is a complete SLITHY animation. Figure 8 shows screen-
shots of these two applications, as well as the animated out-
put of the slideshow tool.

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

4. Animation principles

When desktop publishing and laser printers started to be-
come more common, displacing the typewriter, the imme-
diate result was not better-looking documents. Confronted
by dozens of typesetting options, people simply chose them
all, even within a single document. The message was not
“look at my content,” but “look at what my software can
do.” Today, too many presentations use animation with sim-
ilar results. Animation can enhance the content, or it can be
visually distracting. By summarizing the results of our expe-
rience in making animated presentations as a set of general
principles, we hope to encourage the former, leading to more
engaging and informative presentations. It is important to re-
member that these are not meant as rules, but more as a set of
defaults. Like most rules, the principles here should at times
be judiciously broken.

Make all movement meaningful. When we first started
adding animation to presentations, we naturally tried to
apply traditional animation principles such as squash and
stretch and exaggeration, with generally poor results. These
principles are intended to turn a drawing (or a rendered
model) into a character in the mind of the viewer. While
this liveliness is desirable in animation made to entertain, it
is distracting when the goal is to inform. The audience is
drawn away from the speaker and becomes focused on the
animation itself, wondering what interesting thing is going
to happen on the screen next. We had better results when
motion was as economical as possible.

Other classical animation principles such as anticipation
and staging are employed to draw the audience’s attention
to the right part of the screen at the right time. In presen-
tations, though, it is usually better to do this in a way that
maintains a distinction between the attention-getting anima-
tion and the action the audience needs to see. If something
interesting is about to happen in a particular section of a fig-
ure, that section should be highlighted by a color change, a
superimposed arrow, or even the speaker manually pointing
at it with the cursor—anything that can’t be confused with
the interesting action itself.

Avoid instantaneous changes. We suggest making
smooth transitions – even something as simple as a cross-
fade – the standard way of getting information on and off
the screen. Sudden cuts between states of a diagram create
uncertainty and tension, causing the audience to focus on the
screen so that nothing important is missed. Even very brief
transitions are better than sudden cuts at creating a feeling of
continuity, which lets the focus move easily from the screen
to the speaker and back as needed.

Reinforce structure with transitions. An advantage of us-
ing subtle transitions is that it increases the impact of the
more showy effects when they are used. A presentation in
which every single bullet point tap-dances its way onto the
screen is a presentation where the audience quickly learns

to ignore the tap-dancing. Used carefully, transitions can re-
inforce the structure of the presentation. A section can be
visually tied together with simple transitions. Using a more
dramatic effect to move to a new section will then create a
visual break, subtly punctuating the visual half of the talk as
the speaker punctuates the verbal half.

Good and Bederson8 call this effect the “sense of seman-
tic distance.” In their system static PowerPoint slides are ar-
ranged on a large canvas at various scales; the transitions
from one slide to the next are then pans and zooms of the
camera across this canvas. The natural way of laying out
slides in clusters by topic then leads to small transitions be-
tween related slides and longer, sweeping motions between
more distant sections. Our recommendation can be thought
of as a generalization of this effect, where the concept of
a “bigger” movement is extended to more than simple Eu-
clidean distance.

Create a large virtual canvas. Often when creating a pre-
sentation it seems like there is not enough room on the slide
to include everything the author thinks is important. Ani-
mated panning and zooming can be used to naturally in-
crease the effective real estate of the screen. A figure that
slides off one side of the screen remains more “visible” in
the mind’s eye of the audience than one that simply blinks
out of existence. This effect is supported by psychological
research: Dillon et al.6 summarize a number of studies sup-
porting a positive correlation between memory for location
and memory for content in both text and electronic docu-
ments.

Smoothly expand and compress detail. A closely related
principle is that of using animation to expand and compress
detail. In the previous principle we suggested using camera
pans and zooms to give the impression of the screen as a
window onto a very large space. It is also effective to use the
screen as a kind of magnifying glass for examining figures
at a variety of scales. In this way the presentation can eas-
ily fill the screen with the active portion of a diagram, shut-
ting out the parts not relevant to what the speaker is saying.
With static slides the screen jumps between scales, which
typically requires explanation by the presenter and effort by
the audience to make the mental links between the different
views.

With animation, this kind of navigation becomes much
easier to follow. Linking the different views with smooth,
continuous camera motion takes advantage of the viewers’
natural spatial abilities, with less need for artificial highlight-
ing and explanation from the presenter. Zooming in to em-
phasize detail can be done much more often because there is
less overhead involved in maintaining context.

Manage complexity through overlays. Panning and
zooming allow attention to be focused on one spatial region
of a figure, keeping unnecessary detail off the screen while
providing context. Instead of breaking a diagram into pieces
spatially, one can imagine instead slicing along an axis of

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

“complexity,” separating detail into layers that become visi-
ble only as required. A simple animated transition such as a
quick fade-in or a small sliding motion can provide a subtle
and effective cue for differentiating the layers of informa-
tion.

Do one thing at a time. Animations where many things
are changing at once give an overall impression of the
change, but make it difficult to concentrate on any single
part. We have had the best results when complex diagrams
are animated relatively slowly and with frequent pauses, so
that the animations track the speaker’s words. The techno-
logical advances in slide creation and projection have made
it increasingly common for the presenter’s words to take a
back seat to the elaborate visuals. The extensive use of an-
imation threatens to make this effect worse. We believe it
is important to treat any visuals – animated or otherwise –
as an accompaniment to the talk, rather than the other way
around. The presenter can only talk about one thing at a time;
the animation on the screen should match.

Reinforce animation with narration. The idea of using
animation simultaneously with narration is a useful one. In
our own presentations we have noticed a frequent impulse
to try and make two points at once—to have the animation
showing one thing on the screen while we talk about some-
thing else. Even though the two topics are usually closely
related, it is very difficult to follow both threads, and usu-
ally the result is that neither point gets made very effectively.
When used simultaneously, animation and narration should
reinforce each other. The speaker should describe what is
happening on the screen as it happens. To make a point that
isn’t illustrated, a pause in the on-screen motion will nat-
urally shift attention back to the presenter. The effective-
ness of narration in concert with animation has been demon-
strated in a series of studies by Mayer and Anderson.11; 12

Distinguish dynamics from transitions. Our final anima-
tion principle also deals with reducing the potential for con-
fusion by the audience. We divide presentation animations
into two major classes: dynamics and transitions. Dynamics
refers to perhaps the most natural use of animation: depict-
ing change over time in a real-world process. This change
could be physical, such as a moving illustration of a me-
chanical system, or abstract, such as data flowing through
a computer algorithm. The essential notion is that the ani-
mation is used to show some kind of change in the material
being presented. Transitions is the term we use to capture all
the other uses of animation—using it to highlight, to draw
attention, to move the talk from one topic to the next. Here,
the animation serves to help guide the audience through the
presentation itself.

We have found it important to make sure the distinction
between dynamics and transitions is clear. It is very easy
to create animation that can be misinterpreted. As an exam-
ple, one of our users was using a prototype of our system to
prepare a talk on a technique for simulating the motion of

nonrigid bodies. He wanted to contrast between two differ-
ent states of his system and had created a clever animated
transition between the two illustrations. Viewers were of-
ten confused by the transition, thinking that the motion they
were seeing represented the output of the simulation. Fortu-
nately, this problem was identified before the final presenta-
tion: replacing the confusing motion transition with a simple
crossfade resolved the ambiguity, making it clear that the se-
quence was showing two static states rather than an actual
motion.

5. Experience and examples

Figure 7(a) shows some still frames from a SLITHY presen-
tation on image matting. In this sequence the viewer zooms
in on one region of interest in a picture. Animation is then
used to show how the plot on the left is derived from the
image pixels. Further animations (not shown here) then il-
lustrate the operation of the algorithm in the abstract space.
This is a good use of animation to illustrate content, rather
than just catching the viewer’s eye.

Our next example, Figure 7(b), begins with a high-level
overview of the system described, introducing the desired
input and output as iconic images. As other elements are in-
troduced, the two images shrink and spread apart to make
room, preserving the continuity of the sequence. At the end,
all the elements slide off save one, which is used to demon-
strate a number of challenges with the approach.

The example presentation of Figure 7(c) uses a block di-
agram of the overall system as a navigation aid for the talk.
One by one the blocks are highlighted, with the camera
zooming in on each to start the in-depth explanation of that
block. This gives a strong impression that the detail slides
are located “within” the corresponding block. This structure
is used recursively. The figure shows part of the sequence
contained within the “Momentum constraints” block. The
various types of momentum constraints are presented as a
series of animated subfigures; the camera zooms in more to
focus on each one. At the end, the camera pulls back to show
all of the subfigures in their end state, then pulls back again
to return to the original block diagram. This sequence was
produced by one of our volunteer users before SLITHY sup-
ported arbitrary nesting of objects. Seeing it motivated us
to add deep hierarchical assembly to the system so that the
detail animations could actually appear within the blocks,
rather than camera movement just giving that impression.

Figure 7(d) is a good example of expanding and com-
pressing detail. This sequence starts by animating the con-
struction of a single Bézier curve. The camera then pulls
back to reveal that the curve is one of many. After those
curves are constructed, forming the boundary of a solid area,
the camera pulls back again to show that the curves define a
character, before superimposing a grid and illustrating the
rasterization process. Without animation, it would be more

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

(a)

(b)

(c)
Figure 6 Three examples of interactive objects. Example (a)
lets the presenter interactively place control points to illus-
trate the de Casteljau algorithm for drawing Bézier curves.
Interactive objects can coexist with other SLITHY elements—
example (b) shows an interactive annotation drawing tool
running on top of a text slide. Example (c) comes from the
presentation of Figure 7(b). It shows the operation of a k-
nearest-neighbor algorithm; lines are drawn between the
mouse cursor position ond the four nearest neighbors, with
line thickness used to indicate a weight.

difficult to make clear the relationship between the diagrams
at three different scales. Animation obviates the need for any
verbal explanation at all.

Figure 6(a) is a simple interactive object that displays a pie
chart and allows the user to highlight any wedge by clicking
on it. The clicked wedge moves outward with a smooth, an-
imated motion. Figure 6(b) is a more elaborate interactive
diagram, from the same talk as Figure 7(b). It illustrates a k-
nearest-neighbor-based interpolation algorithm; by moving
the mouse cursor around in the diagram the sample point is
linked to its four nearest neighbors by drawing green lines,
with line thickness used to indicate the weight of each neigh-
bor.

6. Comparisons to other systems

Although the SLITHY system itself is just one of the contri-
butions we hope to have made in this paper (the others be-
ing, primarily, the principles underlying both the design of
any system for creating animated presentations and the de-
sign of the animations themselves), it is nevertheless instruc-

tive to try to compare SLITHY, as a system, to other related
commercial and research systems. Although an exhaustive
comparison would take more space than we can reasonably
afford, we will at least look at a few of the most salient sys-
tems, which we divide into two major classes: systems de-
signed for creating presentations, and systems designed for
creating animation.

6.1. Presentation software

PowerPoint. PowerPoint makes designing static slides very
simple, through an intuitive WYSIWYG graphical interface.
PowerPoint also features a palette of animation effects that
can be applied to slide elements. However, it is extremely
difficult to create meaningful animation (the kinds of anima-
tion we have termed “dynamics” in Section 4) using Pow-
erPoint’s fixed library of effects. Even something as simple
as the animated pulley diagram of Figure 1 would be next
to impossible to create. For complex animations users must
resort to rendering a video file in some other application and
playing it from within PowerPoint. Moreover, PowerPoint
provides templates for slide layout, but these templates are
not parameterized. The user must select a template for each
slide and fill in content manually; there’s no way to, for in-
stance, say “take this template and create ten slides using
these ten image files.”

In contrast to PowerPoint’s design as a word processor for
slides, SLITHY has been built from the beginning with ani-
mation in mind. In part to make it fully flexible, and in part to
avoid the interface complexities of GUI animation systems
such as Maya or Flash, we have chosen a scripting model,
where authors write programs that describe their animations,
rather than creating them directly through graphical interac-
tion. Although certain operations like positioning elements
on the screen are more difficult to do with our approach, we
have tried to reduce these difficulties with tools that allow
users to rapidly test and refine their code, and interactively
query canvas coordinates. We have also developed some pro-
totype GUI-based tools that author SLITHY code for certain
narrowly defined domains (as described in Section 3.4).

CounterPoint. CounterPoint,8 is a presentation system
implemented using the Jazz toolkit,1 which itself is a de-
scendent of the Pad “zoomable sketchpad” system.17 Coun-
terPoint allows PowerPoint slides to be interactively scaled
and positioned in arbitrary locations on a large canvas, and
paths representing the order of the presentation to be drawn
through the slides. Animated zooms and pans across this
canvas are then used to transition from one slide to the next.
The animation in CounterPoint is focused exclusively on us-
ing animated navigation between slides to convey the struc-
ture of the presentation. In our work, we want to support the
animation of content as well. SLITHY can be used to create
both kinds of animation.

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

6.2. Creating animation

As we iteratively refined our own system, we were influ-
enced by previous script-based animation systems going
back to ANIMA II9 and DIAL.7 We use a general-purpose
programming language as in ASAS.19 Modeling and anima-
tion are integrated in one language as in CHARLI.4 We will
address a few of the most closely related systems in more
detail.

Menv. The Menv system18 is arguably one of the most
successful efforts at using a script-based system for produc-
ing animation. A descendant of the system is still in use to-
day by Pixar for producing animated feature films. Models
are created in Menv using a specialized language, with prim-
itives for creating 3D geometry and performing common
graphics operations. Menv’s authors point out three major
advantages that language-based modeling systems have over
interactive ones: replication, parameterization, and preci-
sion. While both types of systems allow replicating a model
through instancing, a language-based system has the addi-
tional power to allow calculation of how many times to repli-
cate and how to transform the various instances. A procedu-
ral specification of models also allows for complex param-
eterization, so that multiple instances can vary in nontrivial
ways. The third advantage, precision, derives from the fact
that the model’s subparts can be positioned through calcu-
lation, eliminating the problems in alignment that can come
from graphical placement, especially as the model is ani-
mated. All of these issues are as relevant for the creation of
abstract 2D figures in SLITHY as they are for the creation
of realistic 3D characters, yet this style of authoring is not
commonly seen in 2D tools.

Algorithm animation. One area in which animation sys-
tems have been designed for presentation use is in animating
algorithms. The Zeus system2 is typical in that it works by
taking an implementation of an algorithm and instrumenting
it so that the events that happen in the course of execution
are reflected in the graphical display. It is not clear how this
style of generating animation would be extended to things
that are not algorithms, though.

Alice. Like SLITHY, the Alice project of Conway et al.5

created a graphics programming environment based on the
Python programming language. Alice, however, was specif-
ically targeted at users with no graphics or programming
experience. It had no modeling component; the animations
were created by applying various transforms to premade 3D
objects. The emphasis was on creating interactive worlds
rather than scripting stories. Alice animation scripts were at-
tached to events such as mouse or keyboard inputs, or colli-
sions between 3D models. Executing an Alice script imme-
diately fed a set of commands for updating the world to a
central renderer. This allowed scripts to be activated in par-
allel, allowing users to create a world full of objects with
interesting behaviors. This model makes it difficult to ac-
cess an animation at arbitrary points in time: there was no

representation of the animation apart from the script itself,
which had to be run from the beginning. In SLITHY, execut-
ing an animation script results in an intermediate animation
object, which can be sampled and manipulated arbitrarily.
This kind of flexibility is especially important during the au-
thoring process.

Flash. One of the most widely used 2D animation systems
today is Flash, from Macromedia. Flash was designed for
use on the web. It is a 2D, vector-based keyframe animation
system.

The major limitation of Flash (and of a similar, competing
product from Adobe called LiveMotion) is that there is no
obvious way to create models with complex controls without
drawing the graphical elements using hand-written code, just
as in SLITHY. The interactively-created drawing primitives
and graphical timeline allow only simple transformations to
be specified. Primitives can be grouped together, but only
simple transformations such as applying affine transforms
and modifying opacity can be applied to the group. Without
the ability to express nontrivial mappings from the abstract
parameters of a group to the parameters of its members, it
is impossible to encapsulate interesting behavior and expose
that to the animator as a high-level control. (While an ani-
mation can be composed of many clips layered together, the
only controls offered by each clip are position on the screen,
opacity, and which frame is being shown. A clip could be
used as a model, but only if that model required just a sin-
gle scalar parameter, which would be mapped onto the frame
number.)

Moreover, we believe there is an advantage in using a
script-based interface for expressing the kind of simple, fre-
quently repeated animations used in presentations. Using
Flash’s scripting language to create intricate complex ani-
mations is possible, but awkward. Flash’s built-in graphical
timeline can only be edited interactively using the mouse.
The scripting language can not be used to describe ani-
mations using the timeline. To specify animation procedu-
rally, one can write a callback function that is called once
per frame and updates parameters of the graphical elements
manually based on the frame number. However, manually
positioning primitive objects as a function of time is tire-
some and error-prone. In contrast, SLITHY is built around
the concept of making parameterized models, just as in 3D
character animation systems. This parameterization is ex-
tended to every part of the system. Even animation scripts
can themselves be parameterized, letting users create not just
animations but animation-generators, making it easier to au-
tomate complex or frequently repeated tasks.

7. Future work and conclusion

There is still a great deal to be done. Most importantly, we
don’t yet know how to make an animated presentation tool
that is both very general and easy to use. We believe the

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

prototype tools described in Section 3.4 have promise, but it
will take a great deal of work and testing to determine if this
is really the way to make animation available to the masses.

Every day computers are being used to tell stories and
present ideas in boardrooms and classrooms around the
globe. There is a great opportunity here for computer graph-
ics to significantly improve this widely-used medium. When
we started working on this problem – trying to design an
easy-to-use system to support all kinds of arbitrary anima-
tion – it was not at all obvious to us even what kinds of an-
imation would work well for presentations, let alone how to
design a system to create them. We feel that the system and
principles presented here, while by no means the final word,
do at least provide some provocative and useful first steps to-
ward allowing us to create and experience more informative
and exciting presentations.

References

1. Benjamin B. Bederson, Jon Meyer, and Lance Good.
Jazz: An extensible zoomable user interface graph-
ics toolkit in java. In Proceedings of User Interface
and Software Technology (UIST 2000), pages 171–180,
2000.

2. Marc H. Brown. Zeus: A system for algorithm ani-
mation and multi-view editing. In IEEE Workshop on
Visual Languages, pages 4–9, October 1991.

3. Lih-Juan ChanLin. Animation to teach students of dif-
ferent knowledge levels. Journal of Instructional Psy-
chology, 25:166–175, 1998.

4. Michael Chmilar and Brian Wyvill. A software ar-
chitecture for integrated modeling and animation. In
R. A. Earnshaw and B. Wyvill, editors, New Advances
in Computer Graphics: Proceedings of CG Interna-
tional ’89, pages 257–276. Springer-Verlag, 1989.

5. Matthew Conway, Steve Audia, Tommy Burnette, Den-
nis Cosgrove, and Kevin Christiansen. Alice: Lessons
learned from building a 3D system for novices. In Pro-
ceedings of the CHI 2000 conference on Human factors
in computing systems, pages 486–493, 2000.

6. Andrew Dillon, Cliff McKnight, and John Richardson.
Space — the final chapter, or, why physical represen-
tations are not semantic intentions. In C. McKnight,
A. Dillon, and J. Richardson, editors, Hypertext: A Psy-
chological Perspective, chapter 8. Ellis Horwood, 1993.

7. S. Feiner, D. Salesin, and T. Banchoff. Dial: A diagra-
matic animation language. IEEE Computer Graphics
& Applications, 2:43–54, September 1982.

8. Lance Good and Benjamin B. Bederson. Zoomable
user interfaces as a medium for slide show presenta-
tions. Information Visualization, 1(1):35–49, March
2002.

9. Ronald J. Hackathorn. Anima II: a 3-D color animation
system. In Computer Graphics (Proceedings of SIG-
GRAPH 77), volume 11, pages 54–64, San Jose, Cali-
fornia, July 1977.

10. John Lasseter. Principles of traditional animation ap-
plied to 3D computer animation. In Computer Graph-
ics (Proceedings of SIGGRAPH 87), volume 21, pages
35–44, July 1987.

11. Richard E. Mayer and Richard B. Anderson. Anima-
tions need narration: An experimental test of a dual-
coding hypothesis. Journal of Educational Psychology,
83(4):484–490, 1991.

12. Richard E. Mayer and Richard B. Anderson. The
instructive animation: Helping students build connec-
tions between words and pictures in multimedia learn-
ing. Journal of Educational Psychology, 84(4):444–
452, 1992.

13. Julie Bauer Morrison, Barbara Tversky, and Mireille
Betrancourt. Animation: Does it facilitate learning? In
Smart Graphics: Papers from the 2000 AAAI Sympo-
sium, pages 53–60, 2000.

14. Tom Ngo, Doug Cutrell, Jenny Dana, Bruce Donald,
Lorie Loeb, and Shunhui Zhu. Accessible animation
and customizable graphics via simplicial configuration
modeling. In Proceedings of SIGGRAPH 2000, pages
403–410, 2000.

15. O. Park and S. S. Gittelman. Selective use of animation
and feedback in computer-based instruction. Educa-
tional Technology Research & Development, 40(4):27–
38, 1992.

16. Ian Parker. Absolute PowerPoint: Can a software pack-
age edit our thoughts? The New Yorker, 2001.

17. Ken Perlin and David Fox. Pad: An alternative ap-
proach to the computer interface. In Proceedings of
SIGGRAPH 93, 1993.

18. William T. Reeves, Eben F. Ostby, and Samuel J. Lef-
fler. The Menv modelling and animation environ-
ment. Journal of Visualization and Computer Anima-
tion, 1(1):33–40, August 1990.

19. Craig W. Reynolds. Computer animation with scripts
and actors. In Proc. SIGGRAPH 82, pages 289–296,
July 1982.

20. S. V. Thompson and R. J. Riding. The effect of ani-
mated diagrams on the understanding of a mathemati-
cal demonstration in 11- to 14-year-old pupils. British
Journal of Educational Psychology, 60:93–98, 1990.

21. Barbara Tversky, Julie Bauer Morrison, and Mireille
Betrancount. Animation: Can it facilitate? Interna-
tional Journal of Human Computer Studies, 57(4):247–
262, October 2002.

c
 The Eurographics Association 2003.

Zongker and Salesin / On Creating Animated Presentations

(a) (b) (c) (d)
Figure 7 In sequence (a) camera zooming is used to focus on one region, then a plot is constructed by animating pixels from
the input image. In (b), animation is used to maintain continuity as a simple overview is expanded to show more information.
Presentation (c) uses zooming in on parts of diagrams to reflect the hierarchical structure of the talk. Sequence (d) shows the use
of smoothly animated zooming to join together the actions at multiple scales.

(a) (b)

(c)
Figure 8 Part (a) shows three screenshots from an interactive application for generating animated slideshows. The resulting
SLITHY animation appears in part (c). Part (b) shows a similar prototype utility for generating animated line chart sequences.

c
 The Eurographics Association 2003.

